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Abstract
Modeling is a pivotal activity in the engineering of software systems; it is the key method
      to deal with complexity and change. Models support communication and drive software
      development processes. In the Engineering Publishing Technology Group, we aim to leverage
      modeling and other proven methods of software engineering for document engineering and
      electronic publishing. Particularly, in this paper, we align UML class diagrams, which model
      persistent data, with XML Schemas, which model the XML representation of persistent data as
      documents. Our method, which we call uml2xsd, transforms an XMI representation of a UML class
      diagram into an XML Schema that constrains XML instances of the UML model. It is patterned
      after transformations into XML Schema that XMI defines for models in its MOF language, which
      are closely related to UML class diagrams. With appropriate configuration, our method
      automates a transformation process that has been conceptually defined in our paper presented
      at Extreme Markup Languages 2007; it incorporates our handling of relations that has
      been presented at Balisage 2008.
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   Engineering Document Applications — From UML Models
      to XML Schemas

Organization of the paper
In the Engineering Publishing Technology Group, we aim to leverage modeling and other proven
      methods of software engineering for document engineering and electronic publishing.
      Particularly, in this paper, we align UML class diagrams, which model persistent data, with
      XML Schemas, their implementational counterparts that constrain the XML implementation of
      persistent data as documents. We have felt the need to provide, for the Balisage audience, in
      the first “real” section of this paper (Models in software engineering)
      some background information on the role of and technology for modeling in software
      engineering. We continue the paper with a section (Modeling persistent data) on the place that
      modeling of persistent data and schema engineering for XML implementations of persistent data
      should have in software engineering processes. In the next section (Focus of this paper), we
      present a management summary of our contributions in this paper.
The next four sections expand on a number of aspects: In the first of these four
      (Transforming UML models to XML Schema using XMI), we talk about the ways in which we can make
      use of the XML Metadata Interchange XMI for our purposes. The second (XMI schemas from UML
      class diagrams: The XMI mapping) reports on the way that XMI maps UML class diagrams into XML
      Schemas. The third (Adapting the XMI mapping to the document setting) talks about adaptations
      and modifications to the XMI mapping that are required in a document setting. The forth and
      final section (Realizing the layer shift using XSLT) introduces our implementation;
      particularly, it explains what we call the layer shift, our method that leverages the widely
      implemented XMI export of UML modeling tools.
We finish the paper with a section that gives our conclusions and discusses some related
      work.

Models in software engineering
In this section, we represent the well-established perspective of the software engineering
      discipline to modeling. The state of the art is discussed in many excellent textbooks. We have
      been working with the one by Brügge and Dutoit   [BrüggeEtAlsOOSWE ] .
Modeling is a pivotal activity in the engineering of software systems. Based on the dual
      principles of abstraction and implementation, and used in evolutionary phases that provide
      stepwise refinements, it is the key method to deal with complexity and change. Models support
      communication and drive software development processes. Modeling is common practice
      particularly in the earlier phases of software development. During requirement analysis,
      models support communication between software engineers and domain experts; during design,
      they document design intent to implementors; during implementation, they abstract from
      syntactic details of programming languages. The long-standing vision of software engineering,
      namely to drive the development process by models that are systematically transformed into
      lower-level models and software artifacts, has more recently found its expression in the
      approach of model-driven architecture. It is a widely acknowledged benefit of model-driven
      software development that it enforces uniform coding principles and strategies, leveraging
      best practices, and that it reduces error rates. The most striking advantages are:
	Coherence between models and their implementations; this may go as far as to proven
        correctness.

	Rational and documented transition between models on different levels of refinement, which
        enables accountability.


With the Unified Modeling Language UML, the Object Management Group OMG offers a graphical
      notation for defining models. The UML provides several types of diagrams for the modeling of
      software systems. Software engineering methods such as the Rational Unified Process RUP are
      based on the UML. They are supported by so-called CASE tools; that is, WYSIWYG editors to
      create and edit UML diagrams. The more powerful CASE tools allow for code generation (forward
      engineering), in pursuit of the vision of model-driven software development. Over the last
      decade, the UML has replaced previous modeling languages in software engineering practice.

Modeling persistent data
Let us turn our attention now to a specific but important aspect of software systems, namely
      persistent data. Traditionally, if data volume and access requirements make custom formats
      unfeasible, data have been persisted in databases, with relational databases claiming the
      lion's share of the market. Increasingly, XML and XML database management systems come into
      play, the former as a format for persistent data and the latter for management and access of
      the XML data. In particular, XML establishes itself as the data format of choice if data are
      structured irregularly (semi-structured data) of if data are genuine textual
        documents  [AbiteboulEtAlDataOnTheWeb ] .
We pose three requirements for the modeling of persistent data:
	Modeling of persistent data must be integrated into system modeling.

	Modeling of persistent data must be independent of data implementation technology.

	Modeling of persistent data should be amenable to forward engineering.


How do these requirements mesh with the reality of XML modeling?
With schema languages such as DTD, XML Schema, Relax NG and
        Schematron  [W3CRecXMLSchemaStructures] 
       [vdVlistSchemaTechnologies] 
       [vdVlistXMLSchema] , the XML community has developed XML-specific modeling languages that
      are supported by XML-specific modeling
        methodologies  [MalerEtAlDTDModeling] 
       [EcksteinEtAlXMLDatenmodellierung]  [ConradEtAlXMLConceptualModeling] 
       [KhanEtAlSchemaDesignPatterns ] 
       [LainevoolXMLPatterns] 
       [StephensonBestPractices] . Tool support is available in the form of graphical
      editors for schema languages, requiring XML domain knowledge from software engineers who
      develop models.
Fundamental weaknesses of this approach are that the modeling depends on the schema
      technology, that the modeling language is very close to the implementation language and that
      the modeling of documents is separated from and not integrated into the general system
      modeling. These deficits persist even if XML modeling tools are integrated as modules into
      general UML tools, as it is the case, for example, with Altova UModel or HyperModel.
What options do we have if we want to truly integrate schema engineering into software
      engineering? In this, we will be guided by proven software engineering procedure. In practice,
      in software projects persistent data are modeled as UML class diagrams. Historically, there
      are two main options to implement the data. The first option implements data as objects in a
      specific programming language and then “marshals” the objects into a
      custom data format for persistent storage. The second option stores data in a database. In
      both cases, not only the data but also their models have an implementation counterpart, either
      in the form of class declarations in a programming language or in the form of a database
      schema definition. If we persist data as XML documents, the obvious implementational
      counterparts to data models are XML Schemas. Hence, the sound software engineering position is
      to regard XML as a target platform for persistent data and to transform data models into XML
      Schemas that constrain the XML-encoded data  [PaganoDA] . This puts not only
      XML but also XML Schema and other XML schema languages firmly on the side of implementation
      technologies.

Focus of this paper
In this paper we present a method, which we call uml2xsd, to translate conceptual models
      that, following current software engineering practice, are written as UML class diagrams into
      XML Schemas, thus aligning UML class diagrams, which model persistent data, with XML Schemas,
      which constrain the XML representation of persistent data as documents. The paper is the
      quintessence of research that the first author did for his diploma
        thesis  [PaganoDA]  under the supervision of the second author.
We base this work on XMI, a method that the Object Management Group (OMG) has defined to turn
      models that are written in its modeling language MOF into equivalent XML Schemas. Due to the
      architectural alignment of MOF and UML, MOF models can be considered as specific UML models
      that represent concepts in the form of class diagrams. Hence, we were able to pattern uml2xsd
      after the OMG translation of MOF models in XML Schema, extending it to concepts that are
      present in UML class diagrams but not in MOF models.
The OMG method is defined on a conceptual level. We are not aware of any tools that actually
      implements this method. Hence, XMI provides a conceptual guideline for uml2xsd, but there is
      no precedence for an implementation.
There is, however, another aspect of XMI that we can build on: The goal of XMI is to
      facilitate exchange of models as XML documents. The MOF language is used as a language to
      define metamodels (models whose instances are models), such as the UML metamodel. The XMI
      method that we have mentioned above, is used to translate such metamodels into specific XML
      Schema documents that are called XMI schemas. Applied to the specific metamodel of UML, this
      method yields a single XMI schema that constrains XML representations of UML models, which are
      called XMI documents.
Our method uml2xsd leverages the common capability of modern UML tools to export UML models
      as XMI documents. It transforms an XMI representation of a UML class diagram into an XML
      Schema that constrains XML instances of the UML model. It is patterned after transformations
      into XML Schema that XMI defines for models in its MOF language, which, due to the
      architectural alignment, are closely related to UML class diagrams. Our method achieves a
      shift from the XML instance layer that XMI supports for model interchange to the XML Schema
      layer that supports modeling itself. Being based on XMI as a standardized interchange format
      for UML models, uml2xsd is independent of specific UML modeling tools or software development
      methods. Technically, uml2xsd is an XSLT program that operates on XML representations of UML
      class diagrams, the XMI documents, and turns them into XML Schemas.
The core idea behind uml2xsd is to generate from UML class diagrams not XML instances, as is
      the XMI way, but XML Schema documents, thus aligning conceptual instances of UML models with
      XML instances of XML Schema documents. We make use of the XMI support of UML modeling tools in
      that we first export UML class diagrams as XMI documents and then translate the results with
      XSLT into XML Schema documents. The translation rules adapt XMI translation rules from a
      higher level of the so-called MOF metamodel hierarchy, which is enabled by an alignment
      between the metamodel hierarchy and UML class diagrams. This “layer shift”, which we are going
      to explain in more detail further on, validates the uml2xsd approach.
In principle, the uml2xsd method should work with XMI data that were exported from any UML
      tool. In practice, however, XMI allows for a wide spectrum of variants to represent any
      artifact in a UML diagram, so we hesitate to claim too much. We have, however, successfully
      tested the implementation with a number of UML tools, particularly with Enterprise Architect
      and Altova UModel.
At Extreme Markup Languages 2007, the Engineering Publishing Technology Group has presented
      principles, patterns and procedures of translating a conceptual document model in form of a
      simple UML class diagram into an XML Schema document  [EPTatEML2007] . In a
        contribution  [EPTatBalisage2008]  at Balisage 2008, we have extended our
      investigation to more complex document models that exhibit relationships between classes,
      coding relationships on the XML side of documents with XLink and embedding processing support
      for XLink into XQuery. With appropriate configuration of uml2xsd, we are now able to automate
      these translations. We have applied uml2xsd to automatically generate XML Schema documents
      from conceptual models of two XML applications, XBlog and XTunes.
We have further evaluated uml2xsd by applying it to the UML metamodel (which is an
      instance of MOF and, hence, an UML class diagram); the result is an XML Schema for UML that is
      equivalent to the XMI encoding rules of UML class diagrams.

Transforming UML models to XML Schema using XMI
As we have briefly sketched out above, there already exists a standard for the generation of
      XML Schemas out of models namely XMI, the XML Metadata Interchange specification. With XMI,
      the OMG has standardized a data format that aims at the interchange of models. The goal is to
      support interoperability of UML modeling tools. There is urgent need for such support since,
      particularly in globally distributed software projects, a number of modeling tools are
      simultaneously in use. XMI not only supports UML models, but also
        MOF  [OMGMOFCore]  compliant models in general. It defines standards for
      the creation of so called XMI schemas, which represent MOF compliant metamodels such as the
      UML metamodel, and XMI documents, which represent the actual models such as UML models; the
      latter are instances of a metamodel's representation as an XMI schema. Thus XMI enables the
      validation of models in their XML representations against an arbitrary MOF compliant
      metamodel.
Since UML is designed using the MOF and because the UML metamodel itself is an instance of
      the MOF model  [OMGMOF] , XMI can be (and is in most cases) used to exchange
      and validate UML models via XMI documents. As the names suggest, XMI documents are specific
      XML documents and XMI schemas are specific XML Schema documents. So when using XMI, UML models
      are actually transformed into XML documents, not into XML Schemas! Why that, didn't we state
      above that from the perspective of object persistence, we would expect conceptual UML models
      to be transformed into XML Schemas? That's still valid, but XMI was designed to validate and
      exchange models, and for that purpose it is best to transform models into XML documents; that
      is, document instances that can be validated against an XML Schema using common XML
      software.
Since XMI defines rules for generating XMI schemas (which are special XML Schema documents as
      we have seen) from MOF compliant metamodels, the question arises whether we can also use these
      rules to generate XMI schemas for conceptual UML models. The answer is yes. Because of the
      architectural alignment of UML and MOF, conceptual UML models (models represented by UML class
      diagrams), are defined using the same concepts as MOF compliant meta
        models.  [OMGMOFCore]  Thus, we are able to interpret UML class diagrams
      as MOF compliant metamodels from an XMI point of view, which allows us to use the rules
      defined by the XMI specification to generate XMI schemas from conceptual models. We call this
      process, which effectively creates an XMI schema from a conceptual UML model encoded in an XMI
      document, layer shift. The attached figure illustrates the model-instance
      relationships, the mappings and the levels on which the models and their instances reside.
[image: ]

XMI schemas from UML class diagrams: The XMI mapping
In our research  [PaganoDA]  we have surveyed the XMI specification
      regarding its possibilities to map conceptual models to certain XML Schema documents, namely
      the XMI schemas. Our focus was to determine whether XMI allows a sound transformation of
      models for XML applications into XML Schema documents that represent their document classes.
      This question arises from the fact that XMI was designed with a completely different goal,
      namely the standardization of the interchange process of MOF compliant models.
First of all, although XMI targets MOF compliant models in general, the transformation of
      conceptual models in the form of UML class diagrams is possible due to architectural alignment
      in the form of the common infrastructure of UML and
        MOF  [OMGUMLInfrastructure] . The OMG defines how to generate
      MOF-compliant models  [OMGXMIMapping]  as a set of predefined rules that can
      also be configured for special purposes. This configuration comprises the use of a specific
      set of so-called tagged values in the MOF models that are to be transformed. These tagged
      values are also defined in the XMI specification. In the following, we provide a short
      overview of the transformation rules specified in the XMI specification.
The general structure of an XMI schema is how we would expect an XML Schema document to look
      like, including namespace declarations and imports of XMI specific XML Schema types. By
      default, XMI software generates only one XMI schema for a complete UML model, without defining
      a target namespace therein. But the annotation of UML packages with an XML namespace results
      in the generation of one XMI schema per UML package, each using the specified XML namespace as
      target namespace. This allows for the transformation of equally named UML elements within
      different packages, what would otherwise be impossible.
For UML packages XMI specifies the use of elements with locally defined complex types. Each
      complex type is then made up of a choice of the UML elements contained in the according
      package, which are referenced in the choice. Similarly, UML classes are transformed into
      element declarations and complex types, but in contrast to packages, the elements' types are
      declared globally. The elements and their types are put into the target namespace of the
      containing package. The content model of both packages and classes is very generous since it
      is realized as an XML Schema choice construct with open bounds, and thus hiding any
      multiplicity by default. But this representation can be changed using tagged values that
      enforce the use of the multiplicities as specified in the model.
UML attributes are transformed into element declarations, which are directly put into a
      choice in the definition of the complex type that represents the containing class.
      Additionally, an attribute declaration is appended for UML attributes with simple datatypes
      and a multiplicity of at most one. However, the type of declaration can be influenced using
      tagged values, for example to persist the order of the elements using sequences instead of
      choices. Every complex type by default references an additional attribute predefined in the
      XMI specific XML Schema types that is used as an identifier. However, by annotating a UML
      attribute with a certain tagged value, this attribute can be declared as the identifier
      attribute instead.
UML associations are defined using association ends that reside in the classes that
      participate in the association. XMI generates both an element declaration and an attribute
      declaration for each association end contained in a class. As the association end's type, XMI
      uses the predefined type “Any” that allows arbitrary content for the element. This allows the
      instantiation of classes in the content of other classes and therefore enables the
      construction of redundant but valid XML documents. We consider this redundancy a weak point of
      the XMI specification.
For inheritance, a specific type of association, XMI uses
        “copy-down-inheritance”  [OMGXMIMapping]  by default: The subclass is
      transformed into a complex type under the rules, but first the properties of all base classes
      are copied. Then these are extended or replaced by the properties defined in the subclass
      itself. The copy-down-inheritance is only a workaround for the realization of multiple
      inheritance that XML Schema does not support natively. In the sense of the term it is not
      really an inheritance mechanism, as the relation between base class and subclass gets lost
      during the transformation. If a UML model only uses simple inheritance, the use of the native
      XML Schema inheritance mechanism can be enforced by using the proper tagged values. In
      contrast to the way associations are represented, the use of copy-down-inheritance can't be
      seen as a drawback of XMI, because it is XML Schema that lacks the concept of multiple
      inheritance.

Adapting the XMI mapping to the document setting
Clearly the XMI specification was designed with the goal to facilitate the interchange and
      validation of models, not to represent conceptual models in the form of XML Schema documents.
      But most of the rules that transform UML model concepts into XML Schema concepts are sound
      from the perspective of a conceptual model by default or there are possibilities to influence
      the rules in a way that they become sound.
However, an important concept that is not considered by the XMI specification is abstraction,
      although abstract classes exist in the MOF specification. This may be a result of the aim of
      the XMI specification, since it should facilitate the interchange of models. This means XMI
      schemas shall facilitate the validation of models in the form of XMI documents, a process
      where abstraction plays an inferior role. Considering XML applications that need general
      schema concepts, abstraction would be desirable.
Another negative aspect in this context is the declaration of elements for classes, the use
      of instance placeholders as we call them. XMI creates an instance placeholder for each
      class without exception. This is always possible, but not always desirable in the context of
      XML applications, because it allows for a variety of valid XML documents implementing the
      schema.
Furthermore, the third drawback is the realization of associations in XMI, which allows for
      redundancy in instance documents. XMI however targets the validation of models regarding the
      definition of the according metamodel represented by an XMI schema. Hence, XMI does not
      emphasize well-structured and easy to use valid documents. Moreover, there are certain tagged
      values that make it possible to prevent element declarations for association ends and allow
      for the use of an URI-based linking construct that eliminates redundancy. Unfortunately the
      XMI specification doesn't make use of XLink  [W3CRecXLink]  at this point, which
      could be a helpful concept. This is because the XMI specification was created before XLink
      became a W3C standard.
Since the schema generation process can mainly be influenced using tagged values, we have to
      ask for a general set of tagged values to tailor the schema generation process for our needs.
      Having to annotate each and every model element with cryptic tags doesn't really simplify a
      software engineer's life. But leaving XMI aside, each transformation process has to be
      configurable on UML construct level to transfer design decisions into the schema.
Carlson  [CarlsonXMLAppsUML]  proposes the use of a special UML profile for
      XML Schema modeling purposes that defines according stereotypes and tagged values. For example
      he introduces the stereotype “XSDcomplexType” which applied to a class specifies that this
      class should be realized as a complex XML Schema type. But he also defines stereotypes and
      tagged values for other model elements like attributes or association ends (e.g. “XSDelement”
      or “XSDattribute”) and even stereotypes that target model groups whose function is to group
      other model elements (e.g. “XSDsequence”). This approach surely makes sense, but the
      terminology Carlson proposes for the profile belongs to the domain of XML Schema, not to the
      domain of modeling in general. Hence a software engineer has to have domain knowledge of XML
      Schema to ensure that the generated schema has the desired properties, and thus in fact has to
      model the schema, not the application. Here we consider it more useful and more general to
      hide such tags and preset their values sensibly from the perspective of XML applications or
      modeling in general. This way important patterns, principles and procedures could be ensured
      and the profile could be made more UML or model specific than XML Schema specific.
The major benefits of using XMI schemas are obviously the possibility of reusing an existing
      specification and the fact that most CASE tools currently support exporting their models as
      XMI documents. The latter fact is important when considering a way to make practical use of
      the XMI rules to create XML Schema documents from UML models in software engineering
      processes.

Realizing the layer shift using XSLT
XMI compatible UML CASE tools provide the possibility to export models in an XML based,
      standardized format, namely an XMI document. This is a welcome fact for the realization of the
      layer shift, which shall create an XMI schema from a conceptual UML model encoded in an XMI
      document. It allows for the insertion of an additional transform layer after the creation of
      the model during the development process. This means that we get models in a well defined
      format, which we can assume as input format for a transformation. It comes in handy that XMI
      documents are in fact XML documents, so we can use an XSLT stylesheet to transform a UML model
      encoded in an XMI document into XML Schema.
Naturally the question arises, whether we cannot simply influence the schema generation
      process of a UML tool to directly transform a UML model into an XMI schema. This question is
      inappropriate, though, because UML modeling tools with XMI functionality exclusively create
      XMI documents, not XMI schemas. The generation of XMI schemas is thus not part of the
      functionality of the mentioned tools, and hence has it to be done separately after the export
      of a model.
We realize the layer shift with an XSLT 2.0 stylesheet that targets XMI version 2.1 and
      above. Hereby we focus mainly on the XMI specification, which describes the transformation of
      MOF models into XMI schema documents, but we interpret UML models in particular. As we have
      found out, tagged values (amongst others) are realized in different ways by different tool
      manufacturers. But since they are most important for the tailoring of the schema generation
      process, the XSLT stylesheet has to be able to interpret them. As a matter of fact, a general
      interpretation is out of scope for our project and is basically difficult to achieve because
      of the high degree of flexibility within XMI. However, we support a number of some of the most
      popular tools and integrate an extension point in the stylesheet that makes it easy to provide
      additional interpretation modules for further tools. With our implementation we provide a
      conceptually sound open source realization of the layer shift that can be used in other
      processes.
To make it easy for reuse, we have designed our stylesheet to align with the translation
      rules defined by the OMG  [OMGXMIMapping]  by creating several templates that
      correspond to the several subrules and that have the same names as the according rules in the
      official mapping document. Besides interpreting some partially unclear points of the mapping
      specification like the handling of package level attributes, we focus on realizing the mapping
      as consistent with the specification as possible. Furthermore we implement features that allow
      for more flexibility than the specification or even provide additional functionality. Examples
      are the possibility to use substitution groups for derived model elements, the ability to
      generate model based name prefixes or the use of XLink for the realization of associations. To
      enable the use of certain configurations of tagged values, we also provided parameters that
      allow to set a default value for each tag.
Realizing the layer shift according to the XMI specification naturally leaves its mark in the
      resulting schemas: There are many additional elements and attributes that solely support the
      interchange process or provide extension points. These XMI-specific schema content can be
      removed for schemas that are generated in the case of document engineering.

Conclusions and related work
In this paper, we have presented a method uml2xsd that transforms conceptual data models from
      their UML representations into XML Schema documents. From a software engineering point of
      view, our method provides an implementational counterpart to data models that constrains the
      XML implementations of model instances (data). Our method provides a missing piece for the
      puzzle of data modeling, extending good practice from object-oriented programming languages
      and databases to document engineering.
Clearly, our method provides a missing link in schema engineering: Data modeling can be
      integrated into system modeling, independently of data implementation technology.
The implementation of xml2xsd builds on XMI, a standard for model interchange that is widely
      supported by UML modeling tools. It follows mapping rules from data models to XMI schemas that
      the OMG has conceptually defined, providing the first publicly available implementation of
      these rules. Our implementation is open source, configurable and extensible. Hence, uml2xsd
      puts forward engineering into the toolbox of schema engineers.
Speaking of schema engineers, even if some project confines itself to pure schema
      development, without any ties to software development, our method provides two strong
      benefits: First, we enable modeling to be carried out independently of schema technologies.
      Second, in the vein of forward engineering, schemas can be generated automatically from
      models.
We consider the presentation  [KimberEtAlUML2DTD]  of Kimber and
      Heintz at Extreme Markup Languages 2000 as a direct predecessor of our work. We fully
      subscribe to their position on the relationships between software engineering, document
      engineering and XML technology. In our work, we have taken two further steps: First, with XMI
      we base our mapping from model to schema on an OMG standard, also facilitating configuration
      and extension of the XMI mapping. Second, we offer an implementation that works within any
      (reasonable) UML environment, requiring, with XSLT, only widely available XML technology.
The work that we have presented here is part of a larger endeavor in which we, the
      Engineering Publishing Technology Group, explore to what extent novel publishing applications
      can be composed from appropriately configured XML software with a minimum of programming. Our
      goal is to discover principles, patterns and procedures that reduce complexity and ensure
      sustainability when developing and maintaining Web applications. Modeling of persistent data
      and forward engineering of data models into XML schemas are one building block of a metamodel
      for publishing applications that Thomas Schöpf, another member of our group, develops in his
      PhD thesis “Eine Software-Architektur für webbasierte
      Publikationssysteme”.
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