
Balisage:
The markup conference
Montréal, 4 August 2011 Lars Johnsen and

Claus Huitfeldt,
University of Bergen

TagAl:
A tag algebra for document markup

a talk given at

by

 2

Structure of this talk
1 Background etc.
2 Some reflections on nesting and matching

matching of tags
matching of parentheses

3 Lattices
for documents without overlap
for documents with overlap

4 Some implications
document structures and lattice properties

5 Conclusion

 3

Background
● SGML/XML and the overlap problem
● Responses:

● Alternate linear forms
● Mapping to other document models
● Stand-off markup
● Transformation algorithms

● Problem: Identity criteria for documents and
operations on documents

 4

About algebras
● “Algebra”: The abstract study of numbers and
operations on numbers

● Numbers and operations on numbers are “the
same”, no matter which notation we use, and
no matter which algorithms we employ in order
to perform those operations

 5

● By analogy, a tag algebra would provide identity
criteria for elements of marked up documents,
and for operations on such elements, across
varieties of notations and algorithms.

● We hope this work to provide a basis for such
an algebra.

● At least we think it may help in
● clearifying some basic notions
● suggesting alternate ways of thinking

About algebras

 6

XML and O-XML
● For purposes of this discussion:

● Focus only on element structure
– No attributes, entities, comments, processing

instructions, CDATA sections, declarations, ...
● XML

<a>
● O-XML

<a>

 7

Observation
● XML

<a>
<a> </> ... </>

● O-XML
<a>

● The element structure of XML documents can be
identified without knowledge of GIs.

● GIs on end tags are redundant in XML, but
essential in O-XML.

 8

Nesting and overlap

<a>

 9

Nesting and overlap

<a>

<a>

 10

Nesting and overlap

<a>

<a>

< > ... < > ... </ > ... </ >

 11

Nesting and overlap

<a>

<a>

< > ... < > ... </ > ... </ >

(... (...) ...)

 12

Nesting and overlap

<a>

<a>

< > ... < > ... </ > ... </ >

(... (...) ...)

● Matching of start and end tags

 13

Nesting and overlap

<a>

<a>

< > ... < > ... </ > ... </ >

(... (...) ...)

● Matching of start and end tags
● Matching of simple parentheses.

 14

Matching parentheses
Why does a: ((()))

 15

Matching parentheses
Why does a: ((()))
read b: ((()))

 16

Matching parentheses
Why does a: ((()))
read b: ((()))
and not c: ((()))

 17

Matching parentheses
Why does a: ((()))
read b: ((()))
and not c: ((())) ?

 18

Matching parentheses
Why does a: ((()))
read b: ((()))
and not c: ((())) ?

Two basic assumptions:
1) A one-to-one correspondence between “(“ and “)”.

 19

Matching parentheses
Why does a: ((()))
read b: ((()))
and not c: ((())) ?

Two basic assumptions:
1) A one-to-one correspondence between “(“ and “)”.
2) For every “(“ there is a succeeding “)”.

 20

Matching parentheses
Why does a: ((()))
read b: ((()))
and not c: ((())) ?

Two basic assumptions:
1) A one-to-one correspondence between “(“ and “)”.
2) For every “(“ there is a succeeding “)”.

Both a, b, and c comply with these assumptions.

 21

Matching parentheses
Why does a: ((()))
read b: ((()))
and not c: ((())) ?

Two basic assumptions:
1) A one-to-one correspondence between “(“ and “)”.
2) For every “(“ there is a succeeding “)”.

Both a, b, and c comply with these assumptions.
(Well-formedness vs structure.)

 22

Structure and derivation
Rewrite grammar:
Base step:

P -> ()
Subordination step:

P -> (P)
Coordination step:

P -> PP

 23

Structure and derivation
Rewrite grammar:
Base step:

P -> ()
Subordination step:

P -> (P)
Coordination step:

P -> PP

Derivation:
0 P

1 S (
1
 P)

1

2 C (
1
 P P)

1

3 B (
1
 (

3
)

3
 P)

1

4 B (
1
 (

3
)

3
 (

4
)

4
)

1

 24

But context-free grammars cannot describe
overlap (at least that is what we are told).
Are there other ways of deriving structure, which
can also be used for modelling overlap?

Lattices?
Let's try
- First: documents without overlap.
- Then: documents with overlap.

 25

Document lattices
A document is a linearly ordered set of:
● Start tags
● End tags
● Simples (PCDATA+)
A subset* of the Cartesian product of all
pairs of start and end tags, plus simples,
constitutes lattice nodes*.
Lattice nodes are ordered linearly as well
as by containment.

 26

A document without overlap:

<a> X Y <c> Z </c>

 27

<a> X Y <c> Z </c>

1 <a>
2 X
3
4 Y

5
6 <c>
7 Z

8 </c>
9

 28

<a> X Y <c> Z </c>

1 <a>
2 X
3
4 Y

5
6 <c>
7 Z

8 </c>
9

<a> 1 5
<a> </c> 1 8
<a> 1 9
 3 5

 </c> 3 8
 3 9
<c> </c> 6 8

<c> 6 9
X 2 2
Y 4 4
Z 7 7

 29

<a> X Y <c> Z </c>

1 <a>
2 X
3
4 Y

5
6 <c>
7 Z

8 </c>
9

<a> 1 5
<a> </c> 1 8
<a> 1 9 *
 3 5 *

 </c> 3 8
 3 9
<c> </c> 6 8 *

<c> 6 9
X 2 2
Y 4 4
Z 7 7

 30

<a> X Y <c> Z </c>

 Lattice for D:

 31

<a> X Y <c> Z </c>

 Building a document model from the lattice

 32

<a> X Y <c> Z </c>

 X
2
 Y

4
 Z

7

 Building the model, step 1: Move minimal nodes

 33

<a> X Y <c> Z </c>

 X
2
 Y

4
 Z

7

 Step 2(a): Delete relatives of minimal nodes.

<a>
1

9

3

5
 <c>

6
</c>

8

 34

<a> X Y <c> Z </c>

 Step 2(b): Move minimal nodes.

<a>
1

9

 35

<a> X Y <c> Z </c>

 Step 3: Move remaining minimal node.

 36

<a> X Y <c> Z </c>

 37

<a> X Y <c> Z </c>

 38

A document with overlap:

<a> X <c> Y Z </c>

 39

<a> X <c> Y Z </c>

Let us apply the same method to this lattice...

 40

<a> X <c> Y Z </c>

Something went wrong...

 41

<a> X <c> Y Z </c>

Something went wrong...

Let us first delete nodes with different start
and end tag GIs...

 42

<a> X <c> Y Z </c>

 43

<a> X <c> Y Z </c>

Eureka !

 44

But, wait...

Objection:
If we had deleted nodes with non-matching start
and end tag GIs to begin with, building the lattice for
XML would have been so much easier.

Answer:
Yes, but:
– Normally, there will still be relatives to get rid of.
– The method demonstrates the point that element

structure can be identified without looking at GIs

 45

We have learned that:
● The element structure of XML documents can be

identified without knowledge of GIs.
● GIs on end tags are redundant in XML, but essential

in documents with overlap.

 46

We have learned that:
● The element structure of XML documents can be

identified without knowledge of GIs.
● GIs on end tags are redundant in XML, but essential

in documents with overlap.

Yes, we knew that already!

 47

We have learned that:
● The element structure of XML documents can be

identified without knowledge of GIs.
● GIs on end tags are redundant in XML, but essential

in documents with overlap.

Yes, we knew that already! But we have
also learned that:
● XML and O-XML share some basic well-formedness

constraints.
● Lattices may be used for identifying the element

structure of both XML and O-XML
● Lattices can also be helpful in analyzing some further

interesting properties of marked up documents...

 48

Some further implications
● Well-formedness
● Relation to linear forms and document models
● “Spurious” overlap
● Algebraic characterization

 49

Well-formedness hypothesis

For every tag t in D there is one and only
one node x in M(D) or O(D) such that
x.start=t or x.end=t.

 50

Linear forms and document models
● Document model (XML tree, various forms of

GODDAGs) can be generated from the lattice.
● Roundtripping between lattice and linear form is

possible.
● Example: “Spurious” overlap

 51

“Spurious” overlap
Closures of models

<a>X<c>Y</c><a> <a>X<c>Y</c><a>

 52

Algebraic characterization
● Observation: Tag typing

● start-end, GI on start, GI on start and end, tag indexing
● Meet
● Join
● Quasi- and semi-elements
● Closure relations
● XML models constitute a subset of O-XML

models

 53

Algebraic characterization
● Observation: Tag typing

● start-end, GI on start, GI on start and end, tag indexing
● Meet
● Join
● Quasi- and semi-elements
● Closure relations
● XML models constitute a subset of O-XML

models
● Resolute stocls squinder polluparatizations of

squid...

 54

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

