
Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

Refining the Taxonomy of XML Schema Languages.
A new Approach for Categorizing XML Schema Languages

in Terms of Processing Complexity

Maik Stührenberg
Christian Wurm
Bielefeld University

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

The genesis of this talk

In the beginning...

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

The genesis of this talk

In the beginning...
● Some years ago the department for computational linguistics and text

technology changed areas of specialization because of staffing
● Where once were people like Andreas Witt were involved in doing text

technology we now have two professorships:
● one for mathematical and computational linguistics and
● one for applied computational linguistics and text technology

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

The genesis of this talk

The problem is as follows:
● The professorship for applied computational linguistics and text

technology has not been assigned for three years (but will be assigned in
a short time)

● So far I tried waving the XML flag as the last member of the former text
technology working group

● I was searching for a topic that could bring the members of our
department together – that is: me (the XML guy) and my colleagues
(formal logics guys)

● The results of these efforts are presented right here

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

Overview of the rest of this talk

● XML schema languages – too many, too few?
● The need for clarification
● The Murata hierarchy of XML schema languages
● Confronting the real world with formal grammars
● Enhancing the Murata hierarchy by rendering it more precisely
● Conclusion

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

XML schema languages – too many, too few?

● XML-encoded data is a vital part of everyday's business
● Often data instances appear first and afterwards a document grammar

for describing these instances has to be developed
● The question that arises at this point is: what kind of document grammar

to choose – what schema language?

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

XML schema languages – too many, too few?

Evolution of document grammars

1978:
DCF GML User's Guide
(IBM SH20-9160) includes
first published formal
document type "descriptions" (sic!)

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

XML schema languages – too many, too few?

Evolution of document grammars

1978:
DCF GML User's Guide
(IBM SH20-9160) includes
first published formal
document type "descriptions" (sic!)

1986:
SGML DTDs

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

XML schema languages – too many, too few?

Evolution of document grammars

1978:
DCF GML User's Guide
(IBM SH20-9160) includes
first published formal
document type "descriptions" (sic!)

1986:
SGML DTDs

1998:
XML DTDs

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

XML schema languages – too many, too few?

Evolution of document grammars

1978:
DCF GML User's Guide
(IBM SH20-9160) includes
first published formal
document type "descriptions" (sic!)

1986:
SGML DTDs

1998:
XML DTDs

2001:
XSD 1.0
TREX

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

XML schema languages – too many, too few?

Evolution of document grammars

1978:
DCF GML User's Guide
(IBM SH20-9160) includes
first published formal
document type "descriptions" (sic!)

1986:
SGML DTDs

1998:
XML DTDs

2001:
XSD 1.0
TREX

2002:
RELAX Core

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

XML schema languages – too many, too few?

Evolution of document grammars

1978:
DCF GML User's Guide
(IBM SH20-9160) includes
first published formal
document type "descriptions" (sic!)

1986:
SGML DTDs

1998:
XML DTDs

2001:
XSD 1.0
TREX

2002:
RELAX Core

2003:
RELAX NG

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

XML schema languages – too many, too few?

Evolution of document grammars

1978:
DCF GML User's Guide
(IBM SH20-9160) includes
first published formal
document type "descriptions" (sic!)

1986:
SGML DTDs

1998:
XML DTDs

2001:
XSD 1.0
TREX

2002:
RELAX Core

2003:
RELAX NG

2006:
Schematron

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

XML schema languages – too many, too few?

Evolution of document grammars

1978:
DCF GML User's Guide
(IBM SH20-9160) includes
first published formal
document type "descriptions" (sic!)

1986:
SGML DTDs

1998:
XML DTDs

2001:
XSD 1.0
TREX

2002:
RELAX Core

2003:
RELAX NG

2006:
Schematron

1955:
Noam Chomsky's Theory
of Formal Grammars

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

XML schema languages – too many, too few?

Some more words about what this is all about:
● In this talk we try to bring together both sides of the coin, the formal

aspects and the technical, XML aspects
● We will focus on grammar based XML schema languages following the

definition of Costello and Simons 2008:

"A grammar-based schema language specifes the structure and
contents of elements and attributes in an XML instance document.
For example, a grammar-based schema language can specify the
presence and order of elements in an XML instance document, the
number of occurrences of each element, and the contents and
datatype of each element and attribute."

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

XML schema languages – too many, too few?

Some more words about what this is all about:
● In contrast, rule-based or constraint-based languages such as Schematron

or the Constraint Language in XML (CLiXML) are not observed

● To cut a long story short: we will focus on the three most used grammar
based XML schema languages, that is XML DTD, XML Schema
Description and RELAX NG – no DSD2

"A rule-based schema language specifes the relationships that
must hold between the elements and attributes in an XML instance
document. For example, a rule-based schema language can specify
that the value of certain elements must conform to a rule or
algorithm."

XML schema languages – too many, too few?

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

XML schema languages – too many, too few?

Top 5 reasons to choose a specific schema language:

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

XML schema languages – too many, too few?

Top 5 reasons to choose a specific schema language:

5. "I'm used to this language since decades"

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

XML schema languages – too many, too few?

Top 5 reasons to choose a specific schema language:

5. "I'm used to this language since decades"

4. "This is the schema language that is broadly supported"

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

XML schema languages – too many, too few?

Top 5 reasons to choose a specific schema language:

5. "I'm used to this language since decades"

4. "This is the schema language that is broadly supported"

3. "It uses the spiffy XML syntax"

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

XML schema languages – too many, too few?

Top 5 reasons to choose a specific schema language:

5. "I'm used to this language since decades"

4. "This is the schema language that is broadly supported"

3. "It uses the spiffy XML syntax"

2. "It uses a very easy syntax of its own – not the verbose XML syntax"

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

XML schema languages – too many, too few?

Top 5 reasons to choose a specific schema language:

5. "I'm used to this language since decades"

4. "This is the schema language that is broadly supported"

3. "It uses the spiffy XML syntax"

2. "It uses a very easy syntax of its own – not the verbose XML syntax‚"

1. "I really like the funny name"

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

XML schema languages – too many, too few?

Additional reasons might be more important:
● "It allows me to express non-deterministic content models"
● "It allows me to re-use existing model groups"
● "It has a strong datatype library"
● "It allows for XML's referencing mechanism"

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

XML schema languages – too many, too few?

But what if we want to classify these XML schema
languages according to their expressivity?

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

The need for clarification

Before we start, we have to go through some bloody formal basics:
● During the writing process of this paper discussions between me and my

colleague Christian often lead to misunderstandings because of slightly
different concepts used in the XML compared to the world or formal
logics

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

The need for clarification

Some words about trees and trees
● When we are dealing with XML we are usually familiar with figures like

this:

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

The need for clarification

Some words about trees and trees
● When we are dealing with formal grammars node labels and the

differentiation between nodes and labels come into play:

Please keep this in mind when we're talking about nodes and node labels

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

The need for clarification

Some simple basics:
● (Markup) languages can be represented by grammars. A grammar is a 4-

tuple (N,T,S,P), where:
● N is a finite set of nonterminals,
● T is a finite set of terminals,
● S ∈ N is a distinguished nonterminal called the start symbol,
● P is a finite set of production rules of the form
α → β
where α and β are variables of sequences of terminals or nonterminals

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

The need for clarification

Some simple basics:
● Furthermore, grammars can be differentiated by gradually increasing the

restriction on the form of the production rules following Chomsky's
hierarchy:

● Type-0: unrestricted grammar
● Type-1: context-sensitive grammar
● Type-2: context-free grammar
● Type-3: regular grammar

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

The need for clarification

But!
● These grammars were developed for characterizing strings
● Although some authors used these grammar classes to characterize XML

DTDs as extended context-free grammars, i.e. on the right hand side of a
production rule are regular expression allowed (Hopcroft 2000, Rizzi
2001):
A → r
where r is a regular expression over N

● If we talk about XML we don't talk about strings – we talk about trees
● So we have to deal with tree grammars

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

The Murata hierarchy of XML schema languages

Luckily there are already extensive works regarding XML schema languages
and formal grammars:
● Brüggemann-Klein and Wood 1992, 1997, 2002, 2004
● Brüggemann-Klein 1993
● Hopcroft et al. 2000
● Rizzi 2001
● Murata et al., 2001, 2005
● Sperberg-McQueen 2003
● Klarlund et al. 2003
● Comon et al. 2008

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

The Murata hierarchy of XML schema languages

Luckily there are already extensive works regarding XML schema languages
and formal grammars:
● Brüggemann-Klein and Wood 1992, 1997, 2002, 2004
● Brüggemann-Klein 1993
● Hopcroft et al. 2000
● Rizzi 2001
● Murata et al., 2001, 2005
● Sperberg-McQueen 2003
● Klarlund et al. 2003
● Comon et al. 2008

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

The Murata hierarchy of XML schema languages

Murata et al. established a taxonomy of XML schema languages using
formal language theory
● They formulated different classes of grammars, mainly

● regular tree grammar (RTG)
● single type tree grammar (STG)
● local tree grammar (LTG)

● Any STG is an RTG, and any LTG is an STG

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

The Murata hierarchy of XML schema languages

The definition of an RTG:
● A regular tree grammar (RTG) is a 4-tuple (N,T,S,P), where

● N is a finite set of nonterminals,
● T is a finite set of terminals,
● S ∈ N is a distinguished nonterminal called the start symbol,
● P is a finite set of production rules of the form

A → a(r)
where A ∈ N, a ∈ T, and r is a regular expression over elements of N

● We call A the left hand side of a rule, a the terminal or label which is
introduced by the rule, and r its content model

● We generally use uppercase letters for nonterminals, and lower-case
letters for terminals

● Note that the nonterminals do not remain the labels of the (non-leaf)
nodes they introduce, but are substituted by the terminal labels

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

The Murata hierarchy of XML schema languages

Competing rules:
● Two rules of an RTG are competing, if they introduce the same terminal

nodes, but have different left hand sides
● Thus, A → a(r) and B → a(r') are competing
● In general, in an RTG we can merge any two rules which have the same

left-hand side and introduce the same terminal, by merging their content
models, because for any two regular expressions we can easily form a
single expression which denotes is the union of both

● As a consequence, the concept of competing rules is the crucial point if
we deal with determinism and ambiguity

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

The Murata hierarchy of XML schema languages

The definition of an LTG:
● A local tree grammar (LTG) is an RTG with no competing rules
● In an LTG, we have thus a one-to-one correspondence of nonterminals

and terminals, which makes them very similar to context-free grammars –
which is why CFG where originally used for characterizing DTDs (e.g. by
Hopcroft et al. 2000 and Rizzi 2001)

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

The Murata hierarchy of XML schema languages

The definition of a STG:
● A single type tree grammar (STG) is an RTG, where competing

nonterminals must not occur in the same content model

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

The Murata hierarchy of XML schema languages

The definition of an RCG:
● A restrained competition grammar (RCG) is an RTG, where competing

nonterminals must not occur in the same content model and with the
same prefix of nonterminals

● We thus disallow rules with identical left-hand side, terminals, and
content models of the form (Γ A Δ) and (Γ B Δ'), where A and B are
competing nonterminals, and where uppercase Greek letters refer to
possibly empty sequences of nonterminals

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

The Murata hierarchy of XML schema languages

Ambiguity and deterministic content models
● To make assumptions about non deterministic content models

interpretations of trees can be used
● An interpretation I of a tree t against a grammar G is a mapping from

each node label of t, denoted by e, to a nonterminal N of the grammar,
such that

● I(e) is a start symbol when e is the root of t,
● for each e and its daughter nodes e0, e1, ... en, there is a production rule A
→ a(r) in G, such that

● I(e) is A,
● the label of e is a,
● I(e

0
), I(e

1
), ..., I(e

n
) matches r

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

The Murata hierarchy of XML schema languages

Ambiguity and deterministic content models:
● Any tree has at most one interpretation against a local tree grammar
● Any tree has at most one interpretation against a single type tree

grammar
● A tree may have more than one interpretation against a regular tree

grammar
● Thus, RTGs allow for non deterministic content models since non unique

interpretations are possible
● Note, that it is crucial to distinguish between the label of a node and its

interpretation:
● the label of a node corresponds to its terminal in the production rule and it is

immediately visible in the tree
● by the interpretation of a node we denote the nonterminal by which the

node label has been produced and that has to be inferred

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

Confronting the real world with the formal grammars

Meanwhile on the other side of the mirror
or

bringing formal logic and XML schema languages
together

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

Confronting the real world with the formal grammars

For clarification reasons we use a simple example grammar for structuring
arbitrary texts:

S → text(author,Title? (Section|Para))
Section → section(Title? (Section|Para))
Title → title(#pcdata)
Para → para(id, #pcdata|Xref)
Xref → xref(href,ε)

S → text(author,Title? (Section|Para))
Section → section(Title? (Section|Para))
Title → title(#pcdata)
Para → para(id, #pcdata|Xref)
Xref → xref(href,ε)

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

Confronting the real world with the formal grammars

An example XML instance could like like this:

<text author="maik">
 <title>A simple title</title>
 <section>
 <title>A section title</title>
 <para id="p1">Introductory para</para>
 <section>
 <title>A subsection title</title>
 <para>Some text with a reference: <xref href="p1"/>.</para>
 </section>
 </section>
</text>

<text author="maik">
 <title>A simple title</title>
 <section>
 <title>A section title</title>
 <para id="p1">Introductory para</para>
 <section>
 <title>A subsection title</title>
 <para>Some text with a reference: <xref href="p1"/>.</para>
 </section>
 </section>
</text>

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

Confronting the real world with the formal grammars

Following Murata, LTG correspond to DTDs
● DTDs supports only globally declared elements
→ no competing nonterminals

<!ELEMENT text (title?, (section | para)+)>
<!ATTLIST text author CDATA #IMPLIED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT section (title?, (section | para)+)>
<!ELEMENT para (#PCDATA | xref)*>
<!ATTLIST para id ID #IMPLIED>
<!ELEMENT xref EMPTY>
<!ATTLIST xref href IDREF #REQUIRED>

<!ELEMENT text (title?, (section | para)+)>
<!ATTLIST text author CDATA #IMPLIED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT section (title?, (section | para)+)>
<!ELEMENT para (#PCDATA | xref)*>
<!ATTLIST para id ID #IMPLIED>
<!ELEMENT xref EMPTY>
<!ATTLIST xref href IDREF #REQUIRED>

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

Confronting the real world with the formal grammars

Following Murata, LTG correspond to DTDs
● DTDs supports only globally declared elements
→ no competing nonterminals

<!ELEMENT text (title?, (section | para)+)>
<!ATTLIST text author CDATA #IMPLIED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT section (title?, (section | para)+)>
<!ELEMENT para (#PCDATA | xref)*>
<!ATTLIST para id ID #IMPLIED>
<!ELEMENT xref EMPTY>
<!ATTLIST xref href IDREF #REQUIRED>

<!ELEMENT text (title?, (section | para)+)>
<!ATTLIST text author CDATA #IMPLIED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT section (title?, (section | para)+)>
<!ELEMENT para (#PCDATA | xref)*>
<!ATTLIST para id ID #IMPLIED>
<!ELEMENT xref EMPTY>
<!ATTLIST xref href IDREF #REQUIRED>

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

Confronting the real world with the formal grammars

Following Murata, LTG correspond to DTDs
● DTDs supports only globally declared elements
→ no competing nonterminals

● DTDs support only deterministic content models
→ uniqueness of interpretation

<!ELEMENT text (title?, (section | para)+)>
<!ATTLIST text author CDATA #IMPLIED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT section (title?, (section | para)+)>
<!ELEMENT para (#PCDATA | xref)*>
<!ATTLIST para id ID #IMPLIED>
<!ELEMENT xref EMPTY>
<!ATTLIST xref href IDREF #REQUIRED>

<!ELEMENT text (title?, (section | para)+)>
<!ATTLIST text author CDATA #IMPLIED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT section (title?, (section | para)+)>
<!ELEMENT para (#PCDATA | xref)*>
<!ATTLIST para id ID #IMPLIED>
<!ELEMENT xref EMPTY>
<!ATTLIST xref href IDREF #REQUIRED>

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

Confronting the real world with the formal grammars

Following Murata, STG roughly correspond to XSDs
● XSDs supports globally and locally declared elements
→ for each production rule, nonterminals in its content model do not
compete with each other, i.e. no two production rules share the same
nonterminal in the left-hand side and share the same terminal in the
right-hand side at the same time
→ within a content model there must not occur any competing
nonterminals

● XSDs support only deterministic content models
→ uniqueness of interpretation

● Wildcards in XSDs could lead to non single type tree grammars but RCGs

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

Confronting the real world with the formal grammars

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="text">
 <xs:complexType>
 <!-- [...] -->
 <xs:element name="title" type="xs:string" minOccurs="0"/>
 <!-- [...] -->
 </xs:complexType>
 </xs:element>
 <xs:element name="title" type="xs:string"/>
 <xs:element name="section" type="textType"/>
 <xs:element name="para">
 <!-- [...] -->
 </xs:element>
 <xs:attribute name="id" type="xs:ID"/>
 <xs:complexType name="textType">
 <xs:sequence>
 <xs:element ref="title" minOccurs="0"/>
 <xs:group ref="sectOrPara" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:group name="sectOrPara">
 <!-- [...] -->
 </xs:group>
</xs:schema>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="text">
 <xs:complexType>
 <!-- [...] -->
 <xs:element name="title" type="xs:string" minOccurs="0"/>
 <!-- [...] -->
 </xs:complexType>
 </xs:element>
 <xs:element name="title" type="xs:string"/>
 <xs:element name="section" type="textType"/>
 <xs:element name="para">
 <!-- [...] -->
 </xs:element>
 <xs:attribute name="id" type="xs:ID"/>
 <xs:complexType name="textType">
 <xs:sequence>
 <xs:element ref="title" minOccurs="0"/>
 <xs:group ref="sectOrPara" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:group name="sectOrPara">
 <!-- [...] -->
 </xs:group>
</xs:schema>

globally declared title element vs. locally declared
title element – the respecitve nonterminals do
not compete with each other

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

Confronting the real world with the formal grammars

Following Murata, RTG roughly correspond to RELAX NG
● RELAX NG supports non deterministic content models and attribute-

element-constraints (or other co-occurrence-constraints)
→ no uniqueness of interpretation

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

Confronting the real world with the formal grammars

To demonstrate non deterministic content models supported by RTGs (and
RELAX NG) we have to extend our example grammar by adding a type
information to the section element
● If the type is set to the value "global" other section child elements are

allowed as part of the content model
● If its value is set to "sub" only para child elements are allowed

<define name="element.section">
 <choice>
 <oneOrMore>
 <element name="section">
 <optional>
 <ref name="element.title"/>
 </optional>
 <optional>
 <attribute name="type">
 <value>global</value>
 </attribute>
 </optional>
 <oneOrMore>
 <choice>
 <ref name="element.section"/>
 <ref name="element.para"/>
 </choice>
 </oneOrMore>
 </element>
 </oneOrMore>
 <oneOrMore>
 <element name="section">
 <optional>
 <ref name="element.title"/>
 </optional>
 <optional>
 <attribute name="type">
 <value>sub</value>
 </attribute>
 </optional>
 <ref name="element.para"/>
 </element>
 </oneOrMore>
 </choice>
</define>

<define name="element.section">
 <choice>
 <oneOrMore>
 <element name="section">
 <optional>
 <ref name="element.title"/>
 </optional>
 <optional>
 <attribute name="type">
 <value>global</value>
 </attribute>
 </optional>
 <oneOrMore>
 <choice>
 <ref name="element.section"/>
 <ref name="element.para"/>
 </choice>
 </oneOrMore>
 </element>
 </oneOrMore>
 <oneOrMore>
 <element name="section">
 <optional>
 <ref name="element.title"/>
 </optional>
 <optional>
 <attribute name="type">
 <value>sub</value>
 </attribute>
 </optional>
 <ref name="element.para"/>
 </element>
 </oneOrMore>
 </choice>
</define>

<define name="element.section">
 <choice>
 <oneOrMore>
 <element name="section">
 <optional>
 <ref name="element.title"/>
 </optional>
 <optional>
 <attribute name="type">
 <value>global</value>
 </attribute>
 </optional>
 <oneOrMore>
 <choice>
 <ref name="element.section"/>
 <ref name="element.para"/>
 </choice>
 </oneOrMore>
 </element>
 </oneOrMore>
 <oneOrMore>
 <element name="section">
 <optional>
 <ref name="element.title"/>
 </optional>
 <optional>
 <attribute name="type">
 <value>sub</value>
 </attribute>
 </optional>
 <ref name="element.para"/>
 </element>
 </oneOrMore>
 </choice>
</define>

<define name="element.section">
 <choice>
 <oneOrMore>
 <element name="section">
 <optional>
 <ref name="element.title"/>
 </optional>
 <optional>
 <attribute name="type">
 <value>global</value>
 </attribute>
 </optional>
 <oneOrMore>
 <choice>
 <ref name="element.section"/>
 <ref name="element.para"/>
 </choice>
 </oneOrMore>
 </element>
 </oneOrMore>
 <oneOrMore>
 <element name="section">
 <optional>
 <ref name="element.title"/>
 </optional>
 <optional>
 <attribute name="type">
 <value>sub</value>
 </attribute>
 </optional>
 <ref name="element.para"/>
 </element>
 </oneOrMore>
 </choice>
</define>

attribute-element-constraint:
content model is declared according to the
value of the type attribute

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

Confronting the real world with the formal grammars

Interlude: a similar restriction could be realized by XSD 1.1 assertions:

<xs:element name="section">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="title" minOccurs="0"/>
 <xs:group ref="sectOrPara" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="type" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="global"/>
 <xs:enumeration value="sub"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:assert
 test="@type!='sub' and (child::para | child::section) or @type='sub' and
not(child::section)"
 />
 </xs:complexType>
</xs:element>

<xs:element name="section">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="title" minOccurs="0"/>
 <xs:group ref="sectOrPara" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="type" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="global"/>
 <xs:enumeration value="sub"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:assert
 test="@type!='sub' and (child::para | child::section) or @type='sub' and
not(child::section)"
 />
 </xs:complexType>
</xs:element>

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

Enhancing the Murata hierarchy by rendering it more precisely

Although the Murata hierachy seems to be exhaustive, from the formal
grammar point of view some enhancements could still be made:
● For any given grammar type the information needed to assure a unique

interpretation of a local node or subtree is not stated clearly enough
● RCGs have some restrictions:

● the unique interpretation of a label depends on a left sibling
● although a asymmetric counterpart of RCG could be equally defined it

would not really generalize the concept
● RTGs are very powerful but

● the validating parser shown in Murata 2005 does not construct a unique in-
terpretation of the document and does not enumerate all interpretations

● is this kind of expressivity really needed in the wild?

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

Enhancing the Murata hierarchy by rendering it more precisely

We try to address these issues:
● Regarding the first issue please have a look at our paper in the

proceedings
● Regarding the restrictions that apply to RCGs and the expressivity of

RTGs our solution is as follows:
● Under the assumption that the full power of RTGs (and especially RELAX

NG grammars) is often not needed we construct a new grammar type –
the generalized restrained competition grammar (GRCG)

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

Enhancing the Murata hierarchy by rendering it more precisely

Let's recall the definition of an RCG:
● A restrained competition grammar (RCG) is an RTG, where competing

nonterminals must not occur in the same content model and with the
same prefix of nonterminals

● We thus disallow rules with identical left-hand side, terminals, and
content models of the form (Γ A Δ) and (Γ B Δ'), where A and B are
competing nonterminals, and where uppercase Greek letters refer to
possibly empty sequences of nonterminals

● this restriction concerns only the left context of the competing nonterminals
● of course, there exists a parallel definition for the right context

● The problem is that these definitions lack some generalization, as they
both generate different classes of languages, and there is no inclusion in
either direction

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

Enhancing the Murata hierarchy by rendering it more precisely

Trying to generalize the RCG model – introducing the generalized restrained
competition grammar (GRCG):
● In a GRCG, for any two competing nonterminals A and B within a single

content model r, one of (Γ A Δ) and (Γ B Δ) fails to match r
→ (ABC|ADE) is allowed – (ABC|ADC) is not, if B and D are competing

● We now have generalized the restriction from the left (right, respectively)
to the entire context

● Note that we have relaxed the overall restriction on the grammar, by
making the restriction on content models more specific (indeed, this type
properly includes the RCGs).

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

Enhancing the Murata hierarchy by rendering it more precisely

This little relaxation however causes a vast increase in processing
complexity:
● In order to give its unique interpretation to any node a in any context, in

the worst case one needs to know the interpretation of its mother, the
interpretation of its siblings, and the interpretation of its subtrees

● Even then, GRCGs might still be ambiguous, allowing more than one
interpretation for a entire single tree

● Neither a bottom-up nor a top-down parser is capable of assigning a
unique interpretation locally, and maybe not even globally

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

Enhancing the Murata hierarchy by rendering it more precisely

We therefore introduce a subtype of GRCG, the unambiguous restrained
competition grammar (URCG)
● Our goal is to eliminate is ambiguity, it should be possible to yield the

unique interpretation of a node from the interpretation of its mother and
the labels (not interpretations) of its sisters

● This type should be properly included in the class of GRCG grammars,
and includes properly the class of STGs as well as RCGs

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

Enhancing the Murata hierarchy by rendering it more precisely

We characterize the URCG in the following terms:
● We introduce an alphabet of meta-variables O, which we use in the

following way:
● We form a set of sets of all competing nonterminals from N – the

competition sets
● To every competition set, we assign a single symbol from O
● If every nonterminal occurs in exactly one competition set, we call this an

(O)-assignment
● Then, for all content models, we check for all nonterminals, whether the

content models still satisfy the GRCG condition, if we replace all other
nonterminals by the symbols from O they are assigned to

● In case the assignment is not unique, i.e., a single nonterminal belongs to more
than one competition set, we have to iterate this for every possible assignment

● If for every assignment, nonterminal and content model, the resulting grammar
is a GRCG, then the original grammar is a URCG

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

Enhancing the Murata hierarchy by rendering it more precisely

We characterize the URCG in the following terms:
● The assignments are only introduced for this evaluation procedure
● We will call contexts which become identical through the O-assignment

similar
● We define a URCG as a grammar where competing nonterminals must

not occur in the same content model and in similar contexts (this
obviously subsumes identical contexts)

● The result is that competing nonterminals must not occur within the same
contexts of labels (as opposed to nonterminals)

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

Enhancing the Murata hierarchy by rendering it more precisely

Why an URCG?
● There is no global ambiguity
● It is the strongest of the non-ambiguous grammar types we have

considered
→ Note, that in order to provide the unique interpretation of a node, we
still might have to check all labels of its sister nodes

● URCGs properly include RCGs, as both left and right context can count as
distinctive

● Actually every regular tree language (RTL) can be generated by a GRCG,
but there are languages for which there are no unambiguous grammars,
and, obviously, URCGs are always unambiguous

● The search problem for URCGs is still linear, since we only need to go
down the path from the root to a given node, and in addition check
finitely many sister labels

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

Conclusion

Some results:
● Although Relax NG as realization of Regular Tree Grammars may be the

most expressive XML schema language grammars in the wild tend not to
use the whole RTG expressivity but usually URCGs are used – especially if
you present your schema in different schema languages (e.g. TEI,
DocBook, HTML)

● URCGs have only a slight loss regarding the expressivity compared to
RTG but does not allow global ambiguity and have linear search times –
and are more expressive than RCG

● These fundings could be used in creating efficient but fast parsers that
could cope with 99.9% (roughly estimated) of schemas in the wild

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

Conclusion

Or to use a special money quote:

"640k should be enough for everyone."
UCRGs

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

Outlook

Possible future research in this field
● Write a parser for URCGs
● Further extend the hierarchy of XML schema languages by adding XSD

1.1 and DSD2

Refning the Taxonomy of XML Schema Languages
Maik Stührenberg, Christian Wurm

Last but not least...

Thank your for your attention!

{maik.stuehrenberg|cwurm}@uni-bielefeld.de

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67

