
1

Parsing DTD Files in XSLT
to Expose

the Declarations they Contain.

Liam Quin
Delightful Computing

Balisage 2024

2

Consulting & Teaching

3

Beginning a Journey
The author needed to process element declarations,
including their attributes and content models, in xslt.

So it set out on a….

4

Journey to Fairyland

5

Why? Diagramming

6

Why? Tooling & Exploring
● For writing transformations to convert documents

from one dtd to another;

● For exploring:
– Which elements in the dtd have no matching template?

– Which elements in the dtd do not occur in sample data?

– Which xmlns: attributes have ⁎ fixed values?

7

Gratuitous Tree Diagram

8

Before DTDeum
● Used Perl with SAX to read DTD declarations

● Hard to integrate with XSLT work

● Silently expanded parameter entities

● Needed cross-language (JS, Java, Rust…) support

9

Ideas
● Want/need dtd access in xslt.

● Do not want to write it in Java, Rust, and C.

● Couldn’t find someone who had done this.

● Ask someone else to write it for me? But I don’t
know what I want yet exactly.

● What to do?

10

Idea! Write it in XSLT!

11

Idea!
● Since it’s already sheer lunacy,

inconceivable
crazy

stupid

Let’s use…

12

Regular
Expressions!

13

LUNACY!

14

Regular Grammar
● The dtd grammar is defined with ebnf and so this is

obviously easy, right?

● Constructs all look like <!ELEMENT stuff > so we
can easily pick them out and processes them one by
one.

● Oh, and processing instructions and comments. And
conditional sections.

15

Declaration at a Time
● Parameter entities must end in the same context in

which they start. This is illegal:
<!ENTITY % begin "<!ELEMENT" >

<!ENTITY % end ">" >

%begin; title (#PCDATA)* %end;

● We can always see the <! and the >

16

Matching Declarations
● Match one declaration: < [^>]+ >

● Counter-example:
<!ATTLIST op

 gt CDATA #FIXED ">"

>

17

Token at a time
● So we could include parameter entities in the

grammar and use invisible xml… what did you say?
<!ENTITY % q '"'>

<!ENTITY % type 'CDATA #FIXED "gossamer%q;'>

<!ATTLIST fairy wings %type;>

18

Gratuitous screaming fairies

19

Approach Taken
● A dtd contains a sequence of items;

● Each item is a processing instruction, comment,
whitespace, parameter entity reference, or a
declaration;

● Process one item at a time and recurse to look at the
rest of the input.

20

One item at a time
● Identify the first token in the input;

● Call a function to handle the declaration;

● The function returns zero or more decl elements
and also the remaining input still to parse;

● Recursively call the parser on the remaining input.

21

Let’s Build it!

22

Sample regular expression
<xsl:variable name="regex" as="xs:string">

 ^ \s* <!ENTITY \s+

 % \s+ ({$XMLNAME}) \s+ (['"])(.*?)\2 \s*

 >\s*

</xsl:variable>

23

Declaration Parsing Function
● Receives as parameters: input, base uri, & results-so-far

● Uses a regular expression to find the end of the construct

● Calls a function to replace parameter entity references, using
the declarations in results-so-far

● Constructs & returns new decl element(s) and the remaining
unparsed input

● If a parsing function doesn’t eat anything…

24

Infinite
Loop

an
infinite
loop

25

Top level entry: dtd:parse-string()
● Called with string and base uri as parameters

● Ignores leading whitespace and comments

● Calls an appropriate handler function for the first token it
finds and understands

● Then calls itself recursively for the rest, with the rest of the
input as the string, and also with the results so far for
parameter entity substitution

26

Another Day,
Another Dragon

27

Too Much Nesting
● Each call to parse-string() has a new copy of the

input (with one declaration removed)

● Works fine for small test cases, but fails for JATS,
BITS, DocBook, etc.: uses too much memory.

28

Solution
● Solution: keep $input unchanged and pass an

integer character position, a cursor.
● Now we only have a few bytes of memory (at a

guess, 128 or so in Java, maybe 16 in Rust).

● Now DTDeum parses JATS and DocBook DTDs.

29

Other Grammas

30

Other Grammars
● Content models (up next)

● Attribute declarations

● Processing instructions with pseudo-attributes and
NOTATION-declared targets (nope)

● Marked/Conditional sections <![IGNORE[supported with
a recursive helper function

● Can ignore <![INCLUDE[and]]> (non-validating)

31

Content models
● Recursive function replaces one leaf particle in

(parens) with «37= » or «37=+» (where 37 is for the ⁎
37th particle, a or +⁎ or ? is for occurrence), until
there are no parens left.

● Then recursive function writes out the resulting
string as elements.

32

Example
● (fairy, (goblin|(ogre,scream))*, (angel)+)
● (fairy, (goblin|«1=»)*,(angel)+)
● (fairy, «2=*»,(angel)+)
● (fairy, «2=*»,«3=+»)
● «4=»

33

Processing the Content Model
<xsl:template mode="content-model" as="element(*)*"
 match=".[. instance of xs:string][contains(., '«')]">
 handle string before (apply-templates)
 handle «n=occ»
 handle string after (apply-templates)
</xsl:template>

34

Putting it all together
● Result is a sequence of decl elements

● Processes JATS, DocBook, etc

● Attribute lists not handled completely

● No diagrams yet

● TEI not handled ’cause it’s busted.

35

Forward to the Future

36

Future Work
● No diagrams yet, attlist not handled completely

● Possible function interface e.g. for XQuery or for
hiding the decl elements, Mary Holstege style!

● Package it and put it on gitlab

● Entity resolver

● Improve errors (line numbers, missing files...)

37

Some lessons learned
● Elements or maps? If you use maps, be careful not to put xdm nodes

into them – use copy-of(), to avoid keeping the containing document in
memory;

● Use integer cursors rather than passing strings around;

● XPath regular expressions have some gotchas that are a pain; qt4 may
improve this somewhat;

● DTD access inside XSLT is potentially very useful;

● XSLT is really cool. But we knew that already.

38

Happy Outcome

39

Acknowledgements
● A big thank-you to the reviewer who spotted an

egregious mistake in the draft of the paper!

● Thank you also to Balisage for accepting this as a
late-breaking paper;

● Thank you for listening.

40

Questions

https://gitlab.com/barefootliam/dtdeum
Liam Quin, Delightful Computing
https://www.delightfulcomputing.com/

https://gitlab.com/barefootliam/dtdeum

41

Image Credits
● 1, 10, 21, El Mundo Ilustrado, 1883
● 4, Mother Goose, Ill. Arthur Rackham
● 7, Paracelsus, the Hermetic and Alchemical Writings of, Ed. A. E.

Waite, 1894
● 12, 18, 24, Cox, Another Brownie Book
● 26, Andrew Lang, Blue Fairy Book
● 29 Callot’s Etchings
● 35, 40 Little Ones’ Budget
● 38, Photograph by the author at L’Europa Hotel, Montréal

https://www.fromoldbooks.org/ElMundoIlustrado-1897/
https://www.fromoldbooks.org/CallotJacques-Etchings/pages/159-Beggar-Woman-with-Rosary/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

