Stretching XPath

Three Testing Tales

Amanda Galtman
July 2024

Three Testing Tales

Things motivated by one purpose can be useful for another purpose.
1) The Cupboard Was Bare
Emptiness shouldn't be a surprise
2) Good Functions Make Good Neighbors
Tests shouldn't interfere with each other
3) Schema and Variations

Simplify maintenance of test artifacts

Tale 1
The Cupboard Was Bare

Tale 1: The Cupboard Was Bare

* Empty sequences are normal, but...
* Unexpectedly empty sequences can cause bad outcomes

* Test passes without serving its purpose
* Test fails confusingly

* Objective: Create sequences more defensively

Tale 1 Background

* Setting: XSpec for XSLT or XQuery
* XPath expression > Sequence

* Parameter value
* Expected result

* The sequence is empty —Surprise!

~ Problem to Solve -

* Detection

* Mistake > () > bad test outcomes

* Want unobtrusive solution

How Can a Surprise Happen?

Maybe patha/b/c[3]/d should have said
° a/b/cl[2]/d

* a/b/x[3]/d

* a/b/cl[3]/y/d

Or, maybe the XML document is wrong.

Bad Test Outcome (a)

* Objective: Verify that something does not exist

* Sequence of parasin 3rd sectionis ()

* Something upstream doesn't exist, due to a mistake

°* Thereis no 3rd section

* () equals () > Test passes @

* Didn't serve its purpose, no feedback for us

Bad Test Outcome (b)

* Obijective: Pass parameter to function and verify output
* Mistake in parameter construction > Empty

* Function output is unexpected
Test fails, alerting us to a problem ©
* But why did it failz &®

Prevention via XSpec syntax

* Extra <x:expect> tocheckif something exists

* Clutter, repeated path

* Declare data type that can't be empty, e.g., as="node ()"

* For partial-path sequence, need variable - Clutter?

10

Prevention via XPath

* Want an unobtrusive solution without extra elements
* XPath functions > arg or error

* exactly-one(arg)
* one-or-more(arg)
* XPath expression > expr1 orerror

° exprl treat as typel

11

Why Might this Solution Be Surprising?

Typical use case is about static type checking
* "Trust me, this will be non-empty at run time"

° Processor suppresses a static error

* |If you were wrong, processor raises run-time error

12

How the Solution Looks in XSpec (fcn)

Wrap the function call around a path:

<x:expect label="The third section has no paragraphs"

test="empty(exactly-one($x:result/topic/section[3])/para)"/>

<x:param name="items" href="test-document.xml"

select="one-or-more(topic/section/table)"/>

13

How the Solution Looks in XSpec (expr)

Insert treat as, adding parentheses if needed:

<x:expect label="The third section has no paragraphs"

test="empty ((S$x:result/topic/section[3] treat as
element(section)) /para)"/>

<x:param name="items" href="test-document.xml"

select="topic/section/table treat as element(table)+"/>

14

How the Solution Behaves

* If condition is met: Pass-through
* Otherwise: Test halts with clear error message

(a)Tells us something is wrong
(b)Hints that the problem is in the test, not the XSLT/XQuery

* We still have to find which sequence caused the error

15

Broader Lesson Beyond Testing

* "What if this sequence [or partial path] is empty?"
* If the answer is "Oh no!", code defensively

* Insertcallto one-or-moreorexactly-one
* Use treat as expression

* Use as attribute (on some element) to declare a data type
that excludes ()

16

Tale 2
Good Functions Make Good Neighbors

Tale 2: Good Functions Make Good Neighbors

* Combining XML fragments in one document is compact, but...
* They might not coexist well during testing

* Objective: Compact and harmonious

18

Tale 2 Background

* Setting: XSpec for XSLT
* Multiple tiny test cases

* Apply templates to tiny XML fragments
* Tiny result
* Similarity across test cases

° e.g, Attr > Attr, <a> > with markup variations

19

Problems to Solve

* Initial problem: Testing cases individually is too much code
* Solution: Combine the test cases

* One XML document, one XSpec scenario

* New problem: Test cases could interfere with each other

20

What Could Possibly Go Wrong?

If XSLT code accesses arbitrary parts of tree,...

* Markup from one test case could influence another test case
* Combined document might violate assumptions

* e.g., multiples of something assumed unique

* Could have unexpected results or errors.

Real concern? Terrible idea?

21

* Link to titled note produces generated text

* Want to test gentext with markup variations in title

* Combined test document is a note with multiple titles
* Siblings
* (Not schema-valid)

* Point XSpec at titles

* Expect to get sequence of mini-documents for gentext

22

Example XSpec Code (sibling titles)

<x:scenario lLabel="Test multiple note titles">
<x:context |[select="//d:title"| mode="xref-to">
<d:note>
<d:title>Simple Title</d:title>
<d:title>Title with <d:code>code</d:code></d:title>
</d:note>
</x:context>

</Xx:scenario>

23

<x:scenario label="Test multiple note titles">

<x:context| select="//d:title" mode="xref-to">
<d:note>
<d:title>Simple Title</d:title>
<d:title>Title with <d:code>code</d:code></d:title>
</d:note>
</x:context>
<x:expect Llabel="Show me the input titles as strings"
test="$x:context ! string(.)" as="xs:stringx"/>
<x:expect Llabel="Show me the actual result"/>
</Xx:scenario>

24

Example Results

Show me the titles as strings

* Context has both titles © \ -
esu

° . . \
Actual result is the 1st title ‘Simple Title',

multip[e times @ Title with code

* Why? Show me the actual result
* Title from 1st test case Result
interfered with 2nd test case XPath /node() from:
* XSLT assumptions violated \

Simple TitleSimple Title

25

Fix Problem in XSpec? In XML?

* No XSpec syntax for deleting unwanted <title> or
constructing new <note>

* Canuse helper functionality (<x:helper>)

* Not exactly lightweight for this example

* Can enlarge XML document: multiple <note> elements

* Sure, but let's look harder to solve with existing document

26

Fix via XPath/XSLT

* snapshot(arg) copiessubtree, preserving ancestry

* copy-of(arg) copiessubtreealone

* Siblings omitted

* Sibling titles caused our interference

* Tiny test cases might be siblings in combined document

<d:note>
<d:title>1</d:title>
<d:title>2</d:title>
</d:note>

<d:note>

<d:title>2</d:title>

</d:note>

27

Why Might this Solution Be Surprising?

Typical use case is about streaming (XSLT 3.0)
* Streaming restricts access to nodes of tree
* Buffering copy of subtree enables freer access to it

* Memory considerations in streaming
* Here, isolation is key

* Sometimes you need ancestry, sometimes not

28

How the Solution Looks in XSpec

<x:context select="//d:title/snapshot ()" mode="xref-to">
<d:note>
<d:title>Simple Title</d:title>
<d:title>Title with <d:code>code</d:code></d:title>
</d:note>
</x:context>

29

How the Solution Behaves

* Actual result has correct gentext mini-documents ©

* (Verifying sequence of document nodes scalably is a bit tricky)

Show me the actual result

Result
XPath /node() from:

Simple TitleTitle with <code class="code">code</code>

30

How the Solution Behaves (cont'd.)

* <result>isanad hoc stand-in for document node in expected result.
* Arrays keep separate node collections apart. (Simple TitleTitlewdith fails.)
* (["Simple Title"], ["Title with ", <code.../>])

<x:expect label="Verify all titles"
test="for $r 1in |$x:result|return |[$Sr/node()]
select="for $r 1in|/result| return |[$Sr/node()]
<result>Simple Title</result>

<result>Title with <code class="code">code</code></result>
</x:expect>

>

31

Broader Lesson Beyond Testing

* When nodes become neighbors for convenience, consider if
further processing requires isolating them

* snapshotand copy-of make good neighbors

* Not an everyday use case, but when it's a good fit, you'll
like how easy itis

32

Tale 3

Schema and Variations

Tale 3: Schema and Variations

* Schema testing requires validating documents, but...
* How do you maintain them all?

* Objective: Keep some as sources, derive others

A'l

- R

34

Tale 3 Background

* Setting: BaseX or XSpec for testing a schema
* Large set of documents to validate
* Invalid documents are invalid for 1 reason

* Nearly identical to a valid document in the set

35

Problem to Solve

* Maintaining documents

* Maintaining tiny diffs between Aand A', Aand A", etc.

36

Main Solution Idea

° DeriveA'and A" from A

* Derivation code must be easy to write/maintain

A'I

- B

37

Example in BaseX

* Helper functions that validate document and verify result

* For each document in set, call helper from small test function

declare [%unit:test| function mytest:valid-sample-doc() {
let $s := doc('original/valid-123.xmLl')
(: As s, file is valid :)
return

mytest:expect-val id($s)\
I

Want to derive variation document and call function on that instead.

38

Ad Hoc Solution Option

* (Separate process from test running, or not?)

* ldentity plus specify/implement desired variation?

39

XQuery Update Standard

* Complements XQuery standard
* |Insert, delete, rename, and replace nodes

* BaseX, Saxon-EE, and maybe others

* Aside: Similar operations in <saxon:update> XSLT
extension, GitHub libraries

40

Why Might this Solution Be Surprising?

Typical official use cases are about updating something;:
* Update database or other persistent storage
* Add new information

* Refresh status

41

Our Use Case Is Slightly Different

* DocumentA'is not fresher than A
* Retain both, for validation testing

* Derive valid document from invalid one, or vice versa

42

How the Solution Behaves

1) Read document from file

2) Modify in memory using XQuery Update expressions

» Simple and few

> Invalid for 1 reason

3) Write to a different file OR 3)Validate in memory

4) Validate from file 4) Verify validation results

5) Verify validation results
43

~ How a Solution Looks in BaseX (same process)

declare %unit:test function mytest:xqupdate-makes-invalid-literal ()

{
. 8s := doc('original/valid-123.xml")
Derivation goes here
return
mytest:expect-invalid($s)
I

44

declare %unit:test function mytest:xqupdate-makes-invalid-literal ()

{

copy|$s := doc('original/valid-123.xml'")
modify | (
(: Renaming <code> as <literal> makes the file invalid :)
rename node $s/d:article//d:code

as 'd:literal'
)

return

mytest:expect-invalid($s)

s

45

Broader Lessons Beyond Testing

* Applying and maintaining small tweaks to many documents?
* Consider a standard solution

* Ora partial imitation, if that's a better fit

46

The Moral of the Story

* |s non-emptiness important? Say it in code!

* one-or—-more and exactly-one
° treat as

* Free a subtree from interfering siblings/ancestors

* snapshotand copy-of

* Look beyond suggestive terminology

* You decide if a "difference" counts as an "update"

47

Thank You

Questions?

<xsl:result-document href="gen/invalid-123-1literal.xml">
<saxon:update select="doc('original/valid-123.xml"')">
<saxon:rename select="/d:article//d:code" to="'d:literal'"/>
</saxon:update>
</xsl:result-document>
<xsl:result-document href="gen/valid-456-abstract-moved.xml">
<saxon:update select="doc('original/invalid-456.xml")">
<saxon:insert select="/d:article/d:info/d:author" position="before">
<xsl:sequence select="/dsarticle/d:abstract" />
</saxon:insert>
<saxon:delete select="/d:article/d:abstract"/>
</saxon:update>
</xsl:result-document>

49

<!-- XSpec test file -—>

<x:helper stylesheet="saxon-update-helper.xsl"/>

<x:scenario label="No article title">
<x:context href="valid-123.xml" select="dd:rm-article-title(/)"/>
<x:expect-assert 1d="a001"/>

</x:scenario>

<I--= XSLT helper file -->

<xs'l:function name="dd:rm-article-title" as="document-node()">
<xsl:param name="doc" as="document-node()"/>
<saxon:update select="$doc">
<saxon:delete select="/article/title"/>
</saxon:update>
</xsl:function>

50

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

