[image: Balisage logo]Balisage: The Markup Conference

Printing recipes
Continuing adventures in XML and CSS for recipe
 data
Peter Flynn

Balisage: The Markup Conference 2021
August 2 - 6, 2021

Article copyright ©2021 by Peter Flynn. Application code copyright ©2019-2021 by Silmaril Consultants.

How to cite this paper
Flynn, Peter. "Printing recipes." Presented at: Balisage: The Markup Conference 2021, Washington, DC, August 2 - 6, 2021. In Proceedings of Balisage: The Markup Conference 2021.
 Balisage Series on Markup Technologies vol. 26 (2021). https://doi.org/10.4242/BalisageVol26.Flynn01.

Abstract
In an earlier paper [] I described the implementation of an
	XML/XSLT system (now named ℞, pronounced ‘recipe’: see http://xml.silmaril.ie/recipes/recipe/) for
	checking and reproducing cookery recipes where the ingredients
	were stored as disaggregated data in attributes rather than as
	plain-text phrases in unmarked element CDATA content. Since
	then, work has proceeded on three key aspects: a) the refinement of the categories for recipe
	 ingredients; b) the implementation of the formatting algorithm in
	 XSLT; and c) the implementation in CSS. This paper describes the third of these,
	recreating in CSS (for XML) the grammar of expressing the
	disaggregated data which the XSLT (for HTML) algorithms use to
	create the lists of ingredients and references to them. The
	categorization task is out of scope for markup conferences,
	and is best discussed over a good dinner.

In recipes written in English, the syntax of the
	List of Ingredients is a
	commonly-accepted format expressing quantity, units, item, and
	various modifiers. In the earlier paper I showed how XSLT can
	be used to manipulate the ingredient data to achieve the
	required format. I indicated that the original (pre-℞) site
	used XML as the print format with CSS, and that this raised
	challenges when the disaggregated data was in attributes. This
	problem has now largely been overcome, and I also give details
	of how to XSLT has been used to overcome some of the things
	CSS cannot do for the same tasks.

Note: The names used for the attributes discussed here are
	still experimental and subject to change. In particular the
	item categorization is a work-in-progress, and should not be
	taken as a statement of intent.

Balisage: The Markup Conference

 Printing recipes

 Continuing adventures in XML and CSS for recipe
 data

 Table of Contents

 	Title Page

 	Recipe data and ingredient syntax
 	Lists

 	Quantities and units

 	Modifiers

 	Items

 	Pluralization

 	Treatment, comments and alternatives

 	Reproduction of ingredient names in references

 	Implementing the CSS
 	Ingredient setup

 	Attribute handling with specificity

 	Maintenance of the CSS

 	Rendering

 	Ingredient references
 	Use the ID, Cook

 	Multiple ingredients

 	Results and conclusions

 	About the Author

 Printing recipes
Continuing adventures in XML and CSS for recipe
 data

Note: Acknowledgements
My thanks go to all those friends in cooking and markup who
 contributed with suggestions and food. I am particularly
 indebted to Liam Quin and Tony Graham for their help in
 clarifying those bits of
 CSS which I had misunderstood or just failed to see.

Recipe data and ingredient syntax
In the earlier paper, the background and rationale was
 presented for storing recipe data in XML, specifically the
 ingredient data disaggregated into attributes on an element for
 the ingredient. In this paper, the algorithms devised in XSLT to
 recreate both the List of Ingredients and the references to
 those ingredients in the Method have informed the creation of
 CSS rules to recreate the same output, so that the generation of
 a separate print format is rendered unnecessary.

The conventions for how lists of ingredients are presented
 in an English-language recipe are relatively
 straightforward:

[quantity] [units] [modifiers […]] item [form] [, treatment] [command]

for example

40 g red chili powder, sieved

In some recipe-book styles, the order is reversed (eg
 chili powder, 40 g, sieved) but this could be
 achieved by a change in the order of code blocks in the handler
 module; it is sufficiently unusual not to warrant a
 configuration switch at this stage.

In ℞, the disaggregated data for each ingredient is
 stored as attributes, eg:

<ingredient xml:id="chili_powder" quantity="40" unit="g" colour="red"
 form="powder" spice="chili" treatment="sieved"/>
<ingredient xml:id="oj" fruit="orange" part="juice" quantity="2"/>
<ingredient xml:id="potatoes" quantity="1.25" unit="lb" vegetable="potato"/>
<ingredient xml:id="flour" quantity="2.667" unit="cup" basic="flour"/>
<ingredient xml:id="tabasco" quantity="2" unit="dash" spice="Tabasco"/>

The attributes can be summarized as:

	quantity / unit

	quality / part / color / size / container

	item (in categories, summarized below)

	form (how it comes, if different from nature)

	treatment (additional prep before use)

	comments / alternatives

The item itself is described in one of the 14 attributes
 (also listed in the earlier paper) related to the identity of
 the ingredient: such as fish, meat, dairy, fruit, vegetable,
 spice, herb, basic (eg store-cupboard), etc. These are by their
 nature mutually exclusive and therefore subject to a principal
 validity constraint that only one of them can be present in any
 given ingredient. It may even be present in isolation: for
 example, spice="salt" is perfectly acceptable as an
 ingredient, on its own, with no indication in other attributes
 about unit or quantity or color or anything else. The only other
 compulsory attribute on an ingredient is @xml:id, used for correlation between
 the List of Ingredients and the mention of ingredients in the
 Method.

There are a few other attributes, listed in detail in the
 earlier paper, which are are used to enable finer editorial
 control, rather than to change the way in which ingredients are
 presented to the cook. These are not discussed here.

Lists
The majority of these ‘category’
	attributes are declared as enumerated (token) lists to avoid
	accidental miskeying by authors and editors, and to prevent
	unnecessary duplication and ambiguity, which is common in some
	recipe books. This does of course not
	protect against genuine accidents, such as the
	use of Kg instead of g — human editorial checking will always
	be required, although warning levels could of course be
	included in code.

These lists are not hard-coded into the schema: the DTD
	format used for the original experiment provided a simple
	mechanism for including them, so they are stored as external
	plain text lists with each entry followed by a vertical bar
	delimiter. Authors and editors can therefore add new values
	where required by using a plain-text editor, without specialist
	XML knowledge, assuming that they follow some simple rules,
	and that some in-house controls exist to periodically collate
	the additions for editing and distribution.

In the following sections, the procedures and their
	assertions can be tested by examination of the raw data in any
	of the test files at http://xml.silmaril.ie/recipes/ by clicking
	on the Print icon, which will display the underlying XML
	file, formatted with CSS.

Quantities and units
The first task was to deal with quantities and their
	units. The @quantity attribute
	holds a number, sometimes an integer, but also sometimes a
	floating-point value expressing a common decimal fraction. The
	currently supported fractions are those for which a single
	Unicode code point exists, such as half, the thirds, quarters,
	fifths, sixths and eighths. For example, 1½ lb
	 potatoes or 2⅔ cups flour must be
	given as

<ingredient xml:id="potatoes" quantity="1.25" unit="lb" vegetable="potato"/>
<ingredient xml:id="flour" quantity="2.667" unit="cup" basic="flour"/>

There were two challenges for CSS in handling quantities
 and units:

	Values using (eg) ⅓s or ⅙s must be given rounded to
	exactly three places of decimal (0.333, 0.167). While this was
	straightforward to handle in XSLT with xsl:choose, CSS has no such
	facility.

	With quantities more then one, standard units (eg lb,
	 oz, g, pt, ℓ, etc) do not get pluralized, but many of the
	 common (non-standard) units (eg
	 bunch, capful, cube, dash, handful, pinch, sprig, etc)
	 usually require pluralization.

 Processing for quantities and units

	Pre-empt juices with a prefix of Glass
	 of (if ‘glass’ is
	 specified as a unit) or Juice of (where no
	 unit is given);

	Output the integer portion of the quantity; add the
	 fractional part as a vulgar fraction;

	If the size if specified and the unit is absent or is
	 one of the non-standard units, give the size here;

	If the unit-weight is a number (ie no trailing units),
	 output the multiplication sign and the value;

	Output inch sign or curly-ℓ sign or the unit
	 glass if required (except in the case of
	 juices, which were handled earlier);

	Pluralise the common units if the quantity is more
	 than one, inserting the required e for
	 units such as dash before adding the
	 terminal s;

	If a container was specified, output that value
	 here.

Examples:

<ingredient xml:id="oj" fruit="orange" part="juice" quantity="2"/>
<ingredient xml:id="potatoes" quantity="1.25" unit="lb" vegetable="potato"/>
<ingredient xml:id="flour" quantity="2.667" unit="cup" basic="flour"/>
<ingredient xml:id="tabasco" quantity="2" unit="dash" spice="Tabasco"/>

	Juice of 2 oranges

	1¼ lb potatoes

	2⅔ cups flour

	2 dashes Tabasco

Note that here and elsewhere, white-space is used
	liberally to separate components, as the surplus space is
	elided by the browser.

Modifiers
Many ingredients are described with some form of
	modification: we speak in a List of Ingredients of
	500 g bread flour rather than just
	flour, or 8 red chilis rather
	than just chilis; but we normally use the item
	name alone in references in the Method because they have
	already been described. In most cases the modifier is
	positioned as a prefix on the formatted item,
	after the quantity and units.

There are two special cases here, the attributes @part (for parts of an animal or
	plant) and @form (for the form in
	which an ingredient comes). These may occur in combination
	with the categories (eg handful of parsley
	 stalks denominates stalks as part of
	the plant). These must be positioned before or after the item
	category according to usage.

The @colour attribute (note UK
	spelling) is any textual color information to identify the
	item accurately, and may go before or after the item; the @size attribute is an enumerated list
	of common terms (big, large, medium, small, little, giant,
	tiny, etc) for the same purpose. The @container and @unit-weight attributes enables
	quantities related to cans, boxes, tins, and other packets,
	such as 2 × 400 g cans chickpeas where the
	quantity refers to the number of cans, not the count of
	ingredients.

 Processing for the modifiers

	
 @size comes first, when it
	 applies to the ingredient (eg large onions), not the @unit (small bunches);

	Insert of when there is no @quantity and the item is not a
	 @part or @dairy or @basic or a @spice or a @herb, or the @quantity is not a number and the
	 item is a @spice or @herb;

	Use a @colour first in the
	 case of flour;

	Then the @quality;

	Then the @colour when the
	 item is not flour;

	
 @treatment can come before
	 the item when it acts as a prefix (eg ground, grated,
	 shredded, etc).

Examples:

<ingredient xml:id="flour" quantity="500" unit="g" colour="white"
	 quality="bread" basic="flour"/>
<ingredient xml:id="pork-belly" quantity=".5" unit="lb"
	 part="belly" meat="pork"/>
<ingredient xml:id="parsley" unit="handful" part="stalk"
	 herb="parsley"/>
<ingredient xml:id="chickpeas" quantity="2" unit-weight="400"
	 unit="g" container="can" vegetable="chickpea"/>

	500 g white bread flour

	½ lb pork belly

	handful of parsley stalks

	2 × 400 g cans chickpeas

Items
Each ingredient item is categorized using one of the 14
	mutually exclusive attributes. The selection can be refined by
	the use of the @part attribute
	mentioned above, where an item is a part of a greater whole;
	and by the use of the @form
	attribute, where an item such as peanuts actually comes in the
	form of a butter. This avoids overloading the
	main attributes with many variants.

<ingredient quantity="2" unit="Kg" part="leg" meat="lamb"/>
<ingredient quantity="2" units="tbsp" nut="peanut" form="butter"/>

 Item categories

	
 @meat, a list of meats, eg
	 beef, chicken, lamb, pork, etc

	
 @fish, a list of seafood,
	 eg salmon, hake, prawn, lobster, etc

	
 @dairy, a list of dairy
	 products, eg milk, cheese, cream, yoghurt, etc

	
 @fruit, a list of
	 fruits

	
 @alcohol, a list of
	 drinks

	
 @herb, a list of
	 herbs

	
 @vegetable, a list of
	 vegetables, including pulses

	
 @bean, a list of
	 beans (pulses)

	
 @nut, a list of
	 nuts

	
 @seed, a list of
	 seeds

	
 @pasta, a list of types of
	 pasta, noodles, etc

	
 @spice, a list of
	 spices

	
 @basic, a catch-all list
	 of common store-cupboard ingredients which have no other
	 category, eg flour, oil, yeast, etc

	
 @sprinkles, a list of
	 edible decorative items, eg Streusel, grated chocolate,
	 toasted almonds

	
 @prep, text for any class
	 of ready-prepared ingredient (eg a can of soup)

As these are by definition mutually exclusive, and can be
	constrained as such in a schema or constraint processor, the
	output can just concatenate the values of all of them because
	the extra spaces will be elided.

As explained in the earlier paper, there are some existing
	industrial taxonomies of foodstuffs, but none suitable for
	culinary use. The current set of categories is merely
	pragmatic, based on the natural separation of ingredients into
	groups, and could easily be changed; but in discussion with
	recipe editors there has been no significant dissent.

Pluralization
With a very few exceptions, the values in the enumerated
	attributes are stored in the singular. Pluralization where the
	quantity is more than one is required in two places: the
	common units (not the standard units), and the name of the
	item itself. Pluralization of the name of the item is also
	required in references to the ingredient. In most cases in
	English, adding s is sufficient, but there is a
	hard-coded list of exceptions that require a preceding
	e (tomato, potato), and a preliminary check for
	names ending in erry (berry, cherry, sherry)
	which may require the replacement of the y with
	ie.

The code for pluralizability in the XSLT uses the
	following logic:

	Quantity is greater than one or non-numeric; OR the
	 unit is a standard unit except tsp,
	 tbsp, and dsp; OR it’s nuts or seeds; BUT NOT parts, meat,
	 fish, dairy, basic, spices, pasta, herbs, alcohol,
	 sprinkles, or prepared ingredients;

	OR the quantity is numeric but there are no units
	 (this would be the case for items used whole); BUT NOT a few
	 individual uses such as asparagus or
	 crayfish which take no plural form;

	AND NOT a few individual uses which
	 do take a plural (peppercorn, chive,
	 biscuit, breadcrumb, icecube).

There is also an exclusion list of names which take no
	plural form. In CSS, a different approach was taken which is
	explained below.

Treatment, comments and alternatives
Once the hard data of quantity, units, and the item itself
	have been output, the conventional format typically uses
	various forms of typography for additional information: comma,
	slash, vertical bar, semicolon, italics, and various forms of
	brackets.

These were unproblematic in both XSLT and CSS, as they
 could simply be appended to the ingredient if specified.

Reproduction of ingredient names in references
Throughout the Method in a recipe, the names of the
	ingredients occur in mixed content along what to do with them.
	The earlier paper presented solutions to some requirements of
	recipe editors: ; a) errors or inconsistencies in spelling or naming
	 ingredients; b) omission of an ingredient which was listed; c) inclusion of an ingredient which was not
	 listed; and d) the order of List of Ingredients must be the order
	 in which ingredients are used. This paper offers some solutions to the
	problem of implementing the same cross-references in XML/CSS as
	are created in the XHTML.

To use an ingredient in the Method the
	author or editor inserts an ingref
	element with an IDREFS attribute called @i, which must contain one or more of
	the @xml:id values assigned to the
	ingredients. [This element was called ing in the earlier paper, but has been
	renamed.]

The XSLT handles this by taking each value in turn and
	constructing a semantically and contextually valid word or
	phrase from the data attributes in the ingredient, using the
	same logic for the placement of prefix and suffix information
	if needed, and using the same logic for the expression of
	plurals. CSS cannot of course do this unaided.

Implementing the CSS
CSS implementation in browsers can be uneven, but the
 features needed for the current task appear to be supported in
 Chrome, Firefox, Safari, MSIE, Edge and their spawn.

The original site used for testing these recipes was an
 extension of the author’s XML FAQ pages, as a demonstration of
 the possibility of formatting XML with CSS alone. Even without
 the lessons learned from ℞ development, it was indeed possible
 to format the recipes, as shown in [Figure 1]. However, at that stage, ingredients were
 plain character data, not attributes.

Figure 1: Original formatting of non-℞ XML using CSS1

<ingredient>400g (just under 1lb weight) strong dark chocolate, minimum 50% raw cocoa content,
 such as Callebaut (Belgium). Don't be fobbed off with low-grade stuff for this recipe!</ingredient>
<ingredient>6 large eggs. Real ones, out of a hen.</ingredient>
<ingredient>200g (8oz weight) caster sugar (confectioners' sugar)</ingredient>
<ingredient>1pt (20 fl.oz) double cream (heavy cream). The genuine article,
 refuse all imitations :-)</ingredient>
<ingredient>100g (4oz weight) of the same chocolate, to use for decorating.
 Never do things by halves if you value your life among chocophiles...</ingredient>

[image:]

With the ℞ markup replacing the unmarked text with data in
 attributes, the challenge was essentially to formulate the CSS
 so that the information was presented in the same way as the
 formatted XHTML generated by XSLT.

The formatting of the hierarchy and pool elements (titling,
 preamble, and paragraphs) in CSS is conventional and
 unproblematic. The two requirements were ; a) to make use of the attributes on an ingredient element now declared
	 EMPTY; and b) to cause the relevant name[s] to appear in
	 cross-references to those elements in
	 the absence of wider CSS support for indirect reference
	 via ID/IDREF links.

The current solution to the first requirement makes very
 extensive use of CSS variables, harvesting the data needed from
 the attributes, and then exposing it in a single rule that
 operates on an ingredient:after selector. This
 technique makes use of the specificity
 and order features of CSS: a more
 specific rule will take precedence over a less specific one, but
 between rules of the same specificity, a later rule will
 supersede an earlier one.

Consideration was given to the adoption of the
 CSS Within method due to Liam Quin,
 in which nonce CSS is stored in additional elements in the XSLT
 code, and emitted by a separate process. However, the current
 architecture is based on the assumption that each recipe
 occupies its own XML document, and shares a single CSS file for
 display. In other circumstances CSS
	Within could be a useful tool.

Ingredient setup
Before going into the individual detail of ingredients,
	the ingredients container for the
	List of Ingredients (not itself a part of ℞) provides a good
	example of this mechanism, shown in [Figure 2].
	The element has @serves and @makes attributes to hold the number
	of expected servings and/or the number of individual items
	that the recipe provides. The harvesting of the data relies on
	the specificity of the selector, here and elsewhere:

	Along with the basic styling, the rule for ingredients specifies a variable
	 (custom property) $numbers which is set to
	 null.

	If the element has a @makes attribute, it is used to
	 set that variable to a dash, the word
	 ‘makes’, and the value of the
	 attribute.

	Exactly the same happens mutatis
	 mutandis when the element has a @serves attribute.

	However, if the element has both
	 attributes, the $numbers
	 variable is set to both values.

	Finally, before the output of the first ingredients element starts, the
	 resulting variable value is output as part of a
	 heading-style display.

	(This is in fact heralded by the value of another
	 variable $ingred which
	 the root element rule has previously set to
	 ‘Ingredients’ or its equivalent in
	 a recognized language.)

Figure 2: Example of harvesting attribute data for CSS reuse

ingredients { clear:both;
 display:block;
 margin-top:6px;
 margin-bottom:12px;
 --numbers:""; }
ingredients[makes] {
 --numbers:" — makes " attr(makes) ; }
ingredients[serves] {
 --numbers:" — serves " attr(serves) ; }
ingredients[makes][serves] {
 --numbers:" — makes " attr(makes) ", serves " attr(serves) ; }
ingredients:first-of-type:before {
 content: var(--ingred) var(--numbers) ;
 display:block;
 font-size:125%;
 margin-bottom:6px; }

The unadorned ingredient rule in fact sets a
	large number of values to null ([Figure 3]), so that using them in the
	final formatting rule will not throw an error due to their
	absence. The majority are there to handle pluralization
	exceptions; the others to handle a few special cases, and the
	textual values of comments and alternatives.

Figure 3: Presetting CSS variables to null before handling ingredients

ingredient { --quant:attr(quantity);
 --unit:attr(unit);
 --unitweight:"";
 --liquidprefix:"";
 --sizeprefix:"";
 --part:"";
 --basicplural:"";
 --beanplural:"";
 --containerplural:"";
 --formplural:"";
 --fruitname:"";
 --fruitplural:"";
 --herbplural:"";
 --nutplural:"";
 --partplural:"";
 --seedplural:"";
 --spiceplural:"";
 --unitplural:"";
 --vegplural:"";
 --status:"";
 --comment:"";
 --alt:"";
 --note:"";
}

Attribute handling with specificity
Fortunately, only a few illustrative examples of the
	attribute handling need be shown here, as the mechanism is
	identical for all of them, with only the data and exceptions
	varying. In each case, the unadorned rule sets a variable for
	the most common plural form of the item, usually null or
	‘s’. There are then more specific rules
	for individual values known to require a different plural,
	should they occur in quantities more than one; followed by a
	rule bound to the @quantity which
	sets the pluralization back to null for quantities of one (see
	[Figure 4]). Many values require no
	pluralization (eg flour, sugar, oil, vinegar, etc) except in
	very specialist circumstances, and therefore need no
	specification.

Figure 4: CSS rule set for basic (store-cupboard) ingredients

ingredient[basic] { --basicplural:""; }
ingredient[basic="biscuit"] { --basicplural:"s"; }
ingredient[basic="breadcrumb"] { --basicplural:"s"; }
ingredient[basic="icecube"] { --basicplural:"s"; }
ingredient[basic="tortilla"] { --basicplural:"s"; }
ingredient[basic][quantity="1"] { --basicplural:""; }

For vegetables, the default is a plural
	‘s’, with exceptions for those items
	taking no plural form ([Figure 5]) but also for
	quantities of one and less. An exception is given for canned
	tomatoes which always occur in quantities greater than
	one.

Note that these values are pragmatic: that is, the rules
	are there because they have occurred in the test suite,
	whereas no fractional values have been encountered for any
	basic ingredient [yet].

Figure 5: CSS rule set for vegetables

ingredient[vegetable] { --vegplural:"s"; }
ingredient[vegetable="asparagus"] { --vegplural:""; }
ingredient[vegetable="celery"] { --vegplural:""; }
ingredient[vegetable="pak-choi"] { --vegplural:""; }
ingredient[vegetable="rice"] { --vegplural:""; }
ingredient[vegetable="spinach"] { --vegplural:""; }
ingredient[vegetable="potato"] { --vegplural:"es"; }
ingredient[vegetable="tomato"] { --vegplural:"es"; }
ingredient[vegetable][quantity="1"] { --vegplural:""; }
ingredient[vegetable][quantity=".5"] { --vegplural:""; }
ingredient[vegetable][quantity="0.5"] { --vegplural:""; }
ingredient[vegetable="tomato"][container="can"] { --vegplural:"es"; }

An exception was introduced for fruit, as the English
	spelling of some plurals requires changing the word-ending
	rather than simply adding to it, for example
	‘cherry’ to
	‘cherries’. This meant harvesting the
	attribute value into a separate variable $fruitname so that the stem could be
	changed. This is then reflected in the output in [Figure 10], which references the variable, not the
	attribute. Consideration was also given to the use of parts of
	fruits (eg zest, juice, etc) which modifies the plural; and to
	the use of containers.

(The eagle-eyed reader will notice that tomatoes occur in
	both fruit and vegetable lists — the categorisation is an
	ongoing work as mentioned earlier. Sugar is currently still a
	spice, as it always was, historically speaking.)

Figure 6: CSS rule set for fruits

ingredient[fruit] { --fruitname:attr(fruit); }
ingredient[fruit="cherry"] { --fruitname:"cherrie"; }
ingredient[fruit="cranberry"] { --fruitname:"cranberrie"; }
ingredient[fruit="strawberry"] { --fruitname:"strawberrie"; }
ingredient[fruit] { --fruitplural:"s"; }
ingredient[fruit='apple'][part] { --fruitplural:""; }
ingredient[fruit='lemon'][part] { --fruitplural:""; }
ingredient[fruit='tomato'] { --fruitplural:"es"; }
ingredient[fruit][quantity="splash"] { --fruitplural:""; }
ingredient[fruit][quantity="1"] { --fruitplural:""; }
ingredient[fruit][quantity="1"][unit="lb"] { --fruitplural:"s"; }
ingredient[fruit][container="can"] { --fruitplural:"s"; }
ingredient[fruit="tomato"][container="can"] { --fruitplural:"es"; }
ingredient[fruit][container="tin"] { --fruitplural:"s"; }
ingredient[fruit="tomato"][container="tin"] { --fruitplural:"es"; }
ingredient[fruit][part="juice"][quantity] {
 --liquidprefix:"Juice of ";
 --part:""; }
ingredient[fruit][part="juice"][quantity][unit] {
 --liquidprefix:"";
 --part:attr(part); }

We saw earlier ([Figure 3]) that the
	variable $quant was set to
	the value of the @quantity
	attribute by the base rule for the ingredient. However, as
	three-digit decimals need converting, we provide rules for all
	the common ones available as Unicode vulgar fractions ([Figure 7]).

Figure 7: CSS rule set for handling fractional quantities

ingredient[quantity=".25"] { --quant:"¼"; }
ingredient[quantity=".5"] { --quant:"½"; }
ingredient[quantity=".75"] { --quant:"¾"; }
ingredient[quantity=".333"] { --quant:"⅓"; }
ingredient[quantity=".667"] { --quant:"⅔"; }
ingredient[quantity="0.25"] { --quant:"¼"; }
ingredient[quantity="0.5"] { --quant:"½"; }
ingredient[quantity="0.75"] { --quant:"¾"; }
ingredient[quantity="0.333"] { --quant:"⅓"; }
ingredient[quantity="0.667"] { --quant:"⅔"; }
ingredient[quantity="1.333"] { --quant:"1⅓"; }
ingredient[quantity="1.5"] { --quant:"1½"; }
ingredient[quantity="2.5"] { --quant:"2½"; }

Units provide a slightly different requirement, as they
	may need to be bound to both value and quantity ([Figure 8]). As noted in the earlier paper,
	pluralization may need to be applied both to the ingredient
	item and to the unit by which it is
	measured, and the rules are not identical.

Figure 8: CSS rule set for units of measurement

ingredient[unit="clove"] { --unitplural:"s"; }
ingredient[unit="clove"][quantity="1"] { --unitplural:""; }
ingredient[unit="cup"] { --unitplural:"s"; }
ingredient[unit="cup"][quantity=".25"] { --unitplural:""; }
ingredient[unit="cup"][quantity=".333"] { --unitplural:""; }
ingredient[unit="cup"][quantity=".5"] { --unitplural:""; }
ingredient[unit="cup"][quantity=".667"] { --unitplural:""; }
ingredient[unit="cup"][quantity=".75"] { --unitplural:""; }
ingredient[unit="cup"][quantity="0.25"] { --unitplural:""; }
ingredient[unit="cup"][quantity="0.333"] { --unitplural:""; }
ingredient[unit="cup"][quantity="0.5"] { --unitplural:""; }
ingredient[unit="cup"][quantity="0.667"] { --unitplural:""; }
ingredient[unit="cup"][quantity="0.75"] { --unitplural:""; }
ingredient[unit="cup"][quantity="1"] { --unitplural:""; }
ingredient[unit="cup"][quantity="1.5"] { --unitplural:"s"; }
ingredient[unit="glass"] { --unitplural:"es"; }
ingredient[unit="glass"][quantity="1"] { --unitplural:""; }
ingredient[unit="l"] { --unit:"ℓ"; }
ingredient[unit="punnet"] { --unitplural:"s"; }
ingredient[unit="punnet"][quantity="1"] { --unitplural:""; }
ingredient[unit="sheet"] { --unitplural:"s"; }
ingredient[unit="sheet"][quantity="1"] { --unitplural:""; }
ingredient[unit="slice"] { --unitplural:"s"; }
ingredient[unit="slice"][quantity="1"] { --unitplural:""; }
ingredient[unit="spear"] { --unitplural:"s"; }
ingredient[unit="spear"][quantity="1"] { --unitplural:""; }
ingredient[unit="stick"] { --unitplural:"s"; }
ingredient[unit="stick"][quantity="1"] { --unitplural:""; }

Maintenance of the CSS
Additional rules are easily added as more recipes are
	added with ingredients or quantities or units not hitherto
	encountered.

Periodic maintenance is also relatively straightforward:
	frequencies for each attribute are trivially extractable from
	the recipes at each site update, and a brief visual inspection
	is enough to identify any values requiring a new rule. In
	[Figure 9] it is easily seen that the
	majority of values are not meaningfully pluralizable and need
	no additional rule.

Figure 9: Frequencies of usage for basic ingredients to provide a
	list for checking need for pluralizations

$ for f in *.xml;\
 do lxprintf -e 'ingredient[@basic]' "%s\n" @basic $f;\
 done | sort | uniq -c | sort -k 1nr
 44 flour
 32 oil
 16 chocolate
 13 water
 8 baking-powder
 7 cocoa
 7 stock
 7 vinegar
 7 yeast
 5 honey
 4 margarine
 3 baking-soda
 3 breadcrumb
 3 coffee
 3 tomato-purée
 2 cornflour
 2 oatmeal
 1 biscuit
 1 bread
 1 icecube
 1 soy-sauce
 1 tortilla
$

(The lxprintf utility is part
	of the LT-XML 2 toolkit available from the Language
	Technology Group at Edinburgh University.)

Rendering
The final stage is the rendering of all the harvested
	values, using the ::after selector on
	the ingredient rule (the element
	itself is by definition EMPTY), as in [Figure 10]. This emits the relevant (unprocessed)
	attribute values in the correct syntactic order, with plurals
	where defined.

Figure 10: CSS rendering of the harvested attribute values

ingredient:after { content:
 var(--iprefix)
 var(--liquidprefix)
 var(--quant) " "
 var(--sizeprefix) attr(size) " "
 var(--unitweight) " "
 var(--unit) var(--unitplural) " "
 attr(container) " "
 attr(quality) " "
 attr(colour) " "
 attr(nature) " "
 attr(meat) " "
 attr(seafood) " "
 attr(dairy) " "
 var(--fruitname) var(--fruitplural) " "
 attr(alcohol) " "
 attr(herb) var(--herbplural) " "
 attr(vegetable) var(--vegplural) " "
 attr(bean) var(--beanplural) " "
 attr(nut) var(--nutplural) " "
 attr(seed) var(--seedplural) " "
 attr(spice) var(--spiceplural) " "
 attr(pasta) " "
 attr(basic) var(--basicplural) " "
 var(--part) var(--partplural) " "
 attr(topping) " "
 attr(form) var(--formplural) " "
 attr(prep) " "
 var(--alt) " "
 var(--tprefix) attr(treatment) " "
 var(--comment) " "
 var(--status) " "
 var(--note) var(--isuffix)
 ; }

The chocolate mousse recipe shown in [Figure 1] has been edited to place the ingredient
	values in attributes (and to to remove the qualitative
	judgments), and the ingredients shown in [Figure 11] now render correctly in both the (fancy)
	XHTML
	and in the CSS-formatted
	XML.

Figure 11: Revised markup of [Figure 1] now in ℞
	 format with CSS2

<ingredient xml:id="chocolate" quantity="400" unit="g" quality="dark
 70%" basic="chocolate"/>
<ingredient xml:id="eggs" quantity="6" size="large" part="egg"/>
<ingredient xml:id="sugar" quantity="200" unit="g" quality="caster"
 spice="sugar"/>
<ingredient xml:id="cream" quantity="500" unit="ml"
 quality="double" dairy="cream"/>
<ingredient xml:id="grated_chocolate" quantity="100" unit="g"
 quality="dark" basic="chocolate" treatment="grated into curls"/>

[image:]
[image:]

Ingredient references
CSS has no facilities for the re-use of data from elsewhere
 in the document (barring the limited in-scope
 ‘carry-forward’ mechanism of custom-property
 variables). It is therefore not possible to perform the kind of
 extended lookup done in the XSLT rendering, using the ID[s] in
 the @i IDREFS attribute of the ingref reference element type to access
 all the data of each ingredient from a context location deep
 inside the Method. Instead, we cheat.

Use the ID, Cook
The ID of each ingredient is not exposed in the List of
	Ingredients, nor in the other calculations about the sequence
	of usage, nor in the detection of the presence or absence of
	ingredients (see details in the parallel paper) except as
	error messages in a log file. It was therefore open to require
	the ID for each element to be the actual word that would be
	needed in the ingredient reference, and for the CSS to
	reproduce it as-is. That is, for 500 g onions, the @xml:id value would be
	‘onions’.

This involves no extra effort for the cook, author, or
	editor except in a few rare cases where several different
	types of the same ingredient are used, for which we are
	developing some simple rules (below).

In the test suite, there are over 800 ingredient IDs, many
	the same between recipes (flour is most
	often just ‘flour’), but we are only
	concerned here about within recipes,
	where IDs must be unique. Of these, 560 have @xml:id values which are the same as
	the name of the item itself (as with flour above), and because
	there is only one item of that type in the recipe, no
	ambiguity can occur, and no plural form is needed, eg

<ingredient xml:id="pork" meat="pork" ... />
<ingredient xml:id="sugar" spice="sugar" ... />

In the case of a plural,
	the pluralized form must be used for the ID:

<ingredient xml:id="eggs" quantity="3" part="egg" ... />
<ingredient xml:id="chilis" quantity="6" colour="red" spice="chili" ... />

The CSS for the ingref element
	referencing a single ingredient therefore just needs to
	reproduce the value of the @i
	attribute — its existence and validity is already guaranteed
	by the XML parser.

Multiple ingredients
Where is it necessary to distinguish between multiple
	similar ingredients (eg three different types of sugar), a
	compound word for the ID must be used, with an underscore as
	the separator. Of the remaining 240 values identified above,
	just under 100 needed underscores for this purpose. The
	underscore can also be used where two words would normally be
	used to describe the ingredient: not this in this case the
	list value of the attribute uses a hyphen separator while the
	ID values uses an underscore. This too is a
	post hoc validation
	test.

<ingredient xml:id="parsley" unit="bunch" size="small"
 quality="chopped" herb="parsley"/>
<ingredient xml:id="mint" unit="bunch" size="small"
 quality="chopped" herb="mint"/>
<ingredient xml:id="tomato_puree" quantity="2" unit="tbsp"
 basic="tomato-purée"/>
<ingredient xml:id="salt" quantity="½" unit="tsp" spice="salt"/>
<ingredient xml:id="white_pepper" quantity="½" unit="tsp"
 colour="white" quality="ground" spice="pepper"/>
<ingredient xml:id="vinegar" quantity="1" unit="tbsp"
 quality="wine" basic="vinegar"/>
<ingredient xml:id="oil" quantity="2" unit="tbsp" quality="olive"
 basic="oil" alt="rapeseed oil"/>

In XSLT, the underscore can trivially be converted to a
	space with translate(), but no such feature
	exists in CSS, so we cheat again.

Because every recipe gets processed by the ℞ XSLT, it was
	simple to include code to output a new CSS result document
	containing the required custom CSS for that recipe only:

ingref[i="tomato_puree"]:after { content:"tomato puree"; }
ingref[i="white_pepper"]:after { content:"white pepper"; }

A final problem arose in handling multiple ingredients
	referenced from the same ingref
	element. Again this is trivial in XSLT (comma-separation, with
	‘and’ before the last one) but not in
	CSS alone. However, as that logic was already in the XSLT,
	using it to output to the same per-document custom CSS made it
	possible to write the rule:

ingref[i="garlic onion"]:after { content:"garlic and onion"; }
ingref[i="parsley mint tomato_puree salt white_pepper vinegar oil"]:after
 { content:"parsley, mint, tomato purée, salt, pepper, vinegar, and oil"; }
ingref[i="chicken ice"]:after { content:"chicken and icecubes"; }

In doing this, a significant concern was that the authors
	or editors should not have to concern themselves with the
	details of how the recipe gets rendered, only that when they
	reference multiple ingredients at a single point, it
	‘just works’.

Results and conclusions
The system has now been tested successfully on 70 or so
 recipes but needs more, especially those using unusual
 ingredients, strange quantities, weird measures, and other
 outliers. At the moment it is regarded as an unstable beta: it
 works, but new data will certainly expose areas needing more
 work.

The ℞ code has been kept separate from the general XSLT
 creating the XHTML file body, so that the handlers for the
 ingredients occupy a single 900–line XSLT file, with three named
 templates for generating the ingredients, testing the order, and
 creating the ingredient references. This means the system can be
 implemented in any XML vocabulary, as it operates only on
 current-context, and makes no reference to any element type
 names or attributes from the surrounding XML environment. The
 only restriction is that the naming of the ingredient attributes
 themselves are still hard-coded, on the assumption that where ℞
 is being implemented, no such attributes will yet exist.

The only additional code remaining outside this module at
 the moment covers the creation of the per-recipe custom CSS
 described in [section “Multiple ingredients”], but this will be moved
 into the core handler soon.

This project is an experiment to test if it is possible to
 create a system which applied sanity checks to recipes
 (ordering, presence, absence, etc) and which would help
 guarantee that ingredients listed got used, and that ingredients
 referenced were actually listed.

This has proved to be perfectly possible, as demonstrated in
 the earlier paper [Flynn 2020], and has now been
 shown to be extensible to cover more than the 70 or so recipes
 tested. The drawback is that the ingredients must be stored in
 fully disaggregated form, a task which neither authors nor
 editors have the time to do in the absence of an editing
 interface capable of handling the multi-choice selection needed.
 It may be possible to apply a trained algorithm to a textual
 ingredient descriptions and perform an initial disaggregation
 for the editor to work with.

A by-product of this method is that the creation of a
 ‘plain-and-simple’ print version of each recipe
 is now simplified, and needs no additional transformation of the
 XML, only the periodic updating of the CSS.

Future work involves migration testing, to identify the
 effort needed to implement the system on a virgin XML publishing
 structure; and to resolve a few outstanding difficulties in
 CSS.

References
[Bos 2016] Bos, Bert; Çelik, Tantek; Hickson, Ian; and Lie, Håkon Wium (Eds). ‘Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification: W3C Recommendation 07 June 2011, edited in place 12 April 2016 to point to new work.’ W3C, Boston, MA (2016). URI:https://www.w3.org/TR/CSS2/. (Latest editor’s draft, URI: http://dev.w3.org/csswg/css2/).
[Flynn 2020] Flynn, Peter. ‘Cooking up something new: An XML and XSLT experiment with recipe data.’ Presented at Balisage: The Markup Conference 2020, Washington, DC, July 27–31 2020. In Proceedings of Balisage: The Markup Conference 2020. Balisage Series on Markup Technologies, vol.25 (2020). DOI:https://doi.org/10.4242/BalisageVol25.Flynn01.

Balisage: The Markup Conference

Printing recipes
Continuing adventures in XML and CSS for recipe
 data
Peter Flynn
Peter Flynn managed the Academic and Collaborative
	 Technologies Group in IT Services at University College
	 Cork, Ireland until his retirement in 2018. He trained at
	 the London College of Printing and did his MA in
	 computerized planning systems at Central London Polytechnic
	 (now the University of Westminster). He worked in the UK for
	 the Printing and Publishing Industry Training Board as a DP
	 Manager and for United Information Services of Kansas as IT
	 consultant before joining UCC as Project Manager for
	 academic and research computing. In 1990 he installed
	 Ireland’s first Web server and concentrated on academic and
	 research publishing support. He has been Secretary of the
	 TeX Users Group, Deputy Director for Ireland of EARN, and a
	 member both of the IETF Working Group on HTML and of the W3C
	 XML SIG; and he has published books on HTML, SGML/XML, and
	 LaTeX. Peter also runs the markup and typesetting
	 consultancy Silmaril, and is editor of the XML FAQ as well
	 as an irregular contributor to conferences and journals in
	 electronic publishing, markup, and Humanities computing, and
	 has been a regular speaker and session chair at the XML
	 Summer School in Oxford. He completed a late-life PhD in
	 User
	 Interfaces to Structured Documents with the Human
	 Factors Research Group in Applied Psychology in UCC. He
	 maintains a fairly random semi-technical blog at http://blogs.silmaril.ie/peter.

Balisage: The Markup Conference

content/images/Flynn01-002.png
Ingredients

400 g dark 70% chocolate
6 large eggs

200 g caster sugar

500 ml double cream

100 g dark grated chocolate

content/images/Flynn01-001.png
See more recipes * from Peter Flynn’s collection
Home » |XMLFAQ « |BEX < | Acronyms « | Blog

Délice au chocolat

Recipe created by John Desmond, former Professeur de Cuisine in Paris (France) and now partner with Ellmary Fenton in an unusual business at Island Cottage, Heir (or Hare) Island,

near Skibbereen, Co Cork (Ireland). The restaurant on the island is open to diners from June to September (call +353 28 38102 for reservations), and from March to May for cooking
courses.

This dessert is richer and smoother and has a lighter texture than the classic chocolate mousse. It can be kept in the fridge for up to three days and it also freezes very well. It can be served
as is, or nicely shaped with a warm spoon. He usually serves it with a creme anglaise flavoured with zest of orange and a sprinkle of grated chocolate. Serves 8-10 people

400g (just under 11b weight) strong dark chocolate, minimum 50% raw cocoa content, such as Callebaut (Belgium). Don't be fobbed off with low-grade stuff for this recipe!
6 large eggs. Real ones, out of a hen.

200g (80z weight) caster sugar (confectioners' sugar)

1pt (20 fl.oz) double cream (heavy cream). The genuine article, refuse all imitations :-)

100g (40z weight) of the same chocolate, to use for decorating. Never do things by halves if you value your life among chocophiles...

1. Melt the 11b of chocolate in an ovenproof dish either in a very low oven or over a pot of water like a bain-marie. Don't try to nuke it melted unless you really know what you are
doing.

2. While the chocolate is melting down, crack the 6 eggs into a bowl and whisk them. Add the sugar and switch to high speed to beat for about 20 minutes. Yes, 20 minutes: the mixture
has to treble in volume. If you don't have a blender or mixing machine, you might want to consider renting the neighbour's kid for 20 mins to do the job in return for a small bowl of
the finished mousse :-)

3. Cool the melted chocolate (but don't let it start to solidify) and add it gently to the egg and sugar. The mixture will start to fall as you stir it. When mixed, transfer to another bowl.

4. Clean out the mixing bowl (this is not hard if you use your tongue) and then wash it, dry it and pour in the pint of cream. Whisk until slightly stiff.

5. Very gently combine the cream with the chocolate mixture using a balloon whisk. Pour into a terrine mould, Waterford cut glass or a plastic freezer box (depending on your needs)
and chill in the fridge for at least two hours. Keep your grubby fingers off it while it sets.

Serving

1. Dip a tablespoon into boiling water and very quickly flick dry and spoon two or three dollops of mousse onto each plate, shaping with the hot spoon as you do so.
2. Pour around each portion a pool of créme anglaise (a light custard) flavoured with orange zest. Grate the remaining chocolate over the top. What do you mean, there's no chocolate
remaining?

Additional material by me.

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Flynn01-003.png
See more recipes from Peter Flynn’s collection
Home | XML FAQ | IATEX | Acronyms | Blog

DisplayDn MO, @ A
Délice au chocolat

John Desmond

John Desmond is a former Professeur de Cuisine in Paris and for many years partner with Ellmary Fenton in a restaurant on Heir (or Hare) Island, near Skibbereen, Co Cork (Ireland).

Their description says, ‘This dessert is richer and smoother and has a lighter texture than the classic chocolate mousse. It can be kept in the fridge for up to three days and it also freezes very well.
It can be served as is, or nicely shaped with a warm spoon.” It can be served with a créme anglaise flavoured with zest of orange and a sprinkle of grated chocolate.

Ingredients — makes 1, serves 10

400 g dark 70% chocolate

6 large eggs

200 g caster sugar

500 ml double cream

100 g dark chocolate | grated

Method — prep: 15 minutes,

1. Melt the chocolate in a bain-marie or a dish in a larger bowl of boiling water. Do not let any water get into the chocolate.

2. While the chocolate is melting down, crack the eggs into a separate bowl and whisk them. Add the sugar and switch to high speed to beat for about 20 minutes: the mixture will treble in
volume

3. Cool the melted chocolate a little if it is warmer than blood heat, but don't let it start to solidify. Add it gently to the eggs sugar mix. The mixture will start to fall as you stir it. When mixed,
transfer to another bowl.

4. Clean out the mixing bowl, wash it, dry it, and pour in the cream. Whisk until slightly stiff.

5. Very gently combine the cream with the rest of the mixture using a wooden spoon. Pour into a bowl and chill in the fridge for 1 hour. It freezes well, so it can be made in advance and
defrosted at room temperature for an hour before eating.

Serving

« Dip a tablespoon into boiling water and very quickly flick dry. Spoon two or three dollops of mousse onto each plate, shaping with the hot spoon as you do so.
* Pour around each portion a pool of créme anglaise (a light custard) flavoured with orange zest. Sprinkle the remaining grated_chocolate over the top. What do you mean, there's no
chocolate remaining?
The restaurant on the island is open to diners from June to September (call +353 28 38102 for reservations), and from March to May for cooking courses.

Timings underlined in red are in addition to the preparation time (eg dough rising)

