
Client-side XSLT, validation
and data security

Wendell Piez

National Institute of Standards and Technology (NIST)

Information Technology Laboratory (ITL)

CSX – Client Side XSLT

The pros and cons of CSX

(Or of SaxonJS in the browser)

How you can do this

(Although there are links)

A claim or set of claims

(Although there may be implications)

What this talk is not about …

New acronym, old thing …
… in different forms, around for a while …

Two Questions

• What happens when the XML to be processed belongs to
the user not the publisher?

• What happens as the web becomes a delivery platform
for encapsulated processing logic?
• Beyond (and by means of) http/HTML/JSON/Javascript
• Declarative foundations
• Distributed validation architectures

XML-driven demonstrations using SaxonJS

Served via Github Pages

Today's demonstrations and others

XML Jelly Sandwich demonstrations

Generic demonstration (any XML)

Docuscope

Document visualization and analysis

OSCAL demonstrations

OSCAL is the Open Security Controls Assessment Language

Supports documentary operations related to
systems security / compliance / risk management

https://wendellpiez.github.io/XMLjellysandwich/

Disclaimer: these projects have no affiliation with Saxonica (producers of SaxonJS) or NIST (the developer's day job)
and only the developer is responsible for any errors or misrepresentations

Play along demonstrations

Download the zip file from the repository
Or try with your own XML files

https://wendellpiez.github.io/XMLjellysandwich/

Docuscope
Ever want to take a quick peek at an XML document?

Just show what's in it, no fuss?

But you want to see more than the code?

oscal/baseline-matrix
Showing our data looking pretty

Showing how we can make our data look pretty

Showing how what is "easy" is relative

Screen shot from PDF document as published

Screen shot from dynamic display in Baseline Matrix

oscal/import-examiner
• Like all domain languages, OSCAL relies on certain regularities
• E.g., referential integrity ("do my links work?")

• within documents
• between related documents

• Testable with XSLT
• Does this OSCAL profile make sense (with respect to its imports)?
• Is it viable in an operational context? ("will it compile?")

oscal/validator
Serves as 'schema emulator'

Enforces rule set comparable to XSD or RNG validation

XSLT is generated from OSCAL Metaschema source data

Test-of-concept work-in-progress – much to do!

When everything happens on the client
• We can deploy from a plain web server

• No user data is exposed outside the local system

• After the application is delivered nothing is logged

CSX for systems security applications

Questions

• Security posture of SaxonJS and its dependencies

• Authenticating XSLT – source and runtime

• Tricky – but worse than JS libraries?

• Do we need a security assessment of Saxon?

Can a decentralized network of validating
nodes promote systems and data security?

Ensuring validability of exchange artifacts.

The XSLT that validates
OSCAL …

… is the same XSLT that
validates your data

Generalized capabilities …

<xsl:key match="person" name="persons-index" use="'#' || @xml:id"/>

<xsl:template match="persName">
<xsl:call-template name="warn-if-false">

<xsl:with-param name="test"
select="exists(key('persons-index', @ref, $prosopography))"/>

<xsl:with-param name="msg">Person referenced is not listed in
prosopography</xsl:with-param>
</xsl:template>

<xsl:key match="party" name="parties-index" use="@uuid"/>

<xsl:template match="assessment-log/entry">
<xsl:call-template name="warn-if-false">

<xsl:with-param name="test"
select="exists(key('parties-index', child::logged-by/@party-uuid, $authorizations))"/>

<xsl:with-param name="msg">Logged event may not be authorized</xsl:with-param>
</xsl:template>

Things to do with your data

Distributed validation
• Your data, our rules set

• Third-party validation?

Distributed data
conversion
• Transformation as a service

• (E.g., conference proceedings preview?)

Distributed capabilities
• Your data, your rules set(s)

• Micro-editors

Transformation Lite
• Domain-specific processing

languages

• Notations describing what-
have-you (invisible XML…)

Data
description
ecosystems

• Distributed validation assumes
• Shared rule sets

• Data versatility and reusability

• This requires
• Declarative information models codified as standards

• Toolkits and technologies supporting these standards

• CSX works best in combination with other XML tech
• Works especially well with an XML database in back

• Replicability also requires the same capability be
deliverable by other means
• Unit tests!

Thank you!

All demonstrations are open source and non-proprietary

https://github.com/wendellpiez/XMLjellysandwich

