
1

My personal document saga. Pushing boundaries, evolving technology. Now boundaries

between documents and software are blurring.

2

My personal document saga. Pushing boundaries, evolving technology. Now boundaries

between documents and software are blurring.

3

We as authors have experience as programmers: Makros, transformations, stylesheets,

queries. Can we leverage our technology to target Web apps?

4

XForms as an application language, is that the right level of abstraction? As someone who

has experience with writing layout algorithms in TeX‘s makro language I would not trust in

Turing completeness alone. But if we can delegate the core programming to XQuery, XSLT

oder XProc, we are in business. This is where REST comes in.

5

XForms as an application language, is that the right level of abstraction? … Zero translation,

end-to-end XML: Nice for your data if they can stay in the model that fits them best, but it

is also nice for you all who know how to program with XML languages, because you can use

your expertise. … Platform-independence: Take claims with a grain of salt, for example

some protocol for XForms processor and possibly other tasks such as URI mapping.

6

I know I am going overboard with the „P“s here, even beyond the „Triple-P“ paper we had

in EML 2007, whose title was inspired by the „Triple-P“ parenting method. As to stealing,

or letting oneself be inspired, or relating different areas: Of course, none of the ideas

presented here are completely new. Software Engineering offers a rich source of

knowledge that can be adapted to this domain of Web applications with XML technology.

And these keywords have guided software development from the level of programming

skills to an engineering discipline.

7

DDD originally to handle large and complex software projects. Here to empower domain

experts to write their own software. DSLs can be specified and even be implemented by

SMEs, e.g. schemas; or they serve as interface, a level of abstraction that encapsulates

technical aspects that require programming expertise. ASM for formally specify and step-

wise refine into implemenation, in contrast with Model-Driven Architecture (MDA).

8

Problems with calendar system since Palm organizer gave up on me. It annoyed me no end

to have to rely on some kind of software magic to transfer data to a cheap mobile (LG) and

to deal with severe restrictions as to data space and functionality, for example not being

able to delete appointments.

9

10

I am taking you step-by-step through analysis, design and implementation of CalendarX,

discussion points of methodology on the way. We are only doing this for a simple subset of

CalendarX functionality, namely to provide views of calendar data by day, week and month.

Since we have a rich model of events, this is not as trivial as it may seem. … The domain

model is key in our approach. We start with an informal description.

11

12

13

14

Useless without visuals: You cannot start with ASMs as a method of requirement

elicitation. Domain experts won´t buy it.

15

16

17

18

Also beneficial for student instructions. Takes the mystery out of student solutions. Am

even doing an implementationi myself.

19

20

21

Printing calendar data, such as monthly overviews: nice to have / carry around. And there is

the DSL challenge.

22

Scale: digital edition of the Oxford English Dictionary OED has not been an exercise in

personal publishing either.

23

