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Three Testing Tales

Things motivated by one purpose can be useful for another purpose.
1) The Cupboard Was Bare
Emptiness shouldn't be a surprise
2) Good Functions Make Good Neighbors
Tests shouldn't interfere with each other
3) Schema and Variations

Simplify maintenance of test artifacts



Tale 1
The Cupboard Was Bare



Tale 1: The Cupboard Was Bare

* Empty sequences are normal, but...
* Unexpectedly empty sequences can cause bad outcomes

* Test passes without serving its purpose
* Test fails confusingly

* Objective: Create sequences more defensively



Tale 1 Background

* Setting: XSpec for XSLT or XQuery
* XPath expression > Sequence

* Parameter value
* Expected result

* The sequence is empty —Surprise!



~ Problem to Solve -

* Detection

* Mistake > () > bad test outcomes

* Want unobtrusive solution



How Can a Surprise Happen?

Maybe patha/b/c[3]/d should have said
° a/b/cl[2]/d

* a/b/x[3]/d

* a/b/cl[3]/y/d

Or, maybe the XML document is wrong.




Bad Test Outcome (a)

* Objective: Verify that something does not exist

* Sequence of parasin 3rd sectionis ()

* Something upstream doesn't exist, due to a mistake

°* Thereis no 3rd section

* () equals () > Test passes @

* Didn't serve its purpose, no feedback for us



Bad Test Outcome (b)

* Obijective: Pass parameter to function and verify output
* Mistake in parameter construction > Empty

* Function output is unexpected
Test fails, alerting us to a problem ©
* But why did it failz &®



Prevention via XSpec syntax

* Extra <x:expect> tocheckif something exists

* Clutter, repeated path

* Declare data type that can't be empty, e.g., as="node ()"

* For partial-path sequence, need variable - Clutter?
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Prevention via XPath

* Want an unobtrusive solution without extra elements
* XPath functions > arg or error

* exactly-one(arg)
* one-or-more(arg)
* XPath expression > expr1 orerror

° exprl treat as typel

11



Why Might this Solution Be Surprising?

Typical use case is about static type checking
* "Trust me, this will be non-empty at run time"

° Processor suppresses a static error

* |If you were wrong, processor raises run-time error
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How the Solution Looks in XSpec (fcn)

Wrap the function call around a path:

<x:expect label="The third section has no paragraphs"

test="empty(exactly-one($x:result/topic/section[3])/para)"/>

<x:param name="items" href="test-document.xml"

select="one-or-more(topic/section/table)"/>
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How the Solution Looks in XSpec (expr)

Insert treat as, adding parentheses if needed:

<x:expect label="The third section has no paragraphs"

test="empty ((S$x:result/topic/section[3] treat as
element(section)) /para)"/>

<x:param name="items" href="test-document.xml"

select="topic/section/table treat as element(table)+"/>
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How the Solution Behaves

* If condition is met: Pass-through
* Otherwise: Test halts with clear error message

(a)Tells us something is wrong
(b)Hints that the problem is in the test, not the XSLT/XQuery

* We still have to find which sequence caused the error
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Broader Lesson Beyond Testing

* "What if this sequence [or partial path] is empty?"
* If the answer is "Oh no!", code defensively

* Insertcallto one-or-moreorexactly-one
* Use treat as expression

* Use as attribute (on some element) to declare a data type
that excludes ()
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Tale 2
Good Functions Make Good Neighbors



Tale 2: Good Functions Make Good Neighbors

* Combining XML fragments in one document is compact, but...
* They might not coexist well during testing

* Objective: Compact and harmonious
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Tale 2 Background

* Setting: XSpec for XSLT
* Multiple tiny test cases

* Apply templates to tiny XML fragments
* Tiny result
* Similarity across test cases

° e.g, Attr > Attr, <a> > <b> with markup variations
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Problems to Solve

* Initial problem: Testing cases individually is too much code
* Solution: Combine the test cases

* One XML document, one XSpec scenario

* New problem: Test cases could interfere with each other
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What Could Possibly Go Wrong?

If XSLT code accesses arbitrary parts of tree,...

* Markup from one test case could influence another test case
* Combined document might violate assumptions

* e.g., multiples of something assumed unique

* Could have unexpected results or errors.

Real concern? Terrible idea?
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* Link to titled note produces generated text

* Want to test gentext with markup variations in title

* Combined test document is a note with multiple titles
* Siblings
* (Not schema-valid)

* Point XSpec at titles

* Expect to get sequence of mini-documents for gentext
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Example XSpec Code (sibling titles)

<x:scenario lLabel="Test multiple note titles">
<x:context |[select="//d:title"| mode="xref-to">
<d:note>
<d:title>Simple Title</d:title>
<d:title>Title with <d:code>code</d:code></d:title>
</d:note>
</x:context>

</Xx:scenario>

23



<x:scenario label="Test multiple note titles">

<x:context| select="//d:title" mode="xref-to">
<d:note>
<d:title>Simple Title</d:title>
<d:title>Title with <d:code>code</d:code></d:title>
</d:note>
</x:context>
<x:expect Llabel="Show me the input titles as strings"
test="$x:context ! string(.)" as="xs:stringx"/>
<x:expect Llabel="Show me the actual result"/>
</Xx:scenario>
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Example Results

Show me the titles as strings

* Context has both titles © \ -
esu

° . . \
Actual result is the 1st title ‘Simple Title',

multip[e times @ Title with code

* Why? Show me the actual result
* Title from 1st test case Result
interfered with 2nd test case XPath /node() from:
* XSLT assumptions violated \

Simple TitleSimple Title
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Fix Problem in XSpec? In XML?

* No XSpec syntax for deleting unwanted <title> or
constructing new <note>

* Canuse helper functionality (<x:helper>)

* Not exactly lightweight for this example

* Can enlarge XML document: multiple <note> elements

* Sure, but let's look harder to solve with existing document
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Fix via XPath/XSLT

* snapshot(arg) copiessubtree, preserving ancestry

* copy-of(arg) copiessubtreealone

* Siblings omitted

* Sibling titles caused our interference

* Tiny test cases might be siblings in combined document

<d:note>
<d:title>1</d:title>
<d:title>2</d:title>
</d:note>

<d:note>

<d:title>2</d:title>

</d:note>
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Why Might this Solution Be Surprising?

Typical use case is about streaming (XSLT 3.0)
* Streaming restricts access to nodes of tree
* Buffering copy of subtree enables freer access to it

* Memory considerations in streaming
* Here, isolation is key

* Sometimes you need ancestry, sometimes not
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How the Solution Looks in XSpec

<x:context select="//d:title/snapshot ()" mode="xref-to">
<d:note>
<d:title>Simple Title</d:title>
<d:title>Title with <d:code>code</d:code></d:title>
</d:note>
</x:context>
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How the Solution Behaves

* Actual result has correct gentext mini-documents ©

* (Verifying sequence of document nodes scalably is a bit tricky)

Show me the actual result

Result
XPath /node() from:

Simple TitleTitle with <code class="code">code</code>
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How the Solution Behaves (cont'd.)

* <result>isanad hoc stand-in for document node in expected result.
* Arrays keep separate node collections apart. (Simple TitleTitlewdith fails.)
* ( ["Simple Title"], ["Title with ", <code.../>] )

<x:expect label="Verify all titles"
test="for $r 1in |$x:result|return |[$Sr/node()]
select="for $r 1in|/result| return |[$Sr/node()]
<result>Simple Title</result>

<result>Title with <code class="code">code</code></result>
</x:expect>

>
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Broader Lesson Beyond Testing

* When nodes become neighbors for convenience, consider if
further processing requires isolating them

* snapshotand copy-of make good neighbors

* Not an everyday use case, but when it's a good fit, you'll
like how easy itis
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Tale 3

Schema and Variations



Tale 3: Schema and Variations

* Schema testing requires validating documents, but...
* How do you maintain them all?

* Objective: Keep some as sources, derive others

A'l

- R
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Tale 3 Background

* Setting: BaseX or XSpec for testing a schema
* Large set of documents to validate
* Invalid documents are invalid for 1 reason

* Nearly identical to a valid document in the set
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Problem to Solve

* Maintaining documents

* Maintaining tiny diffs between Aand A', Aand A", etc.
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Main Solution Idea

° DeriveA'and A" from A

* Derivation code must be easy to write/maintain

A'I

- B
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Example in BaseX

* Helper functions that validate document and verify result

* For each document in set, call helper from small test function

declare [ %unit:test| function mytest:valid-sample-doc() {
let $s := doc('original/valid-123.xmLl')
(: As s, file is valid :)
return

mytest:expect-val id($s)\
I

Want to derive variation document and call function on that instead.
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Ad Hoc Solution Option

* (Separate process from test running, or not?)

* ldentity plus specify/implement desired variation?
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XQuery Update Standard

* Complements XQuery standard
* |Insert, delete, rename, and replace nodes

* BaseX, Saxon-EE, and maybe others

* Aside: Similar operations in <saxon:update> XSLT
extension, GitHub libraries
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Why Might this Solution Be Surprising?

Typical official use cases are about updating something;:
* Update database or other persistent storage
* Add new information

* Refresh status
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Our Use Case Is Slightly Different

* DocumentA'is not fresher than A
* Retain both, for validation testing

* Derive valid document from invalid one, or vice versa
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How the Solution Behaves

1) Read document from file

2) Modify in memory using XQuery Update expressions

» Simple and few

> Invalid for 1 reason

3) Write to a different file OR  3)Validate in memory

4) Validate from file 4) Verify validation results

5) Verify validation results
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~ How a Solution Looks in BaseX (same process)

declare %unit:test function mytest:xqupdate-makes-invalid-literal ()

{
. 8s := doc('original/valid-123.xml")
Derivation goes here
return
mytest:expect-invalid($s)
I
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declare %unit:test function mytest:xqupdate-makes-invalid-literal ()

{

copy|$s := doc('original/valid-123.xml'")
modify | (
(: Renaming <code> as <literal> makes the file invalid :)
rename node $s/d:article//d:code

as 'd:literal'
)

return

mytest:expect-invalid($s)

s
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Broader Lessons Beyond Testing

* Applying and maintaining small tweaks to many documents?
* Consider a standard solution

* Ora partial imitation, if that's a better fit
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The Moral of the Story

* |s non-emptiness important? Say it in code!

* one-or—-more and exactly-one
° treat as

* Free a subtree from interfering siblings/ancestors

* snapshotand copy-of

* Look beyond suggestive terminology

* You decide if a "difference" counts as an "update"
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Thank You

Questions?



<xsl:result-document href="gen/invalid-123-1literal.xml">
<saxon:update select="doc('original/valid-123.xml"')">
<saxon:rename select="/d:article//d:code" to="'d:literal'"/>
</saxon:update>
</xsl:result-document>
<xsl:result-document href="gen/valid-456-abstract-moved.xml">
<saxon:update select="doc('original/invalid-456.xml")">
<saxon:insert select="/d:article/d:info/d:author" position="before">
<xsl:sequence select="/dsarticle/d:abstract" />
</saxon:insert>
<saxon:delete select="/d:article/d:abstract"/>
</saxon:update>
</xsl:result-document>
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<!-- XSpec test file -—>

<x:helper stylesheet="saxon-update-helper.xsl"/>

<x:scenario label="No article title">
<x:context href="valid-123.xml" select="dd:rm-article-title(/)"/>
<x:expect-assert 1d="a001"/>

</x:scenario>

<I--= XSLT helper file -->

<xs'l:function name="dd:rm-article-title" as="document-node()">
<xsl:param name="doc" as="document-node()"/>
<saxon:update select="$doc">
<saxon:delete select="/article/title"/>
</saxon:update>
</xsl:function>
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