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Things motivated by one purpose can be useful for another purpose.

1) The Cupboard Was Bare

Emptiness shouldn't be a surprise

2) Good Functions Make Good Neighbors

Tests shouldn't interfere with each other

3) Schema and Variations

Simplify maintenance of test artifacts

Three Testing Tales



Tale 1
The Cupboard Was Bare
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● Empty sequences are normal, but...
● Unexpectedly empty sequences can cause bad outcomes

● Test passes without serving its purpose
● Test fails confusingly

● Objective: Create sequences more defensively

Tale 1: The Cupboard Was Bare
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● Setting: XSpec for XSLT or XQuery
● XPath expression → Sequence

● Parameter value
● Expected result

● The sequence is empty —Surprise!

Tale 1 Background
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● Detection
● Mistake  → () → bad test outcomes

● Want unobtrusive solution

Problem to Solve
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Maybe path a/b/c[3]/d should have said
● a/b/c[2]/d
● a/b/x[3]/d
● a/b/c[3]/y/d

Or, maybe the XML document is wrong.

How Can a Surprise Happen?
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● Objective: Verify that something does not exist
● Sequence of paras in 3rd section is ()

● Something upstream doesn't exist, due to a mistake
● There is no 3rd section

● () equals () → Test passes  
● Didn't serve its purpose, no feedback for us

Bad Test Outcome (a) 
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● Objective: Pass parameter to function and verify output
● Mistake in parameter construction → Empty
● Function output is unexpected

● Test fails, alerting us to a problem  
● But why did it fail?  

Bad Test Outcome (b)
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● Extra <x:expect> to check if something exists
● Clutter, repeated path

● Declare data type that can't be empty, e.g., as="node()"
● For partial-path sequence, need variable → Clutter?

Prevention via XSpec syntax
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● Want an unobtrusive solution without extra elements
● XPath functions → arg or error

● exactly-one(arg)
● one-or-more(arg)

● XPath expression → expr1 or error
● expr1 treat as type1

Prevention via XPath
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Typical use case is about static type checking
● "Trust me, this will be non-empty at run time"
● Processor suppresses a static error
● If you were wrong, processor raises run-time error

Why Might this Solution Be Surprising?
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Wrap the function call around a path:

<x:expect label="The third section has no paragraphs"

test="empty(exactly-one($x:result/topic/section[3])/para)"/>

· · · ·      
<x:param name="items" href="test-document.xml"

select="one-or-more(topic/section/table)"/>

How the Solution Looks in XSpec (fcn)
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Insert treat as, adding parentheses if needed:

<x:expect label="The third section has no paragraphs"

test="empty(($x:result/topic/section[3] treat as 
element(section))/para)"/>

· · · ·          
<x:param name="items" href="test-document.xml"

select="topic/section/table treat as element(table)+"/>

How the Solution Looks in XSpec (expr)
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● If condition is met: Pass-through
● Otherwise: Test halts with clear error message

(a)Tells us something is wrong

(b)Hints that the problem is in the test, not the XSLT/XQuery
● We still have to find which sequence caused the error

How the Solution Behaves
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● "What if this sequence [or partial path] is empty?"
● If the answer is "Oh no!", code defensively

● Insert call to one-or-more or exactly-one
● Use treat as expression
● Use as attribute (on some element) to declare a data type 

that excludes ()

Broader Lesson Beyond Testing



Tale 2
Good Functions Make Good Neighbors
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● Combining XML fragments in one document is compact, but...
● They might not coexist well during testing
● Objective: Compact and harmonious

Tale 2: Good Functions Make Good Neighbors
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● Setting: XSpec for XSLT
● Multiple tiny test cases

● Apply templates to tiny XML fragments
● Tiny result
● Similarity across test cases

● e.g, Attr → Attr, <a> → <b> with markup variations

Tale 2 Background
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● Initial problem: Testing cases individually is too much code
● Solution: Combine the test cases

● One XML document, one XSpec scenario
● New problem: Test cases could interfere with each other

Problems to Solve
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If XSLT code accesses arbitrary parts of tree,...
● Markup from one test case could influence another test case
● Combined document might violate assumptions

● e.g., multiples of something assumed unique
● Could have unexpected results or errors.

Real concern? Terrible idea?

What Could Possibly Go Wrong?
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● Link to titled note produces generated text
● Want to test gentext with markup variations in title
● Combined test document is a note with multiple titles

● Siblings
● (Not schema-valid)

● Point XSpec at titles
● Expect to get sequence of mini-documents for gentext

Example
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  <x:scenario label="Test multiple note titles">
    <x:context select="//d:title" mode="xref-to">
      <d:note>
        <d:title>Simple Title</d:title>
        <d:title>Title with <d:code>code</d:code></d:title>
      </d:note>
    </x:context>
    <x:expect label="Show me the input titles as strings"
      test="$x:context ! string(.)" as="xs:string*"/>
    <x:expect label="Show me the actual result"/>
  </x:scenario>

Example XSpec Code (sibling titles)
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  <x:scenario label="Test multiple note titles">
    <x:context select="//d:title" mode="xref-to">
      <d:note>
        <d:title>Simple Title</d:title>
        <d:title>Title with <d:code>code</d:code></d:title>
      </d:note>
    </x:context>
    <x:expect label="Show me the input titles as strings"
      test="$x:context ! string(.)" as="xs:string*"/>
    <x:expect label="Show me the actual result"/>
  </x:scenario>

Example XSpec Code (sibling titles)
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● Context has both titles 
● Actual result is the 1st title 

multiple times 
● Why?

● Title from 1st test case 
interfered with 2nd test case

● XSLT assumptions violated

Example Results
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● No XSpec syntax for deleting unwanted <title> or 
constructing new <note>

● Can use helper functionality (<x:helper>)
● Not exactly lightweight for this example

● Can enlarge XML document: multiple <note> elements
● Sure, but let's look harder to solve with existing document

Fix Problem in XSpec? In XML?



27

● snapshot(arg) copies subtree, preserving ancestry
● copy-of(arg) copies subtree alone
● Siblings omitted

● Sibling titles caused our interference
● Tiny test cases might be siblings in combined document

Fix via XPath/XSLT

<d:note>  
<d:title>1</d:title> 
<d:title>2</d:title> 
</d:note>

<d:note>  
<d:title>1</d:title> 
<d:title>2</d:title> 
</d:note>

snapshot
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Typical use case is about streaming (XSLT 3.0)
● Streaming restricts access to nodes of tree
● Buffering copy of subtree enables freer access to it

● Memory considerations in streaming
● Here, isolation is key

● Sometimes you need ancestry, sometimes not

Why Might this Solution Be Surprising?
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<x:context select="//d:title/snapshot()" mode="xref-to">
  <d:note>
    <d:title>Simple Title</d:title>
    <d:title>Title with <d:code>code</d:code></d:title>
  </d:note>
</x:context>

How the Solution Looks in XSpec
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● Actual result has correct gentext mini-documents 
● (Verifying sequence of document nodes scalably is a bit tricky)

How the Solution Behaves
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● <result> is an ad hoc stand-in for document node in expected result.
● Arrays keep separate node collections apart. (Simple TitleTitlewith fails.)

● ( ["Simple Title"], ["Title with ", <code.../>] )

<x:expect label="Verify all titles"
  test="for $r in $x:result return [$r/node()]"
  select="for $r in /result return [$r/node()]">
  <result>Simple Title</result>
  <result>Title with <code class="code">code</code></result>
</x:expect>

How the Solution Behaves (cont'd.)
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● When nodes become neighbors for convenience, consider if 
further processing requires isolating them

● snapshot and copy-of make good neighbors
● Not an everyday use case, but when it's a good fit, you'll 

like how easy it is

Broader Lesson Beyond Testing



Tale 3
Schema and Variations
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● Schema testing requires validating documents, but…
● How do you maintain them all?
● Objective: Keep some as sources, derive others

Tale 3: Schema and Variations

A

B

A'

B'

A''
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● Setting: BaseX or XSpec for testing a schema
● Large set of documents to validate
● Invalid documents are invalid for 1 reason

● Nearly identical to a valid document in the set

Tale 3 Background
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● Maintaining documents
● Maintaining tiny diffs between A and A',  A and A'', etc.

Problem to Solve
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● Derive A' and A'' from A
● Derivation code must be easy to write/maintain

Main Solution Idea

A

B

A'

B'

A''
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● Helper functions that validate document and verify result
● For each document in set, call helper from small test function

declare %unit:test function mytest:valid-sample-doc() {
  let $s := doc('original/valid-123.xml')
  (: As is, file is valid :)
  return
    mytest:expect-valid($s)
};

Want to derive variation document and call function on that instead.

Example in BaseX
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● (Separate process from test running, or not?)
● Identity plus specify/implement desired variation?

Ad Hoc Solution Option
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● Complements XQuery standard
● Insert, delete, rename, and replace nodes
● BaseX, Saxon-EE, and maybe others

● Aside: Similar operations in <saxon:update> XSLT 
extension, GitHub libraries

XQuery Update Standard
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Typical official use cases are about updating something:
● Update database or other persistent storage
● Add new information
● Refresh status

Why Might this Solution Be Surprising?
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● Document A' is not fresher than A
● Retain both, for validation testing
● Derive valid document from invalid one, or vice versa

Our Use Case Is Slightly Different
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1) Read document from file

2) Modify in memory using XQuery Update expressions
➢ Simple and few
➢ Invalid for 1 reason

How the Solution Behaves

3) Write to a different file

4) Validate from file

5) Verify validation results

3) Validate in memory

4) Verify validation results

OR
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declare %unit:test function mytest:xqupdate-makes-invalid-literal() 
{
   ... $s := doc('original/valid-123.xml')
    modify (
    (: Renaming <code> as <literal> makes the file invalid :)
    rename node $s/d:article//d:code
      as 'd:literal'
    )   
    return
      mytest:expect-invalid($s)
};

How a Solution Looks in BaseX (same process)

Derivation goes here
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declare %unit:test function mytest:xqupdate-makes-invalid-literal() 
{
  copy $s := doc('original/valid-123.xml')
    modify (
    (: Renaming <code> as <literal> makes the file invalid :)
    rename node $s/d:article//d:code
      as 'd:literal'
    )   
    return
      mytest:expect-invalid($s)
};

How a Solution Looks in BaseX
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● Applying and maintaining small tweaks to many documents?
● Consider a standard solution

● Or a partial imitation, if that's a better fit

Broader Lessons Beyond Testing
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● Is non-emptiness important? Say it in code!
● one-or-more and exactly-one
● treat as 

● Free a subtree from interfering siblings/ancestors
● snapshot and copy-of

● Look beyond suggestive terminology
● You decide if a "difference" counts as an "update"

The Moral of the Story



Thank You

Questions?
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<xsl:result-document href="gen/invalid-123-literal.xml">
  <saxon:update select="doc('original/valid-123.xml')">
    <saxon:rename select="/d:article//d:code" to="'d:literal'"/>
  </saxon:update>      
</xsl:result-document>
<xsl:result-document href="gen/valid-456-abstract-moved.xml">
  <saxon:update select="doc('original/invalid-456.xml')">
    <saxon:insert select="/d:article/d:info/d:author" position="before">
      <xsl:sequence select="/d:article/d:abstract"/>
    </saxon:insert>
    <saxon:delete select="/d:article/d:abstract"/>
  </saxon:update>
</xsl:result-document>

Saxon-EE XSLT Update Extension
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<!-- XSpec test file -->

<x:helper stylesheet="saxon-update-helper.xsl"/>
<x:scenario label="No article title">
  <x:context href="valid-123.xml" select="dd:rm-article-title(/)"/>
  <x:expect-assert id="a001"/>
</x:scenario>

Saxon-EE XSLT Update Extension in XSpec for Schematron

<!-- XSLT helper file -->

<xsl:function name="dd:rm-article-title" as="document-node()">
  <xsl:param name="doc" as="document-node()"/>
  <saxon:update select="$doc">
    <saxon:delete select="/article/title"/>
  </saxon:update>
</xsl:function>
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