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Consulting & Teaching
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Beginning a Journey
The author needed to process element declarations, 
including their attributes and content models, in xslt.

So it set out on a….
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Journey to Fairyland
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Why? Diagramming
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Why? Tooling & Exploring
● For writing transformations to convert documents 

from one dtd to another;

● For exploring:
– Which elements in the dtd have no matching template?

– Which elements in the dtd do not occur in sample data?

– Which xmlns:  attributes have ⁎ fixed values?
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Gratuitous Tree Diagram
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Before DTDeum
● Used Perl with SAX to read DTD declarations

● Hard to integrate with XSLT work

● Silently expanded parameter entities

● Needed cross-language ( JS, Java, Rust…) support
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Ideas
● Want/need dtd access in xslt.

● Do not want to write it in Java, Rust, and C.

● Couldn’t find someone who had done this.

● Ask someone else to write it for me? But I don’t 
know what I want yet exactly.

● What to do?
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Idea! Write it in XSLT!
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Idea!
● Since it’s already sheer lunacy,

inconceivable
crazy

stupid

Let’s use…
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Regular
Expressions!
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LUNACY!
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Regular Grammar
● The dtd grammar is defined with ebnf and so this is 

obviously easy, right?

● Constructs all look like <!ELEMENT stuff  > so we 
can easily pick them out and processes them one by 
one.

● Oh, and processing instructions and comments. And 
conditional sections.
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Declaration at a Time
● Parameter entities must end in the same context in 

which they start. This is illegal:
<!ENTITY % begin "<!ELEMENT" >

<!ENTITY % end ">" >

%begin; title (#PCDATA)* %end;

● We can always see the <! and the > 
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Matching Declarations
● Match one declaration: < [^>]+ >

● Counter-example:
<!ATTLIST op

    gt CDATA #FIXED ">"

>
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Token at a time
● So we could include parameter entities in the 

grammar and use invisible xml… what did you say?
<!ENTITY % q '"'>

<!ENTITY % type 'CDATA #FIXED "gossamer%q;'>

<!ATTLIST fairy wings %type;>
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Gratuitous screaming fairies
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Approach Taken
● A dtd contains a sequence of items;

● Each item is a processing instruction, comment, 
whitespace, parameter entity reference, or a 
declaration;

● Process one item at a time and recurse to look at the 
rest of the input.
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One item at a time
● Identify the first token in the input;

● Call a function to handle the declaration;

● The function returns zero or more decl elements 
and also the remaining input still to parse;

● Recursively call the parser on the remaining input.
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Let’s Build it!
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Sample regular expression
<xsl:variable name="regex" as="xs:string">

      ^ \s* <!ENTITY \s+

         % \s+ ({$XMLNAME}) \s+ (['"])(.*?)\2 \s*

     >\s*

</xsl:variable>
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Declaration Parsing Function
● Receives as parameters: input, base uri, & results-so-far

● Uses a regular expression to find the end of the construct

● Calls a function to replace parameter entity references, using 
the declarations in results-so-far

● Constructs & returns new decl element(s) and the remaining 
unparsed input

● If a parsing function doesn’t eat anything…
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Infinite 
Loop

an 
infinite 
loop
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Top level entry: dtd:parse-string()
● Called with string and base uri as parameters

● Ignores leading whitespace and comments

● Calls an appropriate handler function for the first token it 
finds and understands

● Then calls itself recursively for the rest, with the rest of the 
input as the string, and also with the results so far for 
parameter entity substitution
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Another Day,
Another Dragon



27

Too Much Nesting
● Each call to parse-string() has a new copy of the 

input (with one declaration removed)

● Works fine for small test cases, but fails for JATS, 
BITS, DocBook, etc.: uses too much memory.
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Solution
● Solution: keep $input unchanged and pass an 

integer character position, a cursor.
● Now we only have a few bytes of memory (at a 

guess, 128 or so in Java, maybe 16 in Rust).

● Now DTDeum parses JATS and DocBook DTDs.
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Other Grammas
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Other Grammars
● Content models (up next)

● Attribute declarations

● Processing instructions with pseudo-attributes and 
NOTATION-declared targets (nope)

● Marked/Conditional sections <![IGNORE[ supported with 
a recursive helper function

● Can ignore <![INCLUDE[ and ]]>  (non-validating)
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Content models
● Recursive function replaces one leaf particle in 

(parens) with «37= » or «37=+» (where 37 is for the ⁎
37th particle, a  or +⁎  or ? is for occurrence), until 
there are no parens left.

● Then recursive function writes out the resulting 
string as elements.
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Example
● (fairy, (goblin|(ogre,scream))*, (angel)+)
● (fairy, (goblin|«1=»)*,(angel)+)
● (fairy, «2=*»,(angel)+)
● (fairy, «2=*»,«3=+»)
● «4=»
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Processing the Content Model
<xsl:template mode="content-model" as="element(*)*"
  match=".[. instance of xs:string][contains(., '«')]">
    handle string before (apply-templates)
    handle «n=occ»
    handle string after (apply-templates)
</xsl:template>
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Putting it all together
● Result is a sequence of decl elements

● Processes JATS, DocBook, etc

● Attribute lists not handled completely

● No diagrams yet

● TEI not handled ’cause it’s busted.
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Forward to the Future
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Future Work
● No diagrams yet, attlist not handled completely

● Possible function interface e.g. for XQuery or for 
hiding the decl elements, Mary Holstege style!

● Package it and put it on gitlab

● Entity resolver

● Improve errors (line numbers, missing files...)
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Some lessons learned
● Elements or maps? If you use maps, be careful not to put xdm nodes 

into them – use copy-of(), to avoid keeping the containing document in 
memory;

● Use integer cursors rather than passing strings around;

● XPath regular expressions have some gotchas that are a pain; qt4 may 
improve this somewhat;

● DTD access inside XSLT is potentially very useful;

● XSLT is really cool. But we knew that already.
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Happy Outcome
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Questions

https://gitlab.com/barefootliam/dtdeum
Liam Quin, Delightful Computing
https://www.delightfulcomputing.com/

https://gitlab.com/barefootliam/dtdeum
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● 4, Mother Goose, Ill. Arthur Rackham
● 7, Paracelsus, the Hermetic and Alchemical Writings of, Ed. A. E. 

Waite, 1894
● 12, 18, 24, Cox, Another Brownie Book
● 26, Andrew Lang, Blue Fairy Book
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