
Stretching XPath
Three Testing Tales

Amanda Galtman
July 2024

2

Things motivated by one purpose can be useful for another purpose.

1) The Cupboard Was Bare

Emptiness shouldn't be a surprise

2) Good Functions Make Good Neighbors

Tests shouldn't interfere with each other

3) Schema and Variations

Simplify maintenance of test artifacts

Three Testing Tales

Tale 1
The Cupboard Was Bare

4

● Empty sequences are normal, but...
● Unexpectedly empty sequences can cause bad outcomes

● Test passes without serving its purpose
● Test fails confusingly

● Objective: Create sequences more defensively

Tale 1: The Cupboard Was Bare

5

● Setting: XSpec for XSLT or XQuery
● XPath expression → Sequence

● Parameter value
● Expected result

● The sequence is empty —Surprise!

Tale 1 Background

6

● Detection
● Mistake → () → bad test outcomes

● Want unobtrusive solution

Problem to Solve

7

Maybe path a/b/c[3]/d should have said
● a/b/c[2]/d
● a/b/x[3]/d
● a/b/c[3]/y/d

Or, maybe the XML document is wrong.

How Can a Surprise Happen?

8

● Objective: Verify that something does not exist
● Sequence of paras in 3rd section is ()

● Something upstream doesn't exist, due to a mistake
● There is no 3rd section

● () equals () → Test passes 
● Didn't serve its purpose, no feedback for us

Bad Test Outcome (a)

9

● Objective: Pass parameter to function and verify output
● Mistake in parameter construction → Empty
● Function output is unexpected

● Test fails, alerting us to a problem 
● But why did it fail? 

Bad Test Outcome (b)

10

● Extra <x:expect> to check if something exists
● Clutter, repeated path

● Declare data type that can't be empty, e.g., as="node()"
● For partial-path sequence, need variable → Clutter?

Prevention via XSpec syntax

11

● Want an unobtrusive solution without extra elements
● XPath functions → arg or error

● exactly-one(arg)
● one-or-more(arg)

● XPath expression → expr1 or error
● expr1 treat as type1

Prevention via XPath

12

Typical use case is about static type checking
● "Trust me, this will be non-empty at run time"
● Processor suppresses a static error
● If you were wrong, processor raises run-time error

Why Might this Solution Be Surprising?

13

Wrap the function call around a path:

<x:expect label="The third section has no paragraphs"

test="empty(exactly-one($x:result/topic/section[3])/para)"/>

· · · ·
<x:param name="items" href="test-document.xml"

select="one-or-more(topic/section/table)"/>

How the Solution Looks in XSpec (fcn)

14

Insert treat as, adding parentheses if needed:

<x:expect label="The third section has no paragraphs"

test="empty(($x:result/topic/section[3] treat as
element(section))/para)"/>

· · · ·
<x:param name="items" href="test-document.xml"

select="topic/section/table treat as element(table)+"/>

How the Solution Looks in XSpec (expr)

15

● If condition is met: Pass-through
● Otherwise: Test halts with clear error message

(a)Tells us something is wrong

(b)Hints that the problem is in the test, not the XSLT/XQuery
● We still have to find which sequence caused the error

How the Solution Behaves

16

● "What if this sequence [or partial path] is empty?"
● If the answer is "Oh no!", code defensively

● Insert call to one-or-more or exactly-one
● Use treat as expression
● Use as attribute (on some element) to declare a data type

that excludes ()

Broader Lesson Beyond Testing

Tale 2
Good Functions Make Good Neighbors

18

● Combining XML fragments in one document is compact, but...
● They might not coexist well during testing
● Objective: Compact and harmonious

Tale 2: Good Functions Make Good Neighbors

19

● Setting: XSpec for XSLT
● Multiple tiny test cases

● Apply templates to tiny XML fragments
● Tiny result
● Similarity across test cases

● e.g, Attr → Attr, <a> → with markup variations

Tale 2 Background

20

● Initial problem: Testing cases individually is too much code
● Solution: Combine the test cases

● One XML document, one XSpec scenario
● New problem: Test cases could interfere with each other

Problems to Solve

21

If XSLT code accesses arbitrary parts of tree,...
● Markup from one test case could influence another test case
● Combined document might violate assumptions

● e.g., multiples of something assumed unique
● Could have unexpected results or errors.

Real concern? Terrible idea?

What Could Possibly Go Wrong?

22

● Link to titled note produces generated text
● Want to test gentext with markup variations in title
● Combined test document is a note with multiple titles

● Siblings
● (Not schema-valid)

● Point XSpec at titles
● Expect to get sequence of mini-documents for gentext

Example

23

 <x:scenario label="Test multiple note titles">
 <x:context select="//d:title" mode="xref-to">
 <d:note>
 <d:title>Simple Title</d:title>
 <d:title>Title with <d:code>code</d:code></d:title>
 </d:note>
 </x:context>
 <x:expect label="Show me the input titles as strings"
 test="$x:context ! string(.)" as="xs:string*"/>
 <x:expect label="Show me the actual result"/>
 </x:scenario>

Example XSpec Code (sibling titles)

24

 <x:scenario label="Test multiple note titles">
 <x:context select="//d:title" mode="xref-to">
 <d:note>
 <d:title>Simple Title</d:title>
 <d:title>Title with <d:code>code</d:code></d:title>
 </d:note>
 </x:context>
 <x:expect label="Show me the input titles as strings"
 test="$x:context ! string(.)" as="xs:string*"/>
 <x:expect label="Show me the actual result"/>
 </x:scenario>

Example XSpec Code (sibling titles)

25

● Context has both titles 
● Actual result is the 1st title

multiple times 
● Why?

● Title from 1st test case
interfered with 2nd test case

● XSLT assumptions violated

Example Results

26

● No XSpec syntax for deleting unwanted <title> or
constructing new <note>

● Can use helper functionality (<x:helper>)
● Not exactly lightweight for this example

● Can enlarge XML document: multiple <note> elements
● Sure, but let's look harder to solve with existing document

Fix Problem in XSpec? In XML?

27

● snapshot(arg) copies subtree, preserving ancestry
● copy-of(arg) copies subtree alone
● Siblings omitted

● Sibling titles caused our interference
● Tiny test cases might be siblings in combined document

Fix via XPath/XSLT

<d:note>
<d:title>1</d:title>
<d:title>2</d:title>
</d:note>

<d:note>
<d:title>1</d:title>
<d:title>2</d:title>
</d:note>

snapshot

28

Typical use case is about streaming (XSLT 3.0)
● Streaming restricts access to nodes of tree
● Buffering copy of subtree enables freer access to it

● Memory considerations in streaming
● Here, isolation is key

● Sometimes you need ancestry, sometimes not

Why Might this Solution Be Surprising?

29

<x:context select="//d:title/snapshot()" mode="xref-to">
 <d:note>
 <d:title>Simple Title</d:title>
 <d:title>Title with <d:code>code</d:code></d:title>
 </d:note>
</x:context>

How the Solution Looks in XSpec

30

● Actual result has correct gentext mini-documents 
● (Verifying sequence of document nodes scalably is a bit tricky)

How the Solution Behaves

31

● <result> is an ad hoc stand-in for document node in expected result.
● Arrays keep separate node collections apart. (Simple TitleTitlewith fails.)

● (["Simple Title"], ["Title with ", <code.../>])

<x:expect label="Verify all titles"
 test="for $r in $x:result return [$r/node()]"
 select="for $r in /result return [$r/node()]">
 <result>Simple Title</result>
 <result>Title with <code class="code">code</code></result>
</x:expect>

How the Solution Behaves (cont'd.)

32

● When nodes become neighbors for convenience, consider if
further processing requires isolating them

● snapshot and copy-of make good neighbors
● Not an everyday use case, but when it's a good fit, you'll

like how easy it is

Broader Lesson Beyond Testing

Tale 3
Schema and Variations

34

● Schema testing requires validating documents, but…
● How do you maintain them all?
● Objective: Keep some as sources, derive others

Tale 3: Schema and Variations

A

B

A'

B'

A''

35

● Setting: BaseX or XSpec for testing a schema
● Large set of documents to validate
● Invalid documents are invalid for 1 reason

● Nearly identical to a valid document in the set

Tale 3 Background

36

● Maintaining documents
● Maintaining tiny diffs between A and A', A and A'', etc.

Problem to Solve

37

● Derive A' and A'' from A
● Derivation code must be easy to write/maintain

Main Solution Idea

A

B

A'

B'

A''

38

● Helper functions that validate document and verify result
● For each document in set, call helper from small test function

declare %unit:test function mytest:valid-sample-doc() {
 let $s := doc('original/valid-123.xml')
 (: As is, file is valid :)
 return
 mytest:expect-valid($s)
};

Want to derive variation document and call function on that instead.

Example in BaseX

39

● (Separate process from test running, or not?)
● Identity plus specify/implement desired variation?

Ad Hoc Solution Option

40

● Complements XQuery standard
● Insert, delete, rename, and replace nodes
● BaseX, Saxon-EE, and maybe others

● Aside: Similar operations in <saxon:update> XSLT
extension, GitHub libraries

XQuery Update Standard

41

Typical official use cases are about updating something:
● Update database or other persistent storage
● Add new information
● Refresh status

Why Might this Solution Be Surprising?

42

● Document A' is not fresher than A
● Retain both, for validation testing
● Derive valid document from invalid one, or vice versa

Our Use Case Is Slightly Different

43

1) Read document from file

2) Modify in memory using XQuery Update expressions
➢ Simple and few
➢ Invalid for 1 reason

How the Solution Behaves

3) Write to a different file

4) Validate from file

5) Verify validation results

3) Validate in memory

4) Verify validation results

OR

44

declare %unit:test function mytest:xqupdate-makes-invalid-literal()
{
 ... $s := doc('original/valid-123.xml')
 modify (
 (: Renaming <code> as <literal> makes the file invalid :)
 rename node $s/d:article//d:code
 as 'd:literal'
)
 return
 mytest:expect-invalid($s)
};

How a Solution Looks in BaseX (same process)

Derivation goes here

45

declare %unit:test function mytest:xqupdate-makes-invalid-literal()
{
 copy $s := doc('original/valid-123.xml')
 modify (
 (: Renaming <code> as <literal> makes the file invalid :)
 rename node $s/d:article//d:code
 as 'd:literal'
)
 return
 mytest:expect-invalid($s)
};

How a Solution Looks in BaseX

46

● Applying and maintaining small tweaks to many documents?
● Consider a standard solution

● Or a partial imitation, if that's a better fit

Broader Lessons Beyond Testing

47

● Is non-emptiness important? Say it in code!
● one-or-more and exactly-one
● treat as

● Free a subtree from interfering siblings/ancestors
● snapshot and copy-of

● Look beyond suggestive terminology
● You decide if a "difference" counts as an "update"

The Moral of the Story

Thank You

Questions?

49

<xsl:result-document href="gen/invalid-123-literal.xml">
 <saxon:update select="doc('original/valid-123.xml')">
 <saxon:rename select="/d:article//d:code" to="'d:literal'"/>
 </saxon:update>
</xsl:result-document>
<xsl:result-document href="gen/valid-456-abstract-moved.xml">
 <saxon:update select="doc('original/invalid-456.xml')">
 <saxon:insert select="/d:article/d:info/d:author" position="before">
 <xsl:sequence select="/d:article/d:abstract"/>
 </saxon:insert>
 <saxon:delete select="/d:article/d:abstract"/>
 </saxon:update>
</xsl:result-document>

Saxon-EE XSLT Update Extension

50

<!-- XSpec test file -->

<x:helper stylesheet="saxon-update-helper.xsl"/>
<x:scenario label="No article title">
 <x:context href="valid-123.xml" select="dd:rm-article-title(/)"/>
 <x:expect-assert id="a001"/>
</x:scenario>

Saxon-EE XSLT Update Extension in XSpec for Schematron

<!-- XSLT helper file -->

<xsl:function name="dd:rm-article-title" as="document-node()">
 <xsl:param name="doc" as="document-node()"/>
 <saxon:update select="$doc">
 <saxon:delete select="/article/title"/>
 </saxon:update>
</xsl:function>

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

