[image: Balisage logo]Balisage: The Markup Conference

Accumulators in XSLT and XSpec
Developing, Debugging, and Testing XSLT 3 Accumulators
Amanda Galtman
<galtmana@proton.me>

Balisage: The Markup Conference 2023
July 31 - August 4, 2023

Copyright © 2023 by the author.

How to cite this paper
Galtman, Amanda. "Accumulators in XSLT and XSpec." Presented at: Balisage: The Markup Conference 2023, Washington, DC, July 31 - August 4, 2023. In Proceedings of Balisage: The Markup Conference 2023.
 Balisage Series on Markup Technologies vol. 28 (2023). https://doi.org/10.4242/BalisageVol28.Galtman01.

Abstract
Accumulators in XSLT 3, while not necessarily an everyday staple of XSLT code
 bases, can provide elegant solutions to certain challenges in both streaming and
 non-streaming XSLT applications. The debugging and testing techniques you might use
 for accumulators are a little different from techniques you use for templates and
 functions. After briefly reviewing what makes accumulators special and powerful,
 this paper describes and compares several debugging and testing techniques for
 accumulators. Whether you need a near-term bug diagnosis or an automated XSpec test
 for long-term code health, you'll learn ways to access, understand, and maintain
 your accumulator's behavior.

Balisage: The Markup Conference

 Accumulators in XSLT and XSpec

 Developing, Debugging, and Testing XSLT 3 Accumulators

 Table of Contents

 	Title Page

 	Motivation

 	Background About Accumulators
 	Inertia

 	Running Counts and Accumulation

 	Start/End Distinction in Accumulator Rules

 	Before/After Distinction in Accumulator Functions

 	Preventing Bugs
 	When Not to Use an Accumulator

 	Avoiding Coding Mistakes

 	Debugging Techniques
 	XPath Watch in the Oxygen Debugger

 	Trace from Saxon (PE or EE)

 	Report of Accumulator Values

 	XSLT Messages

 	Testing Techniques
 	Motivations for Testing Accumulators

 	XSpec Test Importing XSLT Under Test
 	Dedicated Test Scenario

 	Accumulator Expectations Within Scenarios Serving Other Purposes

 	XSpec Test Running XSLT as External Transformation

 	Conclusion

 	About the Author

 Accumulators in XSLT and XSpec
Developing, Debugging, and Testing XSLT 3 Accumulators

Motivation
XSLT version 3 introduces the accumulator, a special and elegant
 way you can associate data with nodes of a tree and retrieve that data as needed. To
 incorporate an accumulator into your XSLT stylesheet, you design the data association
 logic to serve your needs, implement the design using one or more accumulator
 rules, and retrieve the data wherever you need it using dedicated
 accumulator functions. At some point in your work, you will
 likely want to examine or debug the accumulator's behavior, checking interactively that
 your implementation matches the design you intended. If your XSLT code is significant or
 long-lasting, you might want to write tests that check the behavior in an automated way.
 The debugging and testing techniques you might use for accumulators are a little
 different from techniques you use for templates and functions. My purpose here is to
 make debugging and testing accumulators easier for you, so you can use accumulators more
 efficiently and effectively.

Background About Accumulators
If XSLT accumulators are new to you, first pause to consider the word "accumulator."
 This word suggests the XSLT accumulator's capability of computing a value progressively,
 especially during streamed processing of an XML tree that may be too large to fit in
 memory. In some cases, "accumulate" aptly describes the task the accumulator performs.
 However, try not to take the word "accumulator" too literally, because some XSLT
 accumulators, instead of collecting more and more things, behave more like a:
	Counter, potentially resettable at relevant spots in the tree

	Stack or queue, which can add and remove items

	Tracker of some kind of state, based on patterns of interest

Keeping your mind open to these other roles can help you identify when an accumulator
 is a good fit for a problem you need to solve. Remembering that the feature's name
 describes only a subset of functionality is similar to how you remember that XSLT
 "stylesheets" can perform many useful tasks unrelated to styling.
When you first hear that an accumulator associates user-defined data with nodes, you
 might think it is like calling a user-defined function on nodes to compute and retrieve
 data. While you can use accumulators in that manner, accumulators also have some
 distinctive capabilities. Let's look at them.
Inertia
Suppose you're scanning the body of an HTML document from top to bottom and for
 any paragraph, you want to retrieve its section depth — that is, the level of the
 nearest heading that the paragraph is underneath. When you see an
 <h1> element, you know that everything afterward is at depth 1
 until you reach an <h2> element, at which point everything afterward
 is at depth 2, and so on. The headings are significant because that's where the
 depth value might change. In between headings, the depth stays the same.
Figure 1: HTML Body with Paragraphs Indicating Their Section Depth

<body>
 <h1>HEADING LEVEL 1</h1>
 <p>Depth = 1</p>
 <div>
 <p>Depth = 1</p>
 </div>
 <h2>HEADING LEVEL 2</h2>
 <p>Depth = 2</p>
 <h2>HEADING LEVEL 2</h2>
 <p>Depth = 2</p>
</body>

The dedicated functions that retrieve data from an accumulator natively know how
 to find and return the last computed value. If you implement the depth computation
 using an accumulator, you don't have to write code to traverse the document in
 reverse document order, in search of prior headings. Your accumulator declaration
 concisely focuses on the headings alone. The accumulator value remains unchanged
 until a heading triggers a match against one of the accumulator rules.
Figure 2: Accumulator Declaration for Three Heading Depth Levels

<xsl:accumulator name="heading-depth" as="xs:integer" initial-value="0">
 <xsl:accumulator-rule match="h1" select="1"/>
 <xsl:accumulator-rule match="h2" select="2"/>
 <xsl:accumulator-rule match="h3" select="3"/>
</xsl:accumulator>

The XSLT code snippet above declares an accumulator that associates the heading
 level with each heading element up to <h3>. In the thought
 experiment where you're scanning the sample HTML body shown, when you see an
 <h1> element, the match="h1" accumulator rule in
 XSLT says the accumulator value is 1. When you see the next HTML
 paragraph and the one after that, inertia says the heading depth is the most recent
 accumulator value, which is 1. The XSLT code snippet has no accumulator
 rule with match="p" that says to keep using the last value, because
 that behavior comes for free.
Also, notice that this example expresses accumulator rules for heading elements
 while retrieving the depth value at paragraph elements. The nodes where you
 explicitly compute associated data don't have to be the same as the nodes for which
 you want to retrieve data. Thanks to the implicit inertia
 behavior, you can retrieve the data for any context node (except that the
 accumulator does not associate values with attribute nodes or namespace
 nodes).

Running Counts and Accumulation
Not only can you access the last computed value, but you can also use it to
 compute a new value. Within an accumulator rule, you can reference the special
 variable named $value, which stores the latest value of the accumulator
 before the rule recomputes the value. This capability is useful if you want to
 compute a running total of HTML headings seen so far, up to any given context
 paragraph.
Figure 3: Accumulator Declaration for Counting Headings

<xsl:accumulator name="heading-count" as="xs:integer" initial-value="0">
 <xsl:accumulator-rule match="h1 | h2 | h3">
 <xsl:sequence select="$value + 1"/>
 </xsl:accumulator-rule>
</xsl:accumulator>

More generally, the $value variable helps you implement running
 statistics or accumulate data in a stack or queue. The $value variable
 can also be handy for debugging using XSLT
 Messages.
Note
 In this example, the computation of new accumulator value in
 <xsl:accumulator-rule> uses a child
 <xsl:sequence> element rather than a select
 attribute. Both ways work, but we will see in XSLT
 Messages that using a child element here is a bit more
 debugging-friendly.

Start/End Distinction in Accumulator Rules
To illustrate another important feature of accumulators, imagine writing XSLT to
 style an XML document that includes some content that should be kept internal only,
 such as author remarks and content intended for a future release. You must not only
 suppress the internal content from the main flow but also ignore this content while
 generating things like tables of content or lists of cited bibliographic entries.
 Content might even be internal-only for multiple reasons, such as an author remark
 nested inside a future-release subsection.
Let's design an accumulator that tells us when a particular XML element is
 internal-only due to its own markup or its ancestry. For this example, suppose the
 author remarks use an XML element named <remark> and the
 future-release content is any element that has an attribute
 condition="future".
Figure 4: Sample XML with Internal-Only Content

<section>
 <title>Sample Title</title>
 <remark>Ready for release</remark>
 <para>Sample external content</para>
 <section condition="future">
 <title>Sample Subsection Title</title>
 <remark>For next year, maybe</remark>
 <para>Additional content</para>
 </section>
</section>

Imagine a television news program whose scrolling chyron shows the serialized XML
 content shown above. The significant points as far as internal-only status goes
 are:
	Start tags of either <remark> or any element with
 condition="future". When you see such start tags, an
 internal-only region begins or deepens.

	End tags of either <remark> or any element with
 condition="future". When you see such end tags, an
 internal-only region ends or becomes shallower. At this point, you have
 already seen all the element's descendants, an observation whose relevance
 will appear soon.

These significant points become the focus of our accumulator rules. The
 <xsl:accumulator-rule> element supports an attribute named
 phase. This attribute enables you to construct different
 accumulator values based on whether the XSLT engine traversing the tree has first
 reached the node before visiting its descendants or is revisiting the node after
 visiting all its descendants. In this way, a node has two accumulator values, not
 one, even if the node has no descendants. The values of phase are
 "start" (default) and "end". The distinction is
 exactly what we need for the accumulator in this example. Here are two
 approaches:
	The internal-depth accumulator records the depth of
 internal-only regions. For instance, this accumulator associates the integer
 value 2 with the text node having content "For next year,
 maybe", and the nonzero value indicates that this text node is
 internal-only. The text node having content "Additional content" is
 associated with the value 1, which is also nonzero and
 indicates internal-only status. By contrast, the text node having content
 "Sample external content" is associated with the value
 0.
Figure 5: Accumulator Declaration for Depth of Internal-Only Content

<xsl:accumulator name="internal-depth" as="xs:integer" initial-value="0">
 <xsl:accumulator-rule phase="start"
 match="remark | *[@condition='future']">
 <!-- Start: Increment depth -->
 <xsl:sequence select="$value + 1"/>
 </xsl:accumulator-rule>
 <xsl:accumulator-rule phase="end"
 match="remark | *[@condition='future']">
 <!-- End: Decrement depth -->
 <xsl:sequence select="$value - 1"/>
 </xsl:accumulator-rule>
</xsl:accumulator>

	The internal-elem accumulator behaves like a stack, recording
 sequences of internal-only element names (with the most recent at the
 beginning). For instance, this accumulator associates the sequence
 ('remark', 'section') with the text node having content
 "For next year, maybe", and the nonempty value indicates that this text node
 is internal-only.
Recording element names might seem like overkill, but it depends on the
 situation. The additional information beyond depth could be helpful for
 debugging, testing, or hypothetical downstream processing that depends on
 the specific reason why a node is internal-only.
Figure 6: Accumulator Declaration for Names of Internal-Only Elements

 <xsl:accumulator name="internal-elem" as="xs:string*"
 initial-value="()">
 <xsl:accumulator-rule phase="start"
 match="remark | *[@condition='future']">
 <!-- Start: Push element name on head of stack -->
 <xsl:sequence select="(name(.), $value)"/>
 </xsl:accumulator-rule>
 <xsl:accumulator-rule phase="end"
 match="remark | *[@condition='future']">
 <!-- End: Pop first item from stack -->
 <xsl:sequence select="tail($value)"/>
 </xsl:accumulator-rule>
 </xsl:accumulator>

Before/After Distinction in Accumulator Functions
So far, we have glossed over the mechanism for retrieving the accumulator value
 associated with a particular node. XSLT 3.0 defines functions that return the value
 that a specified accumulator associates with the context node. Just as accumulator
 rules distinguish between the situations before and after the XSLT processor has
 visited descendants when assigning accumulator values, the retrieval capabilities
 distinguish when retrieving accumulator values. That is why XSLT 3.0 provides not
 one accumulator function but two: accumulator-before and
 accumulator-after. For instance, in the preceding section's
 examples,
	/section/remark/accumulator-before('internal-depth') returns
 1 because the phase="start" rule has just
 incremented the accumulator value.

	/section/remark/accumulator-after('internal-depth') returns
 0 because the phase="end" rule has just
 decremented the accumulator value.

	Both functions return the same value if the context node is
 /section/para. Neither this element nor its descendants
 match any accumulator rule in the 'internal-depth' accumulator
 declaration. As a result, inertia preserves the accumulator value while the
 processor visits this element, its descendants, and this element
 again.

	Both functions return the same value if the context node is a text node. A
 text node has no descendants, and text nodes do not match any accumulator
 rule in the 'internal-depth' accumulator declaration.
 Therefore, inertia preserves the accumulator value while the processor
 visits a given text node twice.

The before/after distinction in the two accumulator functions does not always
 correspond to start/end phases in accumulator rules; the point is how the context
 node and its descendants relate to the accumulator rules. For instance, the XSLT 3.0
 specification includes the following accumulator example that counts words [[XSLT]].
Figure 7: Keep a Word Count, from XSLT Specification

 <xsl:accumulator name="word-count"
 as="xs:integer"
 initial-value="0">
 <xsl:accumulator-rule match="text()"
 select="$value + count(tokenize(.))"/>
 </xsl:accumulator>

If such an accumulator operates on an HTML document,
 /html/accumulator-before('word-count') returns zero because no text
 nodes have been visited yet. By contrast,
 /html/accumulator-after('word-count') returns the total number of
 words in the HTML document because all text nodes containing words have been
 visited.

Preventing Bugs
From the last section, you know that an accumulator associates data with tree nodes
 before and after visiting their descendants, and it holds the last data value until the
 next visit to a node that matches an accumulator rule. Now, let's start to look at ways
 you can use accumulators productively and avoid mistakes. It's better to prevent a
 mistake than to discover, diagnose, and fix it. This section contains tips for
 preventing accumulator-related bugs.
When Not to Use an Accumulator
One potential mistake that's best to detect as early as possible is trying to use
 an accumulator when it's not suitable for the situation. For example:
	Inspired by an accumulator's counting behavior, you might try to make an
 accumulator count how many times your XSLT code processes a certain XML
 element. However, that would be a design mistake, because the tree traversal
 for accumulator computations is not the same as how templates or functions
 access the tree. An accumulator can say, "This is the third title I've seen
 so far in this document" but not, "This is the third time I've seen this
 title so far during processing: once when creating the table of contents,
 once when rendering the heading, and once when rendering a hyperlink that
 points here."

	Suppose the original document order is not that significant in an XML
 document you are processing, such as when the XSLT sorts subsections of a
 topic. An accumulator might be a good fit either for a task unaffected by
 the sorting or if the accumulator operates on nodes of an already-sorted
 tree. On the other hand, you might decide that storing a sorted tree would
 add too much complexity and a non-accumulator solution would be
 better.

	Suppose you are processing documents that can refer to other documents,
 and you need to track the document URIs as you follow the references.
 Inspired by mentions of accumulators that implement stacks, you might try to
 use an accumulator to track the URIs. However, if "following" the references
 means applying XSLT to the referenced documents using the XPath
 transform function, an accumulator might not be a suitable
 solution. I am not aware of a capability for passing an accumulator and its
 values across an XSLT stylesheet boundary via the
 transform function. The case where I saw this situation
 implemented the stack using a tunnel parameter instead of an
 accumulator.
This situation contrasts with one that came up on an XSL mailing list
 recently, where a user wanted to accumulate data across topics referenced by
 a DITA map [[M]]. This situation used doc
 rather than transform to access the referenced documents, and
 an accumulator worked fine because it was crossing a tree boundary, not an
 XSLT stylesheet boundary.

	An accumulator might not be a good substitute for a user-defined function
 on attribute nodes, because accumulators do not associate values with
 attribute nodes. If you consider the desired behavior in terms of element
 nodes, you can judge whether an accumulator that matches element nodes and
 computes its value related to an element's attributes has any advantages in
 clarity or functionality compared to an ordinary function.

Avoiding Coding Mistakes
Suppose you've determined that an accumulator is a suitable solution to your
 problem, and you're ready to start coding it. The following list can help you avoid
 potential coding errors:
	As you think about the match patterns for which you will create
 accumulator rules, think about how the patterns might occur in the actual
 trees you need to process. Plan for potential interactions among
 patterns:
	Avoid ambiguous rule matches. If a node matches multiple patterns,
 using separate accumulator rules for them will lead to a warning
 about the ambiguous rule match, and the accumulator rule that the
 processor applies may or may not be what you want. Avoiding
 ambiguous rule matches is why the 'internal-depth'
 example in Figure 5 uses the same
 accumulator rule for both <remark> elements and
 elements having the condition="future"
 attribute.
Note
Accumulator rules do not support a priority
 attribute, as template rules do.

	Consider nesting. If a node can match a pattern in a nested
 arrangement, think through the possibilities and eventually try them
 first-hand, to make sure your design is sound. In the
 'internal-depth' example, the potential for nested
 internal-only patterns is why the accumulator computes the numeric
 depth instead of returning a Boolean value (i.e., a node is or is
 not internal-only).

	If your design requires resetting the accumulator value in some way or
 shedding data that was accumulated earlier in the traversal, remember to
 implement the reset and do it correctly for your situation. For a resettable
 counter, consider whether you should reset the value to zero or decrement it
 by one. For a stack, consider whether you should empty the stack or remove
 one value from the beginning or the end.

	Make sure your accumulator is applicable to the tree
 where you want to attach the data. Details of your situation determine
 whether the applicability comes for free, and the rules are in the Applicability of Accumulators section of the XSLT 3.0
 specification. Sometimes, you need to add a use-accumulators
 attribute that lists either accumulator names or the token
 #all. For example, <xsl:mode
 use-accumulators="#all"/> makes all accumulators applicable to
 documents containing nodes in the initial match selection.

Debugging Techniques
Suppose you've created an accumulator and you need some visibility into its behavior.
 Maybe you want to check that your in-progress work is on the right track. Maybe you have
 all the pieces in place, but something doesn't work as expected.
Choose a tree that you'd like to have the accumulator associate data with, such as a
 sample document or a tree whose transformation exhibits a problem. While accumulators
 can operate on trees that aren't rooted at document nodes, some debugging techniques are
 more straightforward if the tree is captured in an XML file.
This section describes the following approaches to debugging or viewing values of your
 accumulator:
	XPath Watch in the Oxygen debugger

	Trace from Saxon

	Report of accumulator values

	XSLT messages

XPath Watch in the Oxygen Debugger
In Oxygen XML Editor, the XSLT debugger provides visibility into many aspects of
 an evolving transformation, including the execution stack and variables. This
 debugger can show you accumulator values, too (at least for non-streaming
 transformations). After you select XML and XSLT files for the debugging
 configuration, place one or more breakpoints at templates, functions, their
 contents, or lines in the source document. Remember, though, that the XSLT
 processor's tree traversal aimed at computing accumulator values is not the same as
 the process of evaluating templates and functions. Placing an Oxygen debugger
 breakpoint at or within <xsl:accumulator> is not particularly useful.[1]
What is useful for viewing accumulator values is the
 XPath Watch (XWatch) view in the Oxygen
 debugger [[XW]]. Here are two approaches you can use separately or
 together:
	Watch the expressions accumulator-before(...) and
 accumulator-after(...), providing the name of your
 accumulator as the input argument to these functions. When the
 transformation is paused at a breakpoint, the XWatch pane shows the
 accumulator values at the context node. You can also select a row in the
 XWatch pane and view the value in a tree format, in the Nodes/Values Set pane. As you step through the
 transformation and the context node changes, the XWatch pane changes the
 values it shows because the accumulator functions operate at the context
 node.

	Watch an expression that explicitly sets the context node, such as
 //body/h1[1]/accumulator-before('word-count'). This
 approach enables you to zero in on any node of interest, and it works at any
 XSLT breakpoint that the execution reaches, even if the node of interest
 hasn't yet become the context node for any template. To see multiple nodes'
 accumulator values together, you can use multiple rows in the XWatch view or
 specify a path that yields a node sequence of any length (e.g., remove the
 [1] predicate in the last expression).

The next screen captures illustrate panes of the Oxygen debugger when paused at an
 XSLT breakpoint. At this breakpoint, the first <remark> element in
 the XML source document is the context node. In the XWatch pane, the first row shows
 the accumulator's value at the subsection remark's text content. The second and
 third rows shows the accumulator's values at the context node (first
 <remark> element) after and before, respectively, the
 accumulator's document traversal has reached the context node's descendants.
Figure 8: XSLT Stylesheet with Breakpoint
[image: XSLT stylesheet with breakpoint at template rule for remark element]

Figure 9: XML Source Document
[image: XML source document with first remark element highlighted as context
 node]

Figure 10: XWatch Pane
[image: XWatch pane of debugger showing values of XPath expressions that call
 accumulator functions]

Trace from Saxon (PE or EE)
If you have a license for Saxon-PE or Saxon-EE, you can configure your accumulator
 to emit trace messages during the transformation, whenever the value changes. Each
 message includes the accumulator name, the word BEFORE or AFTER, an XPath expression
 for the node that matched the accumulator rule, and the new value of the accumulator
 for that node. To configure your code in this way, modify the
 <xsl:accumulator> element by setting the
 saxon:trace attribute to the value 1,
 true, or yes [[S]]. Remember to
 declare the namespace of this attribute,
 xmlns:saxon="http://saxon.sf.net/". (Consider including the prefix
 in the value of an exclude-result-prefixes attribute of
 <xsl:stylesheet>.)
Figure 11: Saxon Trace Configuration

 <xsl:accumulator name="..." initial-value="..."
 saxon:trace="yes" xmlns:saxon="http://saxon.sf.net/">
 ...
 </xsl:accumulator>

Sample output looks like the following.
Figure 12: Sample of Saxon Trace Messages

internal-elem BEFORE /section/remark[1]: "remark"
internal-elem AFTER /section/remark[1]: ()
internal-elem BEFORE /section/section[1]: "section"
internal-elem BEFORE /section/section[1]/remark[1]: ("remark", "section")
internal-elem AFTER /section/section[1]/remark[1]: "section"
internal-elem AFTER /section/section[1]: ()

Report of Accumulator Values
An option similar to trace messages is to create a report of accumulator values
 associated with a tree. The xslt-accumulator-tools repository on
 GitHub, which I created to complement this paper, includes an accumulator report
 generator named acc-reporter.xsl [[G]]. The rest of
 this section is about this report generator, although you can always write your own
 XSLT code to produce a custom-designed report.
The premise underlying acc-reporter.xsl is that you have some
 accumulator declaration in an XSLT file, have one or more documents in XML files,
 and want to see the values the accumulator associates with the nodes in the
 documents.
For a given accumulator and XML document, this tool produces an HTML report having
 two sections. The first section lists the following background information, for
 traceability:
	URI of the XML document.

	URI of the XSLT file containing the accumulator declaration.

	Code in the <xsl:accumulator> element. Recording this code
 in the HTML report can be useful if you iteratively generate reports while
 modifying your accumulator definition in the XSLT file.

Figure 13: Sample Top Section
[image: Title, document URI, XSLT URI, and accumulator declaration]

The next section is a two-column table, where:
	The first column shows element tags and non-element nodes from the XML
 document. For elements, separate listings for start and end tags distinguish
 between the accumulator's values before and after visiting the element's
 descendants. Global parameters in acc-reporter.xsl enable you
 to control whether the report suppresses whitespace-only text nodes and at
 what length the report truncates content of text and comment nodes.
 Truncation is meant to help you focus on the nodes and values, not
 voluminous text content that would require you to scroll a lot.

	The second column shows associated accumulator values. To reduce clutter,
 the report populates this column only for the document node's values and
 wherever an accumulator changes its value.

Figure 14: Sample Table of Accumulator Values
[image: Two-column table with XML document information in first column and
 accumulator values in second column]

For specific instructions on generating accumulator reports using a system command
 or an Oxygen transformation scenario, see the xslt-accumulator-tools
 GitHub repository. [[G]]

XSLT Messages
The <xsl:message> instruction is a common debugging approach to
 get information about a transformation running outside a debugger environment. If
 you want the accumulator computations themselves to produce messages, follow these
 guidelines:
	Insert <xsl:message> as a child or other descendant of
 <xsl:accumulator-rule>, not as a child of
 <xsl:accumulator>.

	Where <xsl:message> is inside
 <xsl:accumulator-rule>, the latter should contain a
 sequence constructor, not a select attribute. If you wrote the
 accumulator rule with a select attribute and want to insert
 <xsl:message>, modify the rule as in the following
 example.
Figure 15: Original Accumulator Rule

<xsl:accumulator-rule match="*" select="newvalue"/>

Figure 16: Modified Accumulator Rule to Support XSLT Message

<xsl:accumulator-rule match="*">
 <xsl:sequence select="newvalue"/>
 <xsl:message expand-text="1">
 At {name(.)} element, old accumulator value is {$value}
 </xsl:message>
</xsl:accumulator-rule>

	In your message content, don't call the accumulator-before or
 accumulator-after functions to refer to the same
 accumulator whose declaration contains the message. If you try that, you
 will get an error message that says the accumulator requires access to its
 own value.
You can, however, use accumulator-before or
 accumulator-after functions to refer to a different
 accumulator. Doing so is helpful if you split a complicated computation
 across multiple accumulators that build on each other in a non-circular
 way.

	You can use the special variable named $value in the message
 content. This variable stores the value of the accumulator
 before evaluating the content of this accumulator
 rule.

As usual, you can insert <xsl:message> inside templates and
 functions. Here are some tips for reporting on accumulator values in messages within
 templates and functions:
	In your message content, you can call the accumulator-before
 and accumulator-after functions to refer to an applicable
 accumulator.

	In your message content, don't use the special $value
 variable, which is accessible only within
 <xsl:accumulator-rule>.

	The <xsl:message> instruction doesn't have to be in a
 template rule for the kind of node whose associated accumulator value you
 want to report. You can insert the message anywhere convenient that (a) will
 be reached during the transformation and (b) can assume your node of
 interest as the context node. (Requirement (b) is relevant for stream
 processing.) Within your message, you can change the context node to your
 node of interest and then call the accumulator function.
The ability to change context at will is convenient if you want to report
 accumulator values for multiple tree nodes and prefer to consolidate
 temporary debugging code in as few locations in your XSLT stylesheet as
 possible.

The next code sample illustrates changing the context node and calling accumulator
 functions, in a non-streaming application.
Figure 17: Sample Template with Accumulator Values in Message

<xsl:template match="/" expand-text="1">
 <!-- Output accumulator values in message text -->
 <xsl:for-each select="//body/h1">
 <xsl:message>Before descendants of h1 #{position()}: {
 accumulator-before('word-count')
 }
 </xsl:message>
 <xsl:message>After descendants of h1 #{position()}: {
 accumulator-after('word-count')
 }
 </xsl:message>
 </xsl:for-each>
 <xsl:message>At end of html element: {
 /html/accumulator-after('word-count')
 }
 </xsl:message>

 <!-- Other code in this template... -->
</xsl:template>

Where you place the <xsl:message> instructions can depend on your
 preferences as well as your immediate goal or context in the development process.
 For instance, if you have just written an accumulator declaration and want to check
 that the rules are correct before using accumulator values somewhere else in the
 stylesheet, you might favor messages within the accumulator rules because that's
 where your attention is. On the other hand, if you are investigating a bug that
 involves a particular template or function, that may be a natural place for messages
 about accumulator values, variable values, and other data to aid your
 investigation.

Testing Techniques
Debugger tools, trace messages, reports, and <xsl:message> outputs
 serve useful purposes that are typically transient purposes. In production, you don't
 run your transformation in a debugger and you are likely to suppress or remove code that
 makes logs unwieldy. There's nothing wrong with the transience of the debugging
 techniques described earlier; you solve your immediate problem, remove extraneous
 logging, and move on. At the same time, you might gain value from automated tests that
 persist even after you have finished checking an accumulator rule interactively or
 fixing a bug. This section illustrates ways to test behavior of some accumulators using
 XSpec [[XS]], which is an open-source software product for testing XSLT,
 XQuery, and Schematron code. This section assumes prior familiarity with XSpec.
Motivations for Testing Accumulators
First, let's discuss why you might want to test an accumulator in an automated
 way. In general, automated testing can help you maintain your code's correct
 behavior as you add features, fix bugs, and refactor code. The time you invest in
 creating automated tests pays dividends when you can change XSLT code quickly with
 confidence that you haven't broken anything (or that you've given the breakage
 careful consideration and documented it in release notes for end users, if
 appropriate). Unless a piece of XSLT code is trivial or has a very short life span
 from the start of development to the end of usage, you should consider whether and
 how it should have automated tests. If you're already familiar with XSpec tests for
 templates and functions, you might still wonder why an accumulator deserves special
 testing attention. Consider whether these reasons pertain to any of your accumulator
 code:
	One way to begin an investigation of a bug is to write an XSpec test that
 reproduces the bug. Running the test repeatedly as you modify the code or
 insert debugging messages can help you diagnose and fix the bug efficiently.
 After you have fixed the bug, you might as well keep the test to guard
 against recurrences of the bug. This bug-fixing workflow can apply to code
 whether or not it involves an accumulator. When you suspect the cause of an
 XSLT bug is in an accumulator declaration, you might find it handy to know
 how to make a test that focuses on that declaration.

	Some accumulators are complicated. Maybe you have one accumulator whose
 computations depend on another accumulator. Maybe your accumulator operates
 on XML documents that can exhibit a variety of pattern combinations,
 including important edge cases whose support must be maintained. Greater
 complexity in the accumulator is likely to provide a greater return on your
 test writing investment.

	If the templates and functions that reference your accumulator are large
 or complicated themselves, you might like the modularity of testing the
 accumulator in isolation from them.

XSpec Test Importing XSLT Under Test
By default, an XSpec test of XSLT code gets compiled into a stylesheet that
 imports the XSLT code you are testing. Because the import operation mingles your
 XSLT code with the compiled test logic, the testing logic can access your XSLT
 accumulators. If your XSpec file uses this default import mechanism (i.e., you are
 not using the nondefault run-as="external" testing mechanics due to one
 of the use cases described in [[E]]), you can use the examples in
 this section.
Compared to the example in XSpec Test Running XSLT
 as External Transformation, the examples in this section are more concise
 and do not require you to augment your XSLT stylesheet by importing wrapper
 functions.
Dedicated Test Scenario
The first example illustrates an XSpec test file that focuses specifically on
 testing an XSLT accumulator.
Figure 18: Sample Dedicated XSpec Test for Accumulator, with run-as="import"

<x:description xmlns:x="http://www.jenitennison.com/xslt/xspec"
 xmlns:myv="my-xspec-variables"
 stylesheet="../internal-elem.xsl"
 run-as="import">

 <x:scenario label="Values of internal-elem accumulator">
 <x:variable name="myv:tree"
 href="../sample-xml/section-with-internal-content.xml"
 select="/"/>
 <!-- x:call satisfies XSpec compiler -->
 <x:call function="true"/>
 <x:expect
 label="At start of subsection remark, 2 element names in stack"
 test="$myv:tree/section/section/remark/accumulator-before('internal-elem')"
 select="('remark', 'section')"/>
 <x:expect
 label="At end of subsection remark, 1 element name in stack"
 test="$myv:tree/section/section/remark/accumulator-after('internal-elem')"
 select="('section')"/>
 <!--
 Use of exactly-one() ensures that if $myv:tree yields an empty sequence
 by mistake, you'll get an error instead of having the accumulator function
 return empty for the wrong reason.
 -->
 <x:expect
 label="At end of document, stack is empty"
 test="exactly-one($myv:tree)/accumulator-after('internal-elem')"
 select="()"/>

 <!-- Variation: Boolean @test and no @select -->
 <x:expect
 label="At end of document, stack is empty"
 test="empty(exactly-one($myv:tree)/accumulator-after('internal-elem'))"/>
 </x:scenario>

</x:description>

Relevant points of this sample test include the following:
	At the top of the XSpec file, the <x:description>
 element includes run-as="import". (This setting is
 equivalent to omitting the run-as attribute, because
 "import" is the default value.) Making the compiled
 XSpec test import your XSLT stylesheet makes the accumulator available
 to your <x:expect> assertions.
Note
If you specify run-as="external", then this
 accumulator testing technique will not work. See XSpec Test Running XSLT as External
 Transformation for an alternate testing technique. For
 more information about external transformations in XSpec, see [[E]].

	The scenario defines a tree with which you'd like the accumulator to
 associate data. It is convenient, though not strictly necessary, to
 store the tree in an XSpec variable. The name of the variable is not
 critical, nor is the choice to read it from a separate XML file.

<x:variable name="myv:tree"
 href="../sample-xml/section-with-internal-content.xml"
 select="/"/>

	The scenario calls a function using <x:call>, to avoid
 an error from the XSpec compiler. The specific function (in this case,
 the standard true function in XPath) and its return value
 are not important in this scenario.

	The scenario has <x:expect> elements whose purpose is
 to check that the accumulator has the expected values at certain nodes
 of the tree. The label can be whatever descriptive text you want. The
 test attribute establishes a context node and calls
 either accumulator-before or
 accumulator-after. The select attribute
 provides the expected value of the specified accumulator function at
 that context node.

<x:expect
 label="At start of subsection remark, 2 element names in stack"
 test="$myv:tree/section/section/remark/accumulator-before('internal-elem')"
 select="('remark', 'section')"/>
If you prefer, you can omit the select attribute and
 write a Boolean expression in the test attribute, as in the
 following variation on the check for an empty sequence.

<x:expect
 label="At end of document, stack is empty"
 test="empty(exactly-one($myv:tree)/accumulator-after('internal-elem'))"/>
If the expected accumulator value is a node, you can provide it as a
 child of the <x:expect> element instead of using the
 select attribute.
If the expected accumulator value is an empty sequence, you should make
 sure the accumulator function is operating on a nonempty context node so
 the function does not return an empty sequence for the wrong reason. By
 applying the exactly-one or one-or-more
 function to the node(s) at which you want to call an accumulator
 function, you can rule out an empty context node.

Notice that a single scenario can check the accumulator values at multiple
 nodes of the tree. You can even have a single scenario that checks accumulator
 values on multiple trees (such as $myv:tree and
 $myv:tree2 variables), though you might find it clearer to have
 a separate scenario for each tree.

Accumulator Expectations Within Scenarios Serving Other Purposes
As an alternative to creating dedicated test scenarios for accumulators, you
 can check accumulator values in test scenarios that primarily serve other
 purposes. You might choose this approach for any of these reasons:
	You find it natural or more maintainable to check the accumulator
 values near where you test the templates or functions that call
 accumulator-before or
 accumulator-after.

	The way you organize your XSpec scenarios is not meant to align with
 XSLT code units like templates and functions.

	Your bug-investigation process began with some existing scenario, and
 you see no urgency in refactoring the XSpec test code later.

	You want to avoid the unintuitive <x:call
 function="true"/> element in the prior example, Sample Dedicated XSpec Test for
 Accumulator, with run-as="import".

The next example illustrates a test for a template rule that also includes
 checking some expected values of an accumulator.
Figure 19: Sample XSpec Test for Template Rule and Accumulator, with
 run-as="import"

<x:scenario label="Tests for template rule for remark element">
 <x:variable name="myv:tree"
 href="../sample-xml/section-with-internal-content.xml"
 select="/"/>
 <!-- Check result for 1st remark in document -->
 <x:context select="($myv:tree//remark)[1]"/>
 <x:expect
 label="Result of the template rule contains text content"
 test="contains($x:result, 'Ready for release')"/>

 <!-- Checks for accumulator values do not rely on $x:result or the
 template rule code but can be included in this scenario if desired. -->
 <x:expect
 label="Accumulator: At 1st remark, 1 element name in stack"
 test="($myv:tree//remark)[1]/accumulator-before('internal-elem')"
 select="('remark')"/>
 <x:expect
 label="Accumulator: At subsection remark, 2 element names in stack"
 test="$myv:tree/section/section/remark/accumulator-before('internal-elem')"
 select="('remark', 'section')"/>
</x:scenario>

XSpec Test Running XSLT as External Transformation
When your XSpec test uses the nondefault run-as="external" option,
 the compiled test logic invokes the XSLT code you are testing as an external
 transformation. This mechanism has benefits, but a drawback is that your XSLT
 accumulators are not directly accessible in <x:expect> elements,
 while the standard accumulator functions are not directly accessible in
 <x:call>. You can still test the accumulators, however, and this
 section illustrates one design. The design works in the default
 run-as="import" situation, too, so you retain the flexibility to
 change run-as later without having to rewrite tests.
At a high level, the arrangement has these parts:
	An XSLT module that defines thin wrappers around the standard
 accumulator-before and accumulator-after
 functions.

	In your XSLT stylesheet, an instruction that imports the module containing
 wrapper functions.

	In your XSpec test file, a dedicated scenario (or descendant scenario of
 any depth) for each expected value you want to check for your accumulator.
 Each scenario uses <x:call> to call a wrapper function to
 retrieve an accumulator value.

Items 1 and 2 make the accumulator functions (indirectly) accessible during XSpec
 testing, while item 3 makes your accumulator accessible. Item 3 is less concise than
 the examples in XSpec Test Importing XSLT Under
 Test, but the underlying capabilities are analogous.
Note
If you prefer not to modify your production XSLT code, an alternative is to
 introduce a separate "test harness" XSLT file that includes your production XSLT
 code and imports the module containing wrapper functions. In XSpec, point the
 x:description/@stylesheet attribute to the test harness rather
 than your production XSLT code.

Figure 20: Architecture of XSpec and XSLT
[image:]

Figure 21: Wrapper Functions Around Standard Accumulator Functions

<xsl:transform xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:at="http://github.com/galtm/xslt-accumulator-tools"
 xmlns:fn="http://www.w3.org/2005/xpath-functions"
 exclude-result-prefixes="#all"
 version="3.0">

 <!-- Wrap fn:accumulator-before and fn:accumulator-after
 so they can be accessed from an XSpec external transformation
 using x:call. -->

 <xsl:function name="at:accumulator-before" visibility="public">
 <xsl:param name="context" as="node()?"/>
 <xsl:param name="name" as="xs:string"/>
 <!-- If data type of $context is "node()" then XSpec with run-as="import"
 cannot catch an empty context. So, allow "node?" and check for the
 empty case here. -->
 <xsl:if test="empty($context)">
 <xsl:sequence select="error(xs:QName('at:XPTY0004'),
 'An empty sequence is not allowed as the context of accumulator-before()')"/>
 </xsl:if>
 <xsl:sequence select="$context/fn:accumulator-before($name)"/>
 </xsl:function>

 <xsl:function name="at:accumulator-after" visibility="public">
 <xsl:param name="context" as="node()?"/>
 <xsl:param name="name" as="xs:string"/>
 <xsl:if test="empty($context)">
 <xsl:sequence select="error(xs:QName('at:XPTY0004'),
 'An empty sequence is not allowed as the context of accumulator-before()')"/>
 </xsl:if>
 <xsl:sequence select="$context/fn:accumulator-after($name)"/>
 </xsl:function>
</xsl:transform>

Figure 22: Importing Wrapper Functions in XSLT Code Under Test
Include the following import instruction in the XSLT stylesheet that XSpec
 points to, using an href path that fits your directory
 arrangement.

<!-- Wrapper functions make accumulator functions available
 to an external transformation in XSpec -->
<xsl:import href=".../xslt-accumulator-tools/accumulator-test-tools.xsl"/>

Figure 23: Sample XSpec Test for Accumulator, with run-as="external"

<x:description xmlns:x="http://www.jenitennison.com/xslt/xspec"
 xmlns:myv="my-xspec-variables"
 xmlns:at="http://github.com/galtm/xslt-accumulator-tools"
 stylesheet="../internal-elem-wrapperfcn.xsl"
 run-as="external">
 <x:scenario label="Values of internal-elem accumulator">
 <x:variable name="myv:tree"
 href="../sample-xml/section-with-internal-content.xml"
 select="/"/>
 <x:scenario label="Start of subsection remark">
 <x:call function="at:accumulator-before">
 <x:param select="$myv:tree/section/section/remark"/>
 <x:param select="'internal-elem'"/>
 </x:call>
 <x:expect label="2 element names in stack"
 select="('remark', 'section')"/>
 </x:scenario>
 <x:scenario label="End of subsection remark">
 <x:call function="at:accumulator-after">
 <x:param select="$myv:tree/section/section/remark"/>
 <x:param select="'internal-elem'"/>
 </x:call>
 <x:expect label="1 element name in stack"
 select="('section')"/>
 </x:scenario>
 <x:scenario label="End of document">
 <x:call function="at:accumulator-after">
 <x:param select="$myv:tree"/>
 <x:param select="'internal-elem'"/>
 </x:call>
 <x:expect label="Empty" select="()"/>
 </x:scenario>
 </x:scenario>
</x:description>

Relevant points of this sample test include the following:
	As in the examples in XSpec Test Importing
 XSLT Under Test, the scenario defines a tree with which you'd
 like the accumulator to associate data.

<x:variable name="myv:tree"
 href="../sample-xml/section-with-internal-content.xml"
 select="/"/>

	Each lowest-level scenario uses <x:call> to call a wrapper
 function, at:accumulator-before or
 at:accumulator-after. The first function parameter is the
 context node whose accumulator value you want to retrieve, and the second
 parameter is the name of the accumulator.

	The scenario has an <x:expect> element that checks the
 output of the specified accumulator function. The select
 attribute provides the expected value of the accumulator function at that
 context node. XSpec compares this expected value with the result of the
 <x:call> function call.

<x:expect label="2 internal-only elements in stack"
 select="('remark', 'section')"/>
If you prefer, you can omit the select attribute and write a
 Boolean expression in the test attribute, as in the following
 variation on the check for an empty sequence.

<x:expect label="Empty" test="empty($x:result)"/>
If the expected accumulator value is a node, you can provide it as content
 of the <x:expect> element instead of using the
 select attribute.

Conclusion
After reviewing distinctive characteristics of XSLT accumulators and looking at some
 examples, we explored several debugging and testing techniques for accumulators. The
 next table highlights some points of comparison among the techniques discussed. Notice
 that the short-term use cases vary, so it's helpful to be familiar with multiple
 techniques instead of only one.
Table I
Comparison of Debugging and Testing Techniques

	Approach	Additional Software Needed	Basic Procedure	Short-Term Use Case	Long-Term Benefit?
	Oxygen debugger	Oxygen (Syncro Soft)	Configure debugger, breakpoints, and XPath watch expressions; run
 transformation interactively; analyze interim states	Explore transformation behavior in various ways, including viewing selected
 values of accumulator	No
	Trace	Saxon PE or EE (Saxonica)	Set saxon:trace attribute; run transformation; analyze log	View values for entire tree	Maybe, if baseline logs are kept for later comparison
	Report	XSLT Accumulator Tools, from GitHub	Configure parameters; run transformation; analyze report	View values for entire tree	Maybe, if baseline reports are kept for later comparison
	XSLT messages	None	Insert message instructions in accumulator rules, templates, or functions;
 run transformation; analyze log	View selected values or identify which rules are being matched	Maybe
	XSpec tests	XSpec, from GitHub	Write test scenarios describing expected behavior; run test; check results
 and analyze failures, if any	View and verify selected values	Yes

Having more visibility into the data an XSLT accumulator associates with a tree should
 help XSLT/XSpec developers work with accumulators more successfully throughout the
 software development life cycle.

Bibliography
[E] "External Transformations," XSpec documentation, https://github.com/xspec/xspec/wiki/External-Transformation
[G] Galtman, Amanda, XSLT Accumulator Tools, https://github.com/galtm/xslt-accumulator-tools
[M] "Making a lookup structure from multiple documents," XSL-List – Open
 Forum on XSL, Mulberry Technologies, June 12, 2023, https://www.biglist.com/lists/lists.mulberrytech.com/xsl-list/archives/202306/msg00015.html
[S] "saxon:trace," Saxon Developer Guide, https://www.saxonica.com/html/documentation12/extensions/attributes/trace.html
[XSLT] XSL Transformations (XSLT) Version 3.0, https://www.w3.org/TR/xslt-30/
[XS] XSpec, https://github.com/xspec/xspec
[XW] "XPath Watch (XWatch) View," Oxygen XML Editor User Manual, https://www.oxygenxml.com/doc/versions/25.1/ug-editor/topics/debug-xwatch-view.html

[1] Also not useful is calling the accumulator-before or
 accumulator-after function within the XPath 3.1 field in the Oxygen toolbar in the non-debugging
 perspective. You'll get an error message about the function not being found,
 because it is available only within an XSLT transformation, not standalone
 XPath expressions.

Balisage: The Markup Conference

Accumulators in XSLT and XSpec
Developing, Debugging, and Testing XSLT 3 Accumulators
Amanda Galtman
<galtmana@proton.me>
Amanda Galtman is an independent XML software developer who contributes to the
 XSpec infrastructure and a couple of other open source projects. She writes
 about XSpec at https://medium.com/@xspectacles. Previously, she was an XML
 software developer at MathWorks.

Balisage: The Markup Conference

content/images/Galtman01-005.png
Node or Element

Document node start

ue,

Q

hanged or Document Start

<section >

<title >

Sample Title

</title>

<remark >

"remark”

Ready for release

</remark>

Q

<para >

Sample external content

“para~

<section condition="future">

"section”

<title >

Sample Subsection Title

</title>

<remark >

"remark”
"section’

For next year, maybe

</remark>

"section”

<para >

Additional content

ZJpara~

</section>

Q

</section>

‘Document node end

QO

content/images/Galtman01-004.png
Values of internal-elem Accumulator for Document
section-with-internal-content.xml

Document URL: ... /xslt-accumulator-tools/sample-acc/sample-xml/section-with-
internal-content.xml

Accumulator declaration URI:

-/xslt-accumulator-tools/sample-acc/internal-elem.xsl
¥ Declaration

<xsl:accumulator xmlns:

http://www.w3.0rg/2001/XMLSchena”
ttp://wwa.w3.0org/1999/XSL/Transform”

<xsl:accumulator-rule phas: remark | *[@condition="future']">
<I-- Start: Push element name on head of stack -->
<xsl:sequence select="(name(.), $value)"/>
</xsl:accumulator-rule>
<xsl:accumulator-rule phase="end" match="remark | *[@condition='future']">
<I-- End: Pop first item from stack -->
<xsl:sequence select="tail($value)"/>
</xsl:accumulator-rule>
</xsl:accumulator>

content/images/Galtman01-003.png
o
-

XWatch
Expression ~ Valve type Value
Jsection/section/remark text)/ accumulator-before('nternal-elem’) xs:string(2) “remark’, "section”
accumulstor-afer{internal-elem’) item()

xsisting remark

accumulator-before(internal-elem’)

“Type XPath expression’

content/images/Galtman01-002.png
1 <2xml version="1.0" encodin

2 <2acc-decl-uri ../internal-elem.xsl?>
3 <?acc-name internal-elem?>
47 <section>

5 <title>Sample Title</title>
6 | gremariopeady for release/remarky

7 <para>Sample external content</para>

8v <section condition="future">

9 <title>Sample Subsection Title</title>

10 <remark>For next year, maybe</remark>
1 <para>Additional content</para>

12 </section>

13 </section>

content/images/Galtman01-001.png
1 <2xml versios 0" encoding="UTF-8"2>

2vi<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform”

3 smlns:xs="http://www.w3.0org/2001/XMLSchema”
4 exclude-result-prefixes="fall"
5 version="3.0">
6 <xslimode use-accumulators="$all"/>
7] <xsl:accumulator name="internal-elem” as="xs:string*"
8 initial-value="()">
9 <xsl:accumulator-rule phase="start"
10 match="remark | *[@condition='future']">
1 <!-- Start: Push element name on head of stack —->
12 <xsl:sequence select="(name(.), $value)"/>
13 </xsl:accumulator-rule>
U~ <xsl:accumulator-rule phase="end"
15 match="remark | *[@condition='future']">
16 <l-- End: Pop first item from stack -->
17 <xsl:sequence select="tail($value)"/>
18 </xsl:accumulator-rule>
13 </xsl:accumulator>
20
o217 <xsl:template match="remark">
22 <xsl:apply-templates/>
23 </xsl:template>

24 |</xs1:stylesheet>

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Galtman01-006.svg

 Standard accumulator functions in XSLT 3.0

 XSpec file

 XSLT transform

 XSLT file with wrapper functions

 tests (x:description/@stylesheet)

 imports (xsl:import/@href)

 calls

 calls (x:call/@function)

