[image: Balisage logo]Balisage: The Markup Conference

Multiple String Comparison in XSLT with tan:collate()
Joel Kalvesmaki

Balisage: The Markup Conference 2022
August 1 - 5, 2022

Copyright Joel Kalvesmaki, released under a Creative Commons Attribution 4.0 International license

How to cite this paper
Kalvesmaki, Joel. "Multiple String Comparison in XSLT with tan:collate()." Presented at: Balisage: The Markup Conference 2022, Washington, DC, August 1 - 5, 2022.  In Proceedings of Balisage: The Markup Conference 2022. 
        Balisage Series on Markup Technologies vol. 27 (2022). https://doi.org/10.4242/BalisageVol27.Kalvesmaki01.

Abstract
In this article I introduce tan:collate(), an XSLT function for
                comparing three or more strings. Collated multiple string comparison is a difficult
                problem that merits experimentation with alternative methods.
                    tan:collate() approaches the task in three different ways. Two of
                those methods involve a sequence of pairwise comparisons, with each comparison
                grafted into a guide tree. The third method applies the distinctive staggered-sample
                approach of tan:diff() to multiple strings, to detect a common
                superskeleton, before attempting to refine results. This paper situates the problem
                of multiple string comparison in the context of textual criticism, proposes a
                general output format and test suite, and presents measured results for the quality
                and performance of tan:collate() against an example test suite.
                Released as part of an open-source function library, tan:collate()
                enables developers to incorporate robust text comparison directly into XSLT
                applications.



Balisage: The Markup Conference


      Multiple String Comparison in XSLT with tan:collate()

      
         Table of Contents

         
            	Title Page

            	Multiple String Difference

            	A Standardized Output for N-Way Text Difference Operations

            	Multiple String Difference (N-Way Diff) and Collation

            	The Three Approaches in tan:collate()

            	Building and Refining the Guide Tree

            	Testing tan:collate()

            	tan:collate() Quality and Performance Test Setup

            	tan:collate() Test Results
                  	Commonality Metric

                  	Superskeleton Metric

                  	Performance

               

            

            	tan:collate() Applied to Real Texts

            	Further Work

            	Conclusion

            	About the Author

         

      
   Multiple String Comparison in XSLT with tan:collate()

Multiple String Difference
In the 2021 Balisage Conference proceedings, I published a description of
                tan:diff(), an XSLT function that perform pairwise string
                comparison. [[kalvesmaki]] The restriction to two strings raises the
            question, could tan:diff() be applied to three or more versions? If so,
            how? The need for multiple-string comparison commonly arises, and a practical XSLT
            application would benefit a variety of endeavors.
	An editor may need to review changes in an article, blog, or book that has
                        gone through multiple revisions, from multiple hands.

	Computer programmers may want to assess many versions of the same code
                        base, to document when a particular bug was introduced. 

	A lawyer or forensic specialist may need to compare numerous versions of a
                        document to demonstrate instances of forgery or tampering.

	A publisher may want to evaluate the results of multiple optical character
                        recognition (OCR) passes on the same block of text, to determine an optimal
                        configuration.

	A textual scholar may want to compare dozens or hundreds of transcriptions
                        from different manuscript witnesses, to explore the phylogenetic
                        relationships between manuscripts, and create a stemma
                            codicum. 

	Biologists may want to compare DNA sequences as if textual differences, to
                        identify mutations and abnormalities between test samples.


Pairwise comparison of three versions of a text would result in three
            individual output trees. Four versions would result in six pairwise comparisons; five
            versions, in ten; six, in fifteen, and so forth (n versions results in (n × (n - 1)) / 2
            pairwise comparisons). There may be cases where dozens, hundreds, or thousands of
            versions need to be compared, in which case the burgeoning number of output trees is
            impossible to manage. To interpret and analyze so many versions, the data must be
            synthesized within a single tree structure.
The task requires attention to performance, because the number of possible pairwise
            difference operations grows exponentially with the number of versions. One could avoid
            this problem by simply arbitrarily choosing a sequence in which sequential pairwise
            comparisons should be integrated into a single output tree. But quality might suffer.
            The first pair that begins the result tree exerts a significant bias on the output.
            Every new pairwise comparison grafted into the result tree must conform to the contours
            of the first. One could attempt as a preliminary measure to assess the best sequence of
            the versions, but using what method or methods? The most obvious approach would be to
            fetch all possible pairwise comparisons, then sort them into an ideal sequence. But that
            sorting operation could be expensive on numerous files. Would any gains in quality be
            significant enough to justify the extra work? And what sorting method produces an
            optimal sequence? Does "optimal" have a clear meaning?
Multiple-string comparsion presents considerable challenges. In this paper I present
                tan:collate(), an XSLT 3.0 function that compares three or more
            strings. To my knowledge, it is the first function of its kind in the XSLT language.
            After presenting the problem, I discuss the output format and the methods used by
                tan:collate(). A test suite is proposed, to measure the performance and
            quality of the function, and results of tests on a sample suite are summarized. 

A Standardized Output for N-Way Text Difference Operations
We start with a series of texts, for example, "be gone", "beg one", and "bag bone". If
            each of these were compared pairwise with tan:diff(), we would get the
            following three output trees:

<diff>
   <common>be</common>
   <b>g</b>
   <common> </common>
   <a>g</a>
   <common>one</common>
</diff>

<diff>
   <common>b</common>
   <a>e</a>
   <b>a</b>
   <common>g </common>
   <b>b</b>
   <common>one</common>
</diff>

<diff>
   <common>b</common>
   <a>e</a>
   <b>ag</b>
   <common> </common>
   <a>g</a>
   <b>b</b>
   <common>one</common>
</diff>
We want those results to be combined into a single tree that allows us to see at a
            glance where all versions agree, and where they do not. Because an N-way difference
            output may involve hundreds or thousands of versions, keeping track of each version
            requires some kind of id system. Ids could be simply integers (see below) but the option
            to use more meaningful terms or phrases would be useful.
One further output requirement has to do with location. Strings to be compared will be
            of variable lengths, and shared passages will likely fall in different absolute
            positions in each text. In our example above, all three end in "one" but that substring
            occurs later in the third string than it does in the first two. Version-specific
            position may be an important feature for applications that process the output. Because
            that information is fetched by tan:collate() to assemble the output tree,
            it is retained in the output, rather than discarded.
The desired output, at the bare minimum, should be something like the
            following:

<collation>
   <c>
      <txt>b</txt>
      <wit ref="1" pos="1"/>
      <wit ref="2" pos="1"/>
      <wit ref="3" pos="1"/>
   </c>
   <u>
      <txt>e</txt>
      <wit ref="1" pos="2"/>
      <wit ref="2" pos="2"/>
   </u>
   <u>
      <txt>a</txt>
      <wit ref="3" pos="2"/>
   </u>
   <u>
      <txt>g</txt>
      <wit ref="2" pos="3"/>
      <wit ref="3" pos="3"/>
   </u>
   <c>
      <txt> </txt>
      <wit ref="1" pos="3"/>
      <wit ref="2" pos="4"/>
      <wit ref="3" pos="4"/>
   </c>
   <u>
      <txt>g</txt>
      <wit ref="1" pos="4"/>
   </u>
   <u>
      <txt>b</txt>
      <wit ref="3" pos="5"/>
   </u>
   <c>
      <txt>one</txt>
      <wit ref="1" pos="5"/>
      <wit ref="2" pos="5"/>
      <wit ref="3" pos="6"/>
   </c>
</collation>
In the tree above, <collation> specifies
            that it is the result of tan:collate(). Its content consists of individual
                <c>s, separated from each other by one or more <u>s.
                <c>, short for "common", represents text shared by all versions;
                <u>, for "unique" or "uncommon", represents defective text, i.e.,
            text found in some but not all versions.
Within each <c> and <u> is a single
                <txt> element, with the substring of text in question. It is
            followed by one or more <wit>s, specifying which versions attest to that
            particular substring. Within each <wit> the @ref specifies
            the version id; and @pos, an integer marking exactly the position of the
            substring in that version (starting with 1).
The tree has several advantages for further XML-based processing. Anyone can restore
            the text of any version with a simple XPath expression,
                tan:collation/*[tan:wit[@ref eq $my-id]]/tan:txt, where
                $my-id is the string id of the version desired. Other similar XPath
            operations may be useful. For example, tan:collation/(* except tan:u[every $i in
                tan:wit satisfies ($i/@ref = $ids-to-ignore)] would get rid of all defective
            readings from witnesses not of interest.
In tan:diff() output, the unique readings are ordered such that
                <a> always precedes <b> (if both are present). That
            order is arbitrary, more a convenience than a requirement, because string a is not
            necessarily chronologically prior to string b. The counterpart in
                tan:collate() output are sequences of one or more <u>s.
            But the order of <u>s is arbitrary, aside from the requirement that for
            any version, successive <u>s accurately preserve each version's text, in
            correct sequence. If, in the example above, versions 1, 2, and 3 had a codepoint where
            they all disagreed, there would be no guarantee that the three alternative readings will
            appear in a particular order. Although the output is an ordered tree, it really
            represents a directed acyclic graph, with adjacent <u>s representing
            unordered, alternative version-paths from one <c> to the next.
The output tree reflects the practices of textual criticism, the science of detecting
            the original reading behind manuscript variants. A textual editor takes various
            manuscript witnesses (hence the name of <wit>), assigns them a code or
            siglum, and uses those sigla to document editorial decisions. In the typical critical
            edition, the main text represents the reading attested to by most or all relevant
            manuscripts. Exceptions and editorial interventions are declared at the foot of the
            page, where the editor indicates via sigla any manuscripts that depart from the main
            text.
In the example below, taken from Bekker's 1831 edition of Aristotle's works, the first
            page specifies what manuscripts are signified by sigla A through H. The second page
            shows how the sigla are used at the bottom (here only manuscripts A-D), to explain
            tersely where individual manuscripts differ from the main text adopted by the
            editor.
[image: ]
[image: ]
The sigla system is useful for describing the genetic relationship between
            manuscripts. Editors may group manuscripts into families, or into families of families,
            assigning each family a siglum (normally in an alphabet or case distinct from what was
            used for individual manuscripts). Sigla can even be assigned to conjectures—manuscripts
            or families that lack any direct material evidence. Those manuscript and family
            sigla—extant or conjectural—can then be arranged to illustrate the scholar's
            reconstructed history of the text, by depicting the relationships in a stemmatic
            diagram. The following example shows Butler's stemma for the 5th-c. CE
                Historia Lausiaca.
[image: ]
The stemmatic relationship among versions will be an important backdrop for the
            discussion of tan:collate(), which was initially created to support textual
            scholarship. The function has been written with the assumption that the input strings
            descend from a common archetype, and that the user wishes the output to respect as much
            as possible that archetype.

Multiple String Difference (N-Way Diff) and Collation
tan:diff() was designed to compare two strings that shared some linear
            genetic relationship. One was a revision of the other, perhaps some steps removed. That
            assumption was especially important for the corruption test, to measure the accuracy and
            performance of the function. The corruption test was set up by first generating several
            natural language strings of lengths 100, 1000, 10,000, 100,000, and 1,000,000
            characters. For each string-length, a series of copies were made, each time with a
            random one percent of the codepoints changed to a character that did not exist in the
            original. Thus, the first copy had 1% of its codepoints corrupted, the next 2%, and so
            on, down to the one hundredth version, in which all the characters were changed to ones
            not found in the original. That controlled test suite made it possible to measure
            difference results precisely.
That test works fine for pairwise comparison. But with three or more versions of a
            text, one cannot assume that for any arbitrary pair of versions one version descends
            from the other. Like those textual scholars staring at a dozen or more manuscripts with
            many variations, we can assume nothing more than a general family relationship between
            the versions, i.e., that they likely descend from a common archetype.
Most functions or applications that perform N-way diff proceed seriatim. The input
            strings are placed in a sequence. The first two strings are diffed. One of the strings
            is treated as a bridge string and diffed against the third input string. At this point
            we have two diff outputs, and they must be merged together. Once that is done, we have
            what is termed the guide tree. From that guide tree a new bridge string is chosen and
            diffed against the next string, and those results are merged into the guide tree. The
            process continues until all strings have been diffed and merged into the guide tree for
            the final output.
In the seriatim approach, the first two strings exert an enormous influence upon the
            results, sometimes resulting in a suboptimal guide tree. Consider, for example an N-way
            string comparison that begins by comparing "XXabcde" with "fghijXX". That first
            alignment will set "XX" as the common anchor. But what if the next string to be compared
            is "abcdefghij"? The output will be fragmented, since the guide tree began with the "XX"
            as the primary anchor. The algorithm had no basis for thinking that "abcde" or "fghij"
            might provide a better foundation. Such a scenario can be avoided if one can first sort
            the input strings into an optimal sequence.
What is that ideal sequence? Similarity seems an obvious candidate. Such similarity is
            quantified in the default output of tan:diff() not according to Levenshtein
            distance but along the model of a Venn diagram. Given strings a and b, some number of
            codepoints are shared (ideally the longest common subsquence), some codepoints are
            unique to a, and some unique to b. Any N-way diff could also be presented as a Venn
            diagram of N circles. The example below depicts a three-way difference (the portion of
            shared commonality of 1,953 codepoints is intentionally diminished, to make the
            differences more visible).
[image: ]
Using the Venn diagram to choose an optimal order, we notice that the leftmost two
            circles cluster with each other, and the right one is the outlier. It would seem to make
            sense to start with the two versions on the left. And we would be right. But things can
            get complicated quickly. Consider the following example: 
[image: ]
In the 5-way Venn diagram above, pair A and C have the most in common, followed by the
            pair B and D. If we order the input strings based upon pairwise commonality, then we are
            likely to choose the sequence A, C, B, D, E. But another glance at the Venn diagram
            indicates that the two pairs of close versions are rather distant from each other, and
            that E is likely the best starting point. Although E does not have significant overlap
            with any single version, it has the least amount of unique text, and it encompasses not
            only the area where the other four agree but also all the passages where only three of
            them agree. E shares the most with the whole.
So we modify our principle of the optimal sequence and define commonality not in terms
            of pairs but in terms of the whole. Like textual scholars, we are searching for some
            archetype from which all the versions descend. We highly value clusters of common
            overlap, because they attest to the original string, the superskeleton of the textual
            corpus, if you will.[1]
A good collation algorithm should imitate, if possible, the other habits of textual
            editors. When a scholar first begins to edit a text, she or he finds all the relevant
            manuscripts, and then attempts to put them into families and then into a particular
            global order of priority. That task is called collation, and for good reason, because it
            is an act not merely of comparing but sorting, just as with other acts of collation.
            When anyone collates photocopies, or codepoints, or anything else, the primary goal is
            to sort the items. So too when creating critical editions: the goal of collation is to
            produce a sorted order of witnesses. String comparison is a means to that end. And it is
            only one of several means, joining other criteria such as provenance, scribal hands, and
            codicological data. Although string difference is taken into account, it is not pursued
            blindly. An old philological adage is, "Differences should be weighed, not counted."
            Background knowledge about, for example, the quality of the scribes may significantly
            affect how much weight a scholar ascribes to a particular difference, which in turn
            affects the priority assigned to a textual witness.
No algorithm should be expected to replicate the connoiseurship a scholar uses when
            weighing differences. On the other hand, every string difference algorithm should either
            require the user to determine the optimal sequence before launching the function, or
            else provide a surrogate sorting algorithm that ranks each string according to predicted
            shared commonality. Put another way, a good collation algorithm should prioritize the
            commonality shared among all versions. It should reveal the superskeleton.
Ideally, one could take all possible sequences, then evaluate them against each other.
            The result with the shortest cumulative text (in tan:collate()'s output,
            determined by string-length(string-join(tan:collation/*/ns:txt))) would be
            the preferred one. Such a process, of course, would impose a significant performance
            penalty. To take all possible sequences would expand the operation into factorial time,
            O(n!). A three-way collation would require six sequence comparisons. A four-way
            collation would require twenty-four of them; a five-way, one hundred twenty. And so
            forth.

The Three Approaches in tan:collate()
tan:collate() approaches the task of collated N-way diff in three
            different modes, here named naive, calculated commonality, and superskeleton. The core signature of the function is
                tan:collate($strings-to-collate as xs:string*, $string-labels as xs:string*,
                $detect-superskeleton as xs:boolean, $preoptimize-string-order as
            xs:boolean). The first two parameters are common to all three approaches, so our
            discussion here focuses on $detect-superskeleton and
                $preoptimize-string-order.
The first approach, naive, is to assume that the user
            has already preoptimized the order of the input. In this scenario,
                $detect-superskeleton is false and
                $preoptimize-string-order is false. The process applies seriatim
            pairwise comparisons. Strings 1 and 2 are diffed, and string 2 becomes the bridge
            string. The bridge is diffed against string 3. The two diff outputs are merged to form
            the core guide tree, and subsequent diffs are added. Additions occur by tracking the
            position of every string, and fragmenting both the result tree and the new diff input so
            that they can be merged. Details of this merge operation are complex. A basic outline is
            explained in the next section, but details go beyond the scope of this article. 
The clear advantage for the naive method is that the layer it adds to
                tan:diff() operates in linear time. But the user is responsible for
            creating the optimal sequence.
In the second approach, calculated commonality, each
            version is given a commonality score that determines the optimal order of the input. In
            this scenario, $detect-superskeleton is false and
                $preoptimize-string-order is true. The important difference from the
            naive mode is the preprocess. Every pair of input strings are passed through
                tan:diff(), and the commonality is measured according to the following
            formula: c / (c + (a + b)/2), where c is the full length of
            the common text, and a and b, the length of text that is
            unique to a and b. Each diff output, then, has a commonality factor between 0 and 1.0
            inclusive, where 1.0 represents no difference at all between the two versions. For each
            input version, the commonality score consists of the sum of its commonality score in
            every diff it participates in. The greater the total sum of commonality for a given
            version, the earlier it is placed in the sequence that informs the guide tree. In the
            case of the 5-way Venn depicted above, version E would be placed first, because the sum
            of its commonality with each of the other versions is greater than any other version's
            sum of commonality scores. The other versions follow according to their summed
            commonality score. That becomes the sequence in which versions are added to the master
            guide tree, built according to the same rules as followed in the naive mode. But the
            bridge string is not necessarily the most recent string added. Rather, it is the version
            in the guide tree that has the greatest amount of commonality with the incoming
            string.
The disadvantage of the calculated commonality approach is that it requires a full
            tableau of pairwise comparisons. The process is memory-consumptive, and because it adds
            a layer that operates in quadratic time it can be prohibitively expensive to run. But a
            clear advantage this method has over the naive one is that the bridge string can be more
            selectively chosen, for better results. If the third string has more commonality with
            the first string than the second, then the first string serves as a bridge, and the
            guide tree is smoother.
The third approach, superskeleton, the most unusual,
            attempts to detect the superskeleton of the input, applying the same principle of
            staggered samples used by tan:diff(). But the process is applied not
            pair-by-pair but to all versions, all at the same time. In this scenario
                $detect-superskeleton is true and
                $preoptimize-string-order is ignored. The heart of the underlying
            function, tan:diff(), is modified. Every sample that is drawn from the
            short string is looked for not merely in one string but in all the other strings. The
            modified tan:diff() places an anchor only where it can be found in every
            version. That anchor is expanded to the extent agreed upon by all the versions. The
            process is repeated on either side of the new anchor. If at any point an anchor of an
            acceptable minimum size cannot be found, the algorithm falls back to the calculated
            commonality mode.
In superskeleton mode, a threshold is observed, specifying the minimum size of a
            permitted match, to avoid frivolous anchors. By default, the value is the rounded
            logarithmic value of the shortest string length, which means that if the shortest string
            is ten characters or fewer the minimum is a match of length 1; up to one hundred
            characters, a minimum of length 2; up to one thousand characters, a minimum of length 3;
            and so forth. The value can be overridden through a global parameter.
When a match is found multiple times in at least one of the strings, an attempt is
            made to find the optimal match in each string. For each input string, the relative
            position of all matches are gathered into a sequence of decimals from 0 through 1,
            inclusive. The ensemble of decimal sequences are passed to
                tan:closest-cluster(), which considers all the possible sequences that
            could be created by selecting one item from each input sequence. The function returns
            one set that cumulatively closest of all possibilities, to establish an anchor and
            continue the superskeleton process. If each version has dozens of matches, then finding
            the closest cluster could be prohibitively expensive, and, from the point of view of the
            user, not worthwhile, because the prospective anchor may not be reliable. In those
            cases, the process continues to look for a match.
If the versions are very different from each other, superskeleton detection is likely
            to be ineffective. In such a scenario, where the superskeleton is very hard to detect or
            highly fragmented, tan:collate() falls back to the calculated commonality
            method. 
Further, the superskeleton method looks only for text shared by every witness, and
            does not look for majority readings that may attest to vestiges of a superskeleton.
            Those fragments are normally detected through the cleanup process, where blocks of
            adjacent <u>s are analyzed to refine the results, a cleanup process
            applied to all three modes of tan:collate() and described in the next
            section.
The superskeleton mode adds to tan:diff() a layer that runs in linear
            time, namely, the time required to match and expand every anchor. That benefit is
            applied only in passages where there are no changes in any of the versions. 

Building and Refining the Guide Tree
In the naive and calculated commonality approaches, tan:collate() must
            build a guide tree. Building that guide tree is somewhat complicated. It begins by
            converting each tan:diff() output into a tree that adheres to the
                tan:collate() format. The first pairwise comparison is the starting
            guide tree. Into it we must merge the second pairwise comparison. Common between the two
            comparisons is a bridge string.
To illustrate, we take three input strings, "abcdefgh", "abQRdeSTgh", and
            "abcQdSTefg". We will create a guide tree following this sequence, giving first priority
            to the difference between the first two strings, second priority to that between the
            last two strings, and ignoring the difference between the first and last strings.
The first two strings compared create the first diff, depicted below with gaps and
            colors to make the similarities and differences evident:
[image: ]
We see that there are points of commonality, separated by two clusters created by
            substitution. We then get the next diff, between strings 2 and 3:
[image: ]
This particular difference has no substitutions, only three insertions and two
            deletions. In comparing the two sets of differences, we see that merging them will
            require fragmentation of the starting guide tree. The common strings "de" and "gh" will
            need to be broken up, and the unique string "QR" will need to be broken as well. Because
            the second string is the bridge between the first two comparisons, its relative position
            determines where insertions are made, as illustrated here:
[image: ]
This becomes the new guide tree. In hindsight, we can observe that in prioritizing the
            comparison between strings 2 and 3 over that between strings 1 and 3, the "ST" match has
            also been prioritized, and disallowed the possibility that the better match might be
            between string 1 and string 3's "ef". If there were more versions to be collated, later
            discoveries may show the sequence to be flawed. Rather than looking back at every
            version to refine a new guide tree, we wait until all comparisons are made and the final
            guide tree is produced. At that point, we can review all the <u>s
            between <c>s and try to determine a more optimal alignment of the
            fragments.
The preceding description applies only to naive and calculated commonality modes. In
            contrast, the superskeleton mode's approach to the guide tree is quite simple. In fact,
            it has no guide tree. The algorithm uses staggered samples to detect all blocks of
            universally shared text, and anything in between those blocks is passed on to the
            calculated commonality mode.
In all three modes, the interim results will consist of a series of
                <c>s with intervening <u>s. Within an adjacent set
            of <u>s, there may be overlap across multiple witnesses, and the results
            could use refinement. They are treated like a miniature collation problem, and
            reassessed by passing the cluster of versions back through tan:collate() in
            calculated commonality mode. In such a localized re-collation, the original order of
            strings can be discarded and reassessed. The cleaned up results are considerably
            improved, because commonality is calculated afresh for the versions at that particular
            passage. In the example above, within the second cluster of unique readings, the
            fragments would be drawn into a new collation tree on the basis of a better string
            order: 3, 1, 2.[2] Because string 3 in this cluster has more in common with string 2 than
            string 1 does, string 3 will be the bridge. So "ef" will be aligned before any attempt
            is made to integrate string 2. The result is that "e" is marked as a shared character,
            an extra part of the superskeleton not evident in the interim results. The final output
            is illustrated here:
[image: ]

Testing tan:collate()
Any algorithm such as tan:collate() should be evaluated upon the basis of
            a robust test suite, both to assess the accuracy and quality of the output, and to
            measure the efficiency of the implementation.
The article on tan:diff() introduced what I called the corruption test,
            where ordinary text was incrementally corrupted. To facilitate measurement, a base text
            was drawn up in blocks of 100, 1000, 10,000, 100,000, and 1,000,000 characters, and each
            of those blocks was corrupted in increments of 1%. Corruption involved substitution of a
            character that was nowhere to be found in the original. A simple example of a
            ten-character string, "People, be", corrupted in increments of 10%, would be as
            follows:

People, be
PeoΔle, be
PeoΔle,Δbe
PΔoΔle,Δbe
PΔoΔleΔΔbe
PΔoΔleΔΔbΔ
ΔΔoΔleΔΔbΔ
ΔΔoΔleΔΔΔΔ
ΔΔoΔlΔΔΔΔΔ
ΔΔΔΔlΔΔΔΔΔ
ΔΔΔΔΔΔΔΔΔΔ
The test is controlled, artificial, and demanding. For any given
            level of corruption, it is possible to measure the output and determine if it is both
            accurate and of the highest quality. For example, comparing the original string to one
            that has 40% corruption should result exactly in 60% of the characters held in common,
            i.e., the longest common subsequence. In a string of 10 characters the problem is
            trivial, but in strings of 1M characters in length, achieving optimal results with
            non-trivial rates of corruption can be quite difficult.
For tan:collate(), however, the corruption test as originally framed is
            inadequate. We need a test suite that can handle three or more strings. And they cannot
            be part of a single line of dependency. As noted in the discussion above on textual
            scholarship, versions of the same text are represented as parts of a tree describing a
            line of descent. Any two versions are more likely to be cousins to each other than to
            stand in an ancestor-descendant relationship. Hence, in any comparable corruption test
            for tan:collate(), the comparanda must be independent of each other,
            without compromising the other virtues of the corruption test.
The strategy is to revise the corruption test so as to generate independent pairs of
            string comparanda. If that independence can be applied to two versions, the process can
            be generalized for three, four, or any number of versions.
We begin by thinking of the corruption test suite as the outcome of a kind of card
            game. We start with the ten-character string "People, be", and two players. Each player
            is assigned a special unique letter, not found in the input string and different from
            the other player's unique letter. A series of integers are generated, one for each
            position in the original string. These integers are the playing cards. They are shuffled
            and distributed to each player.
Table I
Two-player corruption test, setup

		Player 1	Player 2
	Unique character	Γ	Δ
	Position cards	1, 7, 4, 10, 9	6, 2, 3, 8, 5

The game consists of as many rounds as there are players. Each round comprises as many
            turns as the smallest number of cards initially dealt (in our example, round one has
            five turns). Therefore, a full game consists of as many turns as the total number of
            cards. But for practical reasons, as explained below, the last round is normally of
            little interest and no consequence. 
At round one, turn one, each player takes the first card in their hand, uses it to
            locate the position in the original string, and replaces that character with their
            unique letter.
Table II
Two-player corruption test, round one 

	Turn	Player 1	Player 2
	0	People, be	People, be
	1	Γeople, be	PeoplΔ, be
	2	ΓeopleΓ be	PΔoplΔ, be
	3	ΓeoΓleΓ be	PΔΔplΔ, be
	4	ΓeoΓleΓ bΓ	PΔΔplΔ,Δbe
	5	ΓeoΓleΓ ΓΓ	PΔΔpΔΔ,Δbe

In our primary example, at turn one, with a single substitution, each player is left
            with a version that is 10% corrupt, and the point of corruption is different from the
            one used by the other player. The same is true for all the other turns. By the fifth
            turn, every position in player 1's string differs from same position in player 2's. 
By setting up the process this way, we have created two independent lines of
            corruption. Any item in player 1's column can be compared to any item in player 2's, and
            we know precisely the measure of difference, because each player's hand of corrputible
            positions are mutually exclusive. Player 1, turn 1 is 10% corrupt from the original, and
            Player 2, turn 3 is 30%. If we compared those two strings against each other, we would
            expect a total 40% corruption and therefore 60% commonality.
In the context of two players, the exercise is uninteresting, because it can be
            reduced quite easily to the original model specified in the tan:diff()
            article. The extra steps are quite unnecessary for pairwise string comparison. But the
            rationale for this approach becomes clearer when we add a third player, i.e., anticipate
            three-way string comparison. Here is a sample setup:
Table III
Three-player corruption test, setup

		Player 1	Player 2	Player 3
	Unique character	Γ	Δ	Θ
	Position cards	1, 4, 10, 9	6, 2, 8	7, 3, 5

The first round would look like this:
Table IV
Two-player corruption test, round one

	Turn	Player 1	Player 2	Player 3
	0	People, be	People, be	People, be
	1	Γeople, be	PeoplΔ, be	PeopleΘ be
	2	ΓeoΓle, be	PΔoplΔ, be	PeΘpleΘ be
	3	ΓeoΓle, bΓ	PΔoplΔ,Δbe	PeΘpΘeΘ be

At the initial setup, player one was given an extra card. So at the end of the first
            round (turn three), that player still has a single unplayed card, 9. Thus, all three
            players preserve the ninth position of the original string intact. 
Before we move to the second round, notice that some of the principles in the
            two-player version are still at play. All three columns of strings are independent of
            each other. One string drawn from each player across different turns in round one could
            be the subject of a three-way string comparison, and we would know precisely what the
            results should be. If the three strings from turn one are drawn, we are dealing with an
            accumulated 30% corruption. To process them through tan:collate() we would
            expect 70% of the characters from the original string to be wrapped in
                <c>s. The rest will be in <u>s, and no
                <u>s will be shared by two players. If the length of common text is
            less than 70% we have suboptimal results. We may see a rate higher than 70% if we
            encounter fortuitous commonality (see below).
This example also helps illustrate the concept of the superskeleton, i.e., the parts
            of the original version that can be detected in multiple versions. Even after the third
            turn, the entire superskeleton can be seen, if we take into account text shared by most
            but not all versions.
We now prepare round two, turn four. Each player passes to the right all the cards
            that have already been played. Player 1 keeps the fourth, unplayed card, at the top of
            the new hand. All players play the fourth turn.
Table V
Three-player corruption test, round two, turn four

		Player 1	Player 2	Player 3
	new cards	9, 7, 3, 5	1, 4, 10	6, 2, 8
	turn 4	ΓeoΓle, ΓΓ	ΔΔoplΔ,Δbe	PeΘpΘΘΘ be

Now, each of the three versions have suffered 40% corruption from the original. If we
            were to perform a three-way string comparison, there would be no <c>
            text, only <u>s. The <u>s with more than one witness
            would be a vestige of the superskeleton. But it fades from view as more turns are
            taken:
Table VI
Three-player corruption test, round two continued

	Turn	Player 1	Player 2	Player 3
	5	ΓeoΓleΓ ΓΓ	ΔΔoΔlΔ,Δbe	PΘΘpΘΘΘ be
	6	ΓeΓΓleΓ ΓΓ	ΔΔoΔlΔ,ΔbΔ	PΘΘpΘΘΘ Θe

More turns could be taken, by once again passing cards to the right. But it is
            uncertain whether it is worth continuing the game. When there are no points of
            commonality, what are we looking for, exactly?
The exercise above could be expanded to four, five, and more players. The levels of
            corruption could be made more granular. The length of the initial input string could be
            adjusted. No matter how the parameters are adjusted, every test will be conducted using
            the same rules. The corruption level of each version can be calculated. The corruption
            levels can be summed, to determine how much commonality if any should be
            detected.
Given an arbitrary set of strings, one from each player, passed through
                tan:collate(), the results can be assessed based on two different
            measures: commonality and superskeleton.
Commonality measure. Based on the corruption levels
            in each input string, calculate the expected commonality. The algorithm should return in
            its <c>s the inverse percentage in codepoints. For example, if the
            corruption levels for five versions are 2%, 13%, 5%, 8%, and 10% then the total
            corruption is 38%. Consequently at least 62% of the original string or better should be
            retained in <c>s. Because of this requirement, a commonality test is
            meaningful only if at least one codepoint has not been corrupted.
The total corruption level does not consist of a simple sum of the individual
            corruption levels of each version, but rather a calculation as to which codepoints have
            and have not been corrupted. Consider, for example, three strings with 1%, 2%, and 70%
            corruption. Here the corruption level is not 73% but 70%, because the codepoints
            corrupted by the first two strings have also been corrupted by the third.
There may be cases where we get results better than expected because of fortuitous commonality. The phenomenon of fortuitous
            commonality appears so often, it is worth specially noting. Consider an original text of
            "eye," where the corruption process produces the following three strings to be compared:
            "%ye", "e*e" and "ey$". Because every position has been corrupted, these three versions
            have collectively a total 100% corruption rate, so one would expect 0% commonality. But
            because an e appears in all three versions, the detected commonality level is 33%.
            Fortuitous commonality is a common appearance in natural language texts, and was evident
            in the tests that were performed.
Superskeleton measure. Some <u>s
            attest to a majority reading, i.e., places where most witnesses attest to the same
            variant reading. The entire skeleton should be detectable as long as each position has
            not been changed by at least two players. However many players there are, the
            penultimate round begins with nearly every codepoint shared by exactly two versions, but
            the number of shared codepoints diminishes as the round unfolds. Thus, it is guaranteed
            that if every version comes from before the penultimate round, the entire superskeleton
            should be detectable through an XPath expression such as
                string-join($result/(tan:c | tan:u[tan:wit[2]])/tan:txt). An N-way
            difference algorithm should be graded as to whether its output can be used to extract a
            superskeleton that reflects the original input. A shorter superskeleton is symptomatic
            of fragmentation, and a deterioration in quality. A longer superskeleton may also
            reflect deterioration in quality, or (more likely) the occurrence of fortuitous
            commonality.
Although the test suite and the two metrics described above have been designed to test
            the performance and quality of tan:collate(), they can be used to
            independently test any collation algorithm. Readers do not need to access my test suite
            to verify results for themselves. The rules outlined above permits anyone to create
            their own test suite and apply it to tan:collate() or any other
            multiple-string differencing algorithm.
The test is admittedly artificial, but it is better than nothing. To my knowledge,
            there are no gold-standard data sets for N-way text differencing (i.e., a corpus of
            texts consisting of a known original and a library of descendant versions, corrupted by
            transmission that reflects natural cultural practices). The test is also artificially
            narrow, because it focuses exclusively on substitution, which is only one of several
            types of natural text changes. Ideally, it would be of immense benefit to develop
            comparable rules for at least four other types of test suites, one dealing with
            transposition, another with substantial insertions, another with substantial deletions,
            and another with duplication (haplography). 

tan:collate() Quality and Performance Test Setup
To test tan:collate(), several strings of length 100, 1,000, 10,000,
            100,000, and 1,000,000 characters were generated from natural language texts, in this
            case random portions of the King James Version of the Bible. For each string length,
            test suites were built for 3, 4, 5, and 6 players, as described above. The number of
            turns was limited to exactly 100, meaning that each turn represented 1% corruption. That
            means that for the smallest string, 100 characters, the game could be played exactly as
            described above, with one hundred cards distributed to the players, each card
            representing a single place to be corrupted. But for larger strings, a card was replaced
            with a card packet, representing a cluster of randomly permuted positions. Taking the
            1,000-character string as an example, the position numbers one through one thousand were
            shuffled, and instead of one hundred cards being distributed, one hundred packets of ten
            cards were distributed. All other rules remained the same.
A full test suite was generated for each scenario, e.g., 300 files for 3 players; 400
            files for 4 players, and so forth, for a total of 9,005 files (retaining the original
            five strings).
The primary goal was to measure the performance and quality of
                tan:collate(), not merely in itself, but across its three modes: naive,
            calculated commonality (CC), and superskeleton.
A simple XSLT file was created, to run tan:collate() according to the
            choice of strings (number, length, level of corruption), and the desired mode. The
            stylesheet ran tan:collate() and reported on the quality of results (the
            amount of common text, the length of the superskeleton), and alerted the user to any
            lost text. Thus, the calculated time reflected not merely the work of
                tan:collate() but some simple post-processing.
An ad hoc Java program was created, to control and time all the operations. Working
            through all possible permutations was unrealistic. For the three-player, 100-character
            length test suite, three million unique tests were possible (one hundred files per
            player, three modes). Any six-player test suite would have three trillion unique tests.
            To make the operation more tractable, a small but distributed number of corruption
            levels was assigned to each player, so that permuted combinations would reflect a wide
            range of corruption scenarios. Iterations were performed on player 1's corruption levels
            1, 2, 4, 8, 16, 32, 64; for player 2, through 1, 3, 9, 27, 81; and so on to player 6,
            where iterations were performed on corruption levels 1, 7, 49. Each combination was
            applied across all three different approaches, naive, highest-commonality, and
            superskeleton.
Although test suites were generated for texts of length 100K and 1M characters, they
            were not included in the results discussed below due to time constraints. I thought it
            more important to run thousands of tests with slight parameter changes on the three
            smallest sets of test suites rather than merely dozens of tests across all five test
            suite sizes. All tests were performed on a Dell Inspiron 5570 (Intel Core 1.6GHz
            i5-8250U with 4 physical and 8 logical cores), and allocated up to 4 GB of heap
            memory.
Before tests were executed, it was expected that the quality of the results would be
            equally high, across all three modes. Much of this expectation was shaped by the
            excellent results from tan:diff().
Similar considerations shaped my expectations for performance. As noted in the
            previous article, tan:diff() runs in logorithmic time, according to string
            length. Each of the three modes of tan:collate() add a layer surrouding the
            core tan:diff() application. I expected that the naive and superskeleton
            tests would be comparable, because each one appears to add on top of
                tan:diff() a layer that runs in linear time—given N input items, the
            naive approach must run and collate N copies of tan:diff(), and the
            superskeleton approach must check every matching sample N times before accepting it as
            an anchor. The CC mode was expected to run in quadratic time, because it must perform
                tan:diff() N × (N - 1)) / 2 times.

tan:collate() Test Results
Around forty thousand automated tests generated an enormous result data set, which
            tracked several properties. Below are summarized results, first concerning output
            quality (commonality metric and superskeleton metric), followed by performance results.[3]
It should be noted that across all the tests, every output of
                tan:collate() was double-checked against the input, to ensure that no
            text was lost, replaced, or inserted. Happily, that proved to be the case. So even in
            situations where the quality of the output was not optimal, the results were
            nevertheless accurate.
Commonality Metric
The commonality metric consists of the combined string length of all
                    tan:c/tan:txt nodes in the output, measured against the expected
                amount of commonality, calculated as 100 minus the total percentage of codepoint
                positions corrupted. The expected commonality metric was subtracted from the actual
                commonality metric. A result below zero was treated as a flawed result, because
                genuine commonality was being missed. The significance of results above zero were
                unclear. Fortuitious commonality (see above) was the only discernable explanation.
                Are such extra matches to be treated as desirable or not? To some, they may be taken
                as clutter or noise that should be avoided. To others, the chance matches may be
                heuristic devices, helpful for recovering a lost original. To acccommodate multiple,
                legitimate perspectives, I treated any test as zero or above as a success, and any
                below zero as a failure.
Across the tens of thousands of tests run, 13.9% of them resulted in failures. No
                individual cases of failed tests were studied, to determine the cause. When
                assessing the results, my primary goal was to discern trends, not to interpret
                individual scores. 
Failed tests occurred more frequently in tests of shorter length, occurring more
                than twice as often in tests of length 100 than in tests of length 1000. Failed
                tests were quite rare in tests of length 10K (0.2%). 
Within tests of length 100, the number of failed tests tended to double or triple
                with the addition of a new player. But in tests of length 1000, the number of failed
                tests for three players was greater than the number for four players. But the
                addition of a fifth then sixth player each time increased the failure rate seven- or
                eightfold. The reasons for this trend are unclear. 
Failed tests appeared to be relatively evenly distributed across the corruption
                rate, at least in tests of length 100. In tests of length 1000, those failures
                tended to cluster at the low and high levels of corruption. The reasons for this
                trend, as well, are unclear.
Failed tests were somewhat higher (roughly 30%) in the naive mode than the other
                two modes, but only in tests of length 100. In tests of length 1000, nearly 40% of
                the failures occurred in superskeleton mode, followed by naive mode (35%) and CC
                mode (25%). Whether mode significantly affects the commonality metric needs further
                study.
Turning from failed tests to successful ones, I found that an increase in the
                expected quantity of commonality was significantly influenced by text length. Tests
                of length 100 resulted in an average commonality level of 1.7; those of length 1000,
                15.9; and those of length 10K, 21.3.
Figure 1: Average difference of actual versus expected commonality levels of three
                    modes, by text length
[image: ]


Another significant influence on extra commonality applied to corruption level.
                Generally speaking, tests with the lowest and highest cumulative corruption had the
                commonality results closest to zero. From 0% corruption through 100%, the amount of
                commonality rose, then fell, forming a gentle symmetrical sine arc.
Figure 2: Average difference of actual versus expected commonality levels of three
                    modes, by cumulative corruption rate
[image: ]


Curiously, the superskeleton mode tended to capture the greatest amount of
                fortuitous commonality in sets with a corruption level of 40% or lower, but at
                corruption levels greater than 50% the mode's commonality score dropped below that
                of the other two modes. Generally speaking, the CC mode yielded 5% to 10% better
                commonality than did the naive mode. That is to be expected, since the CC mode
                attempts to maximize commonality by assessing every pairwise diff before proceeding.
                But the behavior of the superskeleton results was unexpected, and cannot, at the
                moment, be explained.
Also unusual was how commonality differed according to the number of players. In
                tests of length 100, the extra amount of commonality improved as players were added.
                But in tests of length 1000 and 10K, the story was different. The commonality
                results for four players was remarkably higher than it was the other three, going as
                high as 27% over the expected commonality. It is unclear why four players produced
                abnormally high commonality rates.
Figure 3: Average difference of actual versus expected commonality levels of three
                    modes, by number of players and text length
[image: ]


Overall, the commonality metric results were somewhat surprising. A significant
                portion of especially smaller, high-version input resulted in a decline in the
                optimal commonality. For tests that succeeded, fluctuations in the scores, due to
                fortuitous commonality, were easy to observe but hard to explain.

Superskeleton Metric
The superskeleton was detected by joining the string values of all (tan:c |
                    tan:u[tan:wit[2]])/tan:txt nodes in the output. Ideally that new string
                should be identical to the original archetype from which all the other versions
                descend. The length of the detected superskeleton was taken as a qualitative measure
                of the algorithm's output. A shorter superskeleton would result from its
                fragmentation into separate <u>s with a single witness. A longer
                superskeleton would result either from fortuitous commonality between multiple
                versions, or, in the case of five players or more, fragmentation of a part of the
                superskeleton into multiple <u>s with multiple witnesses. Because a
                low superskeleton score was the result purely of fragmentation, I considered it to
                be undesirable and therefore a failure. But because a high superskeleton score was
                the result of either fortuitous commonality or fragmentation, I regarded it as only
                possibly problematic.
Overall, 16% of the tests resulted in detected superskeletons shorter than the
                ideal length—failures. The majority resulted in larger-than-expected superskeletons,
                resulting in superskeletons whose lengths on average increased by 3.6%, 8.0%, and
                3.1% for tests of length 100, 1000, and 10K respectively.
Figure 4: Average difference of actual versus expected superskeleton length of three
                    modes, by text length
[image: ]


Generally speaking, negative superskeleton scores occurred most frequently in
                tests of length 10K, increasing with frequency and intensity as the corruption level
                intensified. The naive mode tended to exaggerate the length of the superskeleton.
Figure 5: Average difference of actual versus expected superskeleton length of three
                    modes, by cumulative corruption rate
[image: ]


Negative results also tended to correlate with the number of players. In tests
                with three players the superskeleton measure was almost always negative. Tests with
                four players commonly approached the expected length until corruption reached 50%,
                at which point the superskeleton length began to decline significantly.
                Superskeleton length was almost always positive for tests of 5 and 6 players, with
                5-player tests averaging 3.9% increase and 6-player tests, 9.0%.
Figure 6: Average difference of actual versus expected superskeleton length of three
                    modes, by number of players and text length
[image: ]


Results differed mode by mode. The superskeleton mode, with an average 3.5%
                increase, tended to come closest to the ideal length, followed by CC (4.0%) and
                naive (6.1%).
Overall, the results were somewhat surprising. Before the tests were run, it was
                hoped that tan:collate() would be able to reproduce the original text
                by means of the superskeleton. That happened only when the texts were short and had
                a low level of aggregate corruption. In general, the superskeleton mode did a better
                job overall of preserving the length of the original archetype. But those
                observations should be treated as preliminary. Other trends associated with the
                superskeleton metric cannot be easily explained, and require further
                research.

Performance
Because of the number of variables, I found that I needed to study performance
                from different perspectives. Below are several summaries of the trends, each one
                approaching the same data set, but from a different primary quality.
Performance across text length. Across all mode
                and player options, tests of length 100 took an average of 154.1 ms. Tests of length
                1000 required an average 1,187.1 ms. Tests of length 10K required an average of
                21,594.1 ms. Much of this steep increase was exacerbated by the CC mode, as it took
                on increased text lengths and player counts. From the 100-length tests to the
                1000-length ones, the CC mode time increased only eight- or ninefold (the more
                players the steeper the increase). But from the 1000-length tests to the 10K-length
                ones, the CC mode time increased on average 20-fold. Such a steep increase made
                analysis of the CC mode across 100K- and 1M-length tests not tractable, at least not
                with the same density of test cases. 
Figure 7: Average test speed in milliseconds of three modes, by number of players and
                    text length
[image: ]


Performance across modes. Across the modes naive,
                CC, and superskeleton, tests of length 100 averaged, respectively, 142.4, 199.9, and
                120.1 ms. At tests of length 1000, the averages were 1,054.1, 1,713.1, and 794.1 ms,
                respectively. In the 10K-length tests the averages were 16,765.2, 40,022.4, and
                7,975.9 ms, respectively. Clearly, the CC mode took the longest time to perform. The
                naive mode generally took less than half the time of the CC mode. But the
                superskeleton mode cut the naive mode's time nearly in half. This performance gain
                increased as the text length increased. As noted above, under text length, by the
                statistics earlier in this paragraph, the CC mode was clearly working in quadratic
                time, as expected. The naive mode, however, appeared to demonstrate a time
                complexity greater than linear. From 100- to 1000-length tests time needed increased
                sevenfold. But the move from 1000- to 10K-length tests imposed a sixteenfold
                increase in speed. That gradually increasing time penalty in naive mode is likely
                due to the work required to build the result tree. By contrast, the superskeleton
                mode, which does not build a result tree, stayed relatively close to linear time.
                From 100- to 1000-length tests, the time needed increased sevenfold. But the move
                from 1000- to 10K-length tests imposed only a tenfold increase in speed. 
Performance across number of players. As might be
                expected, an increase in players required greater processing time. Across all modes,
                string lengths, and corruption levels, the addition of a new player imposed anywhere
                from a 22% to 80% performance increase, usually around 40%. A higher performance
                penalty appeared to happen in the CC mode, but that seemed to be the only factor
                that exacerbated the effect of the addition of new players. As text length
                increased, or as the corruption rate increased, the amount of time required with the
                addition of an extra player did not vary significantly.
Performance across levels of corruption. In
                    tan:diff(), performance was significantly affected by the amount of
                corruption, represented in the graph by a gentle sine wave, with the maximum time
                peaking around the 50% to 70% level of corruption. In tan:collate(),
                however, the data followed a different pattern. In tests of length 100, the
                processing time required grew slowly but in linear fashion according to the amount
                of complexity. In tests of length 1000, the plotted curve looked more like a lazy
                half-parabola, with a steep rise in rates at low level of corruption, slowing as
                corruption increased. Tests of length 10K exhibited a tighter parabola, but at
                levels of corruption 65% and greater the graph exhibited erratic behavior, with
                levels of 99% corruption being quite time-consuming to assess. That behavior was
                most pronounced in the CC mode. The superskeleton mode had little variance in
                performance across levels of corruption, averaging 8,132 ms per operation (5,702 for
                three players, 9,142 for six).
Figure 8: Average test speed in milliseconds of three modes, by cumulative corruption
                    level (only texts length 10K, any number of players)
[image: ]


Overall considerations on performance. Anyone
                using tan:collate() in demanding environments should be aware of the
                factors that may affect system performance. The number of versions has a
                predictable, smooth effect, as does the amount of corruption. The lengths of the
                input strings are highly significant performance factors, but that effect is
                exacerbated by the most important factor of all, the mode. The calculated
                commonality (CC) mode performed the worst, and superskeleton the best. Because
                results of qualitative scores of the modes are inconclusive, it is not necessarily
                clear that the superskeleton is always the most desirable. But because, on balance,
                the superskeleton mode seems not to introduce any deterioriation in quality compared
                to the other two modes, and because it is clearly the best performing, it is set as
                the default mode in tan:collate().


tan:collate() Applied to Real Texts
tan:collate() has been applied in numerous real-world contexts, and has
            easily handled high-volume, complex work. The corruption test results should already
            give the reader a sense of performance on relatively small texts. So let us consider a
            real-world stress case, on very long texts, of numerous versions, that would pose a
            challenge in production.
For my example, as in the paper on tan:diff(), I took an arbitrary volume
            from the Code of Federal Regulations (title 7, volume 1), and applied
                tan:collate() to the XML files that were published in different years
            (available for download at http://govinfo.gov).
Taking the plain string value of each file (without any normalization, including
            spacing), the string lengths were as follows:
Table VII
Code of Federal Regulations, title 7, volume 1, string length of XML files

	Year	String length
	2021	3,290,256
	2020	2,616,953
	2019	2,620,171
	2018	2,766,855
	2017	2,547,263
	2016	2,535,163

Using the latest versions as the starting point, these strings were fed through
                tan:collate(), as three-, four-, five-, and six-way comparisons, across
            the three different modes. The results are quite informative.
Table VIII
tan:collate() performance of comparison of different versions of the Code of Federal Regulations, title 7, volume 1

			Mode performance (seconds)
	Years compared	Version count	Naive 	CC	Superskeleton 
	2019-2021	3	70.3	145.6	75.4
	2018-2021	4	163.7	530.5	134.3
	2017-2021	5	259.9	531.3	160.9
	2016-2021	6	277.2	727.0	186.0

On the six-way test, the calculated commonality mode required more than twelve minutes
            to complete. The superskeleton mode, in contrast, needed slightly more than three
            minutes. 
A study of the output of each of the scenarios was not conducted. In my experience, an
            assessment of the quality of output requires the connoisseurship of a person familiar
            with the material, and knowledgeable as to how the texts should be related. We should
            follow the textual scholar's adage: differences should be weighed, not counted. Because
                tan:collate() can only count, not weigh, its quantitative results are
            not the litmus test for quality. But because the function, as well as its dependency
                tan:diff(), have so many parameters for adjustment, the experienced
            user may find the resources needed to properly weigh the differences.
Equally important in the real world are the interpretations of our comparisons. As a
            core part of the TAN function library, tan:collate() drives a number of
            processes, the most important being TAN Diff+, an XSLT application that infuses
                tan:collate() results with statistical analysis and presents the output
            in a dynamic, interactive HTML display. 
Below is a fragment of a sample output (original here) from TAN Diff+, showing how well four different OCR outputs
            matched the ground truth original, of a Greek text:
[image: ]

Further Work
The commonality metric requires further study. Why suboptimal results happen so
            frequently, and in unexpected patterns, deserves close study.
Although the corruption test suite has been useful, it should be taken as the
            beginning of a general effort to provide project-independent benchmarks in the field of
            text comparison. Highly desirable is a set of gold-standard test data. For example,
            critical editions could be disassembled and simplified, one transcription per
            manuscript, and the edition itself turned into a simplified version of what would be
            expected from a collation of the input versions. That last item may require annotations
            documenting the rationale that motivated the editors' choices.
The corruption tests are all substitution-based. Comparable tests for insertions,
            deletions, transpositions, and duplication, would be essential to develop, if one wished
            a more holistic, realistic method of testing the quality and performance of a
            text-comparison algorithm.
Transposition needs further study. Very commonly editors and writers move a passage of
            significant length from one part of a text to another. It may then be further modified.
            Or broken up by or intermingled with other transpositions. Transposition detection may
            be of significant benefit to any collation algorithm. If a particular passage is
            littered with small clumps of matches and many passages of distinct readings, perhaps a
            transposition would be easier and faster to detect than trying to find an optimal
            alignment. But this raises an even more complex question. In a pairwise string
            comparison, a transposition might be easy to express. But in N-way string comparison,
            how should transposition be detected and communicated?
Both tan:diff() and tan:collate() happen to have been first
            implemented in XSLT, due to the pressing need, and the near-impossibility of applying
            traditional, stateful solutions. But nothing prevents the algorithms behind these
            functions from being implemented in other languages. Doing so would be highly desirable,
            since TAN's staggered-sample approach (I am still unaware of any precedent) improves on
            the traditional algorithm, turning a quadratic time operation into a logarithmic
            one.

Conclusion
Despite remaining puzzles and challenges, tan:collate() provides an
            efficient, robust, accurate way to perform sorted N-way string comparison. The quality
            of the output is quite high, and always accurate. Its novel approach to string
            comparison, using staggered samples across all versions of the input, provides a
            tremendous benefit in performance. It has been used in production environments to
            support a wide range of practical applications. As part of the open-source TAN function
            library, tan:collate() enables developers to incorporate robust text
            comparison directly into XSLT applications.

Bibliography
[kalvesmaki] Kalvesmaki, Joel. “String Comparison in XSLT with
            tan:diff().” Presented at Balisage: The Markup Conference 2021, Washington, DC, August 2
            - 6, 2021. In Proceedings of Balisage: The Markup Conference
                2021. Balisage Series on Markup Technologies, vol. 26 (2021). doi:https://doi.org/10.4242/BalisageVol26.Kalvesmaki01.



[1] Unfortunately, this example is artificial. The Venn diagrams above presume
                    texts in stasis, and present a global view of the versions. But in the real
                    world, many textual versions change as the text proceeds, sometimes approaching
                    the whole, other times drifting away. Malleable commonality regularly features
                    in historical texts, but will not be dealt with in this article.
[2] Diff output commonality measures for "ef", "eST", and "STef" (the largest
                    block of differences in the example above): 1 vs 2: commonality 0.4; 1 vs 3:
                    commonality 0.67; 2 vs 3: commonality 0.571. Thus, string 1 has a sum 1.07
                    commonality; string 2, 0.97; string 3, 1.23. Hence the new order, 3, 1,
                    2.
[3] Results of corruption levels 97-99% were omitted, as they tended to produce
                    results that were significant outliers in quality and performance
                    metrics.

Balisage: The Markup Conference

Multiple String Comparison in XSLT with tan:collate()
Joel Kalvesmaki
Joel Kalvesmaki is a software developer for the Government Publishing Office,
                    founder and director of the Text Alignment Network, and a scholar specializing
                    in the study of early Christianity.



Balisage: The Markup Conference

content/images/Kalvesmaki01-003.png
PEDIGREE.
Palladiys (420)

(archetype of G text )

Sozomen (450)

~

.\

Syriac fragm.

800t Vita Evagei

800

1000 ...

1200

1400

(remodelling of later
‘portion of book )

~.

‘6 § NOLLONAOULNL

x|





content/images/Kalvesmaki01-002.png
ok : SIS S et

,uwvup.n. ?xvyenu v nvn,un [Lav‘
Todvouin’ Myo s odrias sfspa;, Shoy LGov' § 7 lv@pm— nﬂ,uevw w s;x L2 \[mxn, K umxﬂfufm 3: )E‘ys'rm
s xal 78 Jys-ypupp,e’vuy < rdifriy 'yrzp biopa /uzvav xmvnv, s 7,mmmnm1; T YTl u-zruxsw.s’vw il e b

5% xamd -rwv:,uz Myo; s obelas sﬂpu;' u.v ‘ydp uﬂraxew{w s )\zyrml, ofoy -5 -n; uv&pmro; wal 6 -x;

: L N 34103 PR "y
xoidy, o 3‘§ a7l ?\sﬂ/rm( xal & Dmoneyiery b, ofov A émgun & dmo-

w5 dwoddy =l dor adily Enardoy e, Dov's Frmos: S 'yu.p Tidy Toudwy. odre b wrumx/»syw b u‘rf
Snardpou Aoy drodidre wal) Soneidion” Mymu. dmnis 8 wa
Bropu nowdv x5 ward odvope Ndyos s obohas ¢ adrds, uptgfl.ld e bdeds uaraxs:,um Séyeral, & wmzwem a
olov: (on ‘e dbpurmes. wal 6 B 6 &p ‘li'épm&s wal i SO wuoder it oyl ms ypapizon T &
& Bl nond: véuam ’tpaﬁ'd/yupsvﬂm tamv, wal-4 Myo; & xepdi: uéy dery xal’ uxaxa,u,m:}s sa‘fvo; Ayeral) (=

i adulas b adels” & ydp duwedidf ms ‘wv mwnpuu 10 ."Oray Frepoy xad’ évépy mnyapvmx ds hall 0= 3
Kyory 5l domw ‘adedy Exardpy 70 Emw o, T adToy nzl//.zm, Yra nard 7% m‘myapﬁpl-t’vx )\z'yn'ou, Ty wal

Abryov uara«hnx ) rqum,ua. & As-/mu Yo dmd ﬂvu; Sa~ xwra. £ umxn,us’m pmbiirerar, “ofox mﬁpwra; nwm T 74

wm/z.u il By

4>Epawm o wrdbois T nardwobopa wpowyapmv exs:, v3s, dnlpimy wavrnyopetran, 7d 0% (Gov wavmd B dolpime
oloy “dws s -ypa/;/m-rmm ¢ ypuy,pa.-rma; ek il ol wdl ard wo6 sl az;'@ph;m: mn}y'ﬁpn%rmi 7
didpelas 6 av&psm;. e 25 Ewoy' 6 wp s dolbptomos wall uv&pwm; ésil *al va.
9+ T Aeyouduy 7d [A.éy Rad a'u;/.arhaum )\s-yn'ew, @ O I-Tdy E‘IEFOVEVMV xal w7 u)\}awz nm'y/;.svwv fre-
& dyev- o FNORNG. D T MY VOV RATE v*umr}xom]v ofov par 76 s"&sx xat ai B‘mu#apm, ooy wa el E‘lﬂg‘r)’/,n;'

uyﬁpwm, wpxet, avbpumos v Ta- & dvew. tru/ur)\axns Lo fLW 'yu,a Saopal 78 7 weld nak 73 &xw #ak 10
mv mﬁpwn;, {iau;, wpdget s vind:
S Téw byl ,uiv “waf umnn‘ulm Tds )\fyz-ml m&mp{pn nn;n,un e-n;n;m; 7 Jnrau; eliar. 7l OF ofe

3 Y kal 70 svué)av, sm;-q,un; o x&/mu T ol ap

Smoreyuéig Ok Yol ési; dlbv-dvipwrmos waf Smonegidy O a,»\vp\cc 'ysvwv Y, xwnderras adrds &u(pnpu,; el

Wb xéyeras 78 1w dvbpdmy, i é Smoneyudv % $ded t510 7d ywp v Tl 7 adrd */sywv xwmyupnmz, f.y’;z
b i sl s iy oy 8 bk St 5 sameybes il i, oo
Nyezar (& Smoneubiy O Mywy § & o pa ds pépos  Smoneyud Erovan P (3
Smdpxer ddron upls ean'rol &G k)i ofoy A Tl Mo ward p.-qd‘s,u.w.v a'u,uw)\amqv Aeya,u.cvwv Basor w-ru 4

. W E o "
Apappuaied & Smoxeudiy. pd bt af s wal Smo- Solay oupaber A wordy-a woudy §.wpls A ab h wort
L san N o L v I IR Y N Ny s gy e
weypéys O 8005 Néyeran, xal T0-Th Neurdy & dmoxepdiy  xeirbued Exey 4 moel A wmdoyer. Foi 0¥ drla: pdv s
AT, ) S iy o . - :
by 78 cdpari icw (dman ' yap. xpipa & cupan), kel timy eimed olov dvfpumos, frmst wosty OF olov wnx,
. MEWT R AR S / G i B 7 PRy
UTOREYAENS O CUOENDS AefeTdt’ T OF. xot Umoxeywérs Te  Tpimyy(u’ woloy Of 010V DEUXGY, YPoAMATIXGY® Tpos Tb OE

S Ondipaa Organi. 4BC, et ¢ ubi deficit, D. SO I ey g iy | --
Tit. wamgyeson el v bt et fuin €.l 2. m,.; posl dhcias pomt c. «l Aot B. u 9. om AC. W1, b
whop. i €. 1|28, GhorlssBe L e .
—aa iadhes Tin om\EC. I 7o Smoxesuéni ,m Adyeras il 8. wudde abvdr-ehas C. Il 9. p.iv om Bt pr A0 xa.a' —M-,Em om
PO B. 1 42 oy frilpurees pr o ) i om: o I 4dioss Laorsnwsmiopebisesas €. I 48, dagopad lov. 5 BC. | 55 70 oy
T xad v &m k- Idpor. Ay 76 Te immdecnalwN kb 1 Bidon wab:zd i Gy I 29, sl om prde s iniis 4
A






content/images/Kalvesmaki01-005.png
ﬁ&
!





content/images/Kalvesmaki01-004.png





content/images/Kalvesmaki01-007.png
&=
o]

=
v
=
oo
M

© ©





content/images/Kalvesmaki01-006.png





content/images/Kalvesmaki01-009.png





content/images/Kalvesmaki01-008.png
/

ablc\ EI\ \¢ /"
a 1(1gh
a blc|a d\STefg\





content/images/Kalvesmaki01-001.png
. PRAEFATIO.

Academia Berolinensis cum FRIDERICO SCHLEIERMACHERO auctore consilium ce-
pisset Aristotelis ex diutino situ excitandi navaquc editione celebrandi, opetae
pretium se non facturam videbat, nisi plures quam adhuc manassent et uberiores
lectionis Aristotelicac fontes aperirét; quin perquucndas essc quotquot paterent
bibliothecas, eruendumque si:.quid in libris manuscriptis rei bene gerendae utile
actatem tulisset. id quibus datum est negotium, IMMANUEL BEkKERUS et CHRISTIA-
~Nus AuGusTus BRANDIS in pcllustrandls Italiae Galliae Britanniac copiis litterariis
plus quam triennium consumpserunt, multam 11[1 qquLm multomm experti bene-
volentiam, sed a nemine aut amantius aut utilius quam a' NIEBUHRIO adiuti. iidem
reduces, quod supererat operae, ita inter se pzujtiti:sunt ut alter opes criticas ad
emendandum scriptorem conferret, alter, quae,ad recte intelligendum facerent, ex
commentariis Graccis cum editis tum etiam ineditis excerperet. prodit iam i)ars
a BEKKERO accurata: subsequetur scholiorum volumen. de: codicibus autem donec
commodiore loco pluribus verbis exponatur,” eorum’ qui textui conformando inser-

vierunt infra positae sunt notae.

codex Urbinas 35.-
Marcianus 201. .
Coislinianus .330.
Coislinianus -170.

Parisiensis. Regius 1853.
Laurentianus 87- 7.

Laurentianus 87 .6: .
Vaticanus 1027.. 1. i -

DINSAFA

B






content/images/Kalvesmaki01-014.png
e+ 1-naive

e 3- superskeleton

25%
20%
15%
10%





content/images/Kalvesmaki01-013.png
12%

10%
8%
% e+ 1-naive

- = 2- calc.comm.
a% i 3- superskeleton
2%
%

100 1000 10000





content/images/Kalvesmaki01-016.png
80,000
70,000
60,000
50,000
40,000
30,000
20,000

10,000

Modeame v

e+ 1-naive
=~ = 2-calc. comm.

i 3 - superskeleton





content/images/Kalvesmaki01-015.png
25%

e+ 1-naive

~ @~ 2-calc.comm.

e 3 superskeleton






content/images/Kalvesmaki01-018.png
niki-3-abbyy

The distance from nikl=3-abbyy to hikl-5-tess-Kalil is 716 (363 characters deleted and 353 inserted). Intermediate version
deleted 4 characters that were restored by nikl=5-tessSkaly. Nixed insertions: - (2). 1 (1), B (1). 7 (1), fiv (1). 1 (1). T(1). 0
progress was 655 (91.5%).

*To show more accurately the differences between the three versions, the proportionate size of the central common sectic
another.

Comparison

1

jeppéms [dofvorpomifij)
i Al*baﬂoe Modyet n.aotorpugnbeions pifiobf]

INMNjwiro: Buavriov gulocogov

GV b s G < b topydvie Tiviav Iy cov il 6ecf s
5 pkeoTata] (lm},s xwymgmya &yeBog weofil] WEHTplafe
6 nepropiCery o o11c80 16| napéray. | AP <ol
7 Bowpdlery nnpamngmu ] 10] Frinie
L emwm@]ﬁ iprovoa ovtov 8 EH
éepaoe] T olohe e réveeov OEH] (rob A2l
fil=gel 16| Tpotepripatos,
o, N
umry(l cay 7
.L,_ o
Gvoopov mduliovyiav.

payov StoveyTiv. 1ol





content/images/Kalvesmaki01-017.png
100,000
90,000
80,000
70,000
60,000
50,000
40,000
30,000
20,000

10,000

35 7 9 11131517192123 2527293133 3537394143 45474951 53 5557 5961 6365 67 69 71 73 75 77 79 8183 8587 8991 94

“oee 1-naive
=&~ 2 - calc. comm.

—uLo9ed | orekeleton





content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies





content/images/Kalvesmaki01-010.png
25%

15%

10%

100

1000

10000

“+ee 1-naive
=@~ 2-calc.comm.

e 3 - superskeleton





content/images/Kalvesmaki01-012.png
30%

25%

20%

15%

10%

5%

e+ 1-naive

~ - 2- calc. comm.
e 3 - superskeleton





content/images/Kalvesmaki01-011.png
+ 1-naive

e 3- superskeleton

30%
25%
20% -
15%

10%
5% -
%

5%





