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Abstract
Regular expressions from one programming language or environment to the next
                differ in details. The XPath flavor of regular expressions has unrivaled access to
                Unicode code blocks and character classes. But why stop there? In this paper I
                present a small XSLT function library that extends the XPath functions
                    fn:matches(), fn:replace(),
                fn:tokenize(), and fn:analyze-string() to permit new ways
                to build classes of Unicode characters, by means of their names and decomposition
                relations.
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XPath Functions, Regular Expressions, and Unicode
In XPath and XQuery Functions
                3.1, four functions depend upon regular expressions:
                fn:matches(), fn:replace(), fn:tokenize(),
            and fn:analyze-string(). Their regular expressions are defined on the basis
            of XML Schema Part 2: Datatypes
                Second Edition (herein XS2), which has been extended to include start- and
            end-of-string matches, reluctant quantifiers, and back-references. To build classes of
            Unicode characters one uses \p{} or its converse \P{},
            explained in XS2's Appendix F,
                Character Classes. The curly brackets for \p take two types of
            construction:
	Categories: A capital letter
                        ([LMNPZSC]) specifying a general Unicode category, perhaps
                    followed by a lowercase letter to specify a subcategory. This feature is very
                    handy for finding letters (\p{L}), private use area characters
                        (\p{Co}), digits from any system of numeration
                        (\p{N}), or the inverse of these categories (by replacing
                        \p with \P).

	Blocks: "Is" followed by a string
                        ([a-zA-Z0-9-]+) that corresponds to the name of a block of
                    Unicode characters. This feature is very useful for finding all Arabic
                        (\p{IsArabic}) characters, all arrows
                        (\p{IsArrows}), general punctuation
                        (\p{IsGeneralPunctuation}), or the inverse of these categories
                    (by replacing \p with \P).


In most other programming languages, regular expressions do not support
                \p{}, or if they do, they are based on relatively simple POSIX
            character classes, which are restricted to a limited set of key terms (e.g.,
                Lower, ASCII, Alnum,
            XDigit).
Some flavors of regular expressions access Unicode characters via \u.
            JavaScript and Python, for example, allow \uFFFF, where FFFF
            is a single hexadecimal number identifying a codepoint. Perl uses a slightly different
            syntax: \x{FFFF}. 
XPath does not have \u, but it doesn't need it, as used in other
            programming languages. The entity, e.g., &#x7B;, is a sufficient
            replacement for \u. And it's better. The entity need not be padded with
            zeros, and can be more than four digits. That is, it can access characters outside plane
            one, U+10000 and beyond. Entities can be marshalled to define a range using the hyphen
            (e.g., [&#x6A;-&#xB1;]).
In sum, as XML developers, we have unparalleled access to Unicode characters in our
            regular expressions. And we can expand on that excellence. In this article I introduce
                TAN-regex, an XSLT-based
            library of XPath functions that extend regular expressions to capture Unicode characters
            based upon their name and their relationships to composite and base characters.

Reimagining Regular Expressions for Unicode
The characters that make up the Unicode standard are a motley bunch. We who delve into
            its darker corners probably have our favorite bêtes noires. As a scholar who works with
            ancient Greek, I find the Greek and Coptic blocks to be the most visible witness to
            Unicode's choppy progress. Sets of characters from both languages spawned new, dedicated
            blocks (e.g., Coptic U+2C80..2CFF, Greek Extended U+1F00..1FFF), and Greek characters as
            individuals or small groups have popped up here and there, in assorted blocks. Although
            the general idea has been to keep blocks consistent and complete, that ideal is not
            often realized. It would be nice to access characters that naturally group with one
            another but straddle Unicode blocks. Desideratum one.
The Supplemental Punctuation block (U+2E00..U+2E2F) has a number of characters I must
            access regularly, to process ancient and medieval inscriptions, e.g., ⹄ U+2E44 DOUBLE
            SUSPENSION MARK (in Unicode Notational
                Conventions, ranges are expressed with two dots and the name is rendered in
            small capitals). Although that character is in Unicode because of a proposal I wrote, I
            regularly forget the hexadecimal number, and must look it up. When working with
            characters outside the ASCII block we customarily have at hand supplementary tools.
            Within oXygen XML editor, the Character Map
            is quite valuable. For general use, I personally prefer BabelMap
            (Windows only) and Richard Ishida's Unicode code converter,
            the former to find and copy characters and the latter to analyze them. The recently
            redesigned home page for Unicode is also quite
            useful. You will no doubt think of other tools you like. Those tools are essential, but
            they can also be an inconvenient departure from the algorithm being constructed. It
            would be nice to get those characters in a human-friendly way while staying mentally
            within my XSLT code. Desideratum two.
Sometimes I am looking not for a single character but for all permutations of that
            letter. That is, if I am searching a text for every variation of b, I would like to
            build a character class for any character that according to the Unicode database has a b
            as a component (in addition to b itself, there are 20 such characters, from U+1D47
            MODIFIER LETTER SMALL B to U+1D68B MATHEMATICAL MONOSPACE SMALL B). In this case,
            auxiliary tools are of limited use, requiring ad hoc browsing and patchwork results.
            Unicode decomposition (see Unicode Standard Annex 15)
            via fn:normalize-unicode(*, 'NFKD') is not a help here, because that only
            helps you get from a precomposed character to its components. I am interested in the
            reverse of the process. Desideratum three.
So, despite XPath's deep engagement with Unicode, there remain three key obstacles to
            building classes of Unicode characters. Many Unicode character classes I wish to build
            do not map onto either a code block or a Unicode property—the two types of access
            provided by \p{}. Those constructors cover either too much or too little.
            Writing a regular expression based on hexadecimal entities can be cumbersome and
            haphazard, requiring correct use of external tools. Reading it can be equally
            challenging. And going from a character to its composites can be tricky.
Most of the Unicode character classes I build are united by some logic. In some cases,
            I know I could build a character class based upon words in the names of the individual
            Unicode characters. So I began to wonder, couldn't I simply use the Unicode name DOUBLE
            SUSPENSION MARK, and not worry about remembering the hexadecimal value of the codepoint?
            Or if I wanted all suspenion marks, not just mine, couldn't I just write "SUSPENSION
            MARK"? Doing so would make reading and writing a regular expression much easier. And it
            seems consistent with current conventions. After all, I can already invoke the name of a
            Unicode block in my regular expression. Why not also the name of a character, equally
            immutable?
The proposition might sound risky. Yes, Unicode names are unique and stable, but there
            are characters that for all intents and purposes are misnamed, so to use a name runs the
            risk of getting characters you did not want and failing to get those you did.
We already run that risk. We face it each time we use \p{} or even
                \w (word characters), whose results can sometimes surprise or annoy.
            Unicode nomenclature and classification can run against our druthers. If
                \p{} were extended to Unicode character names, we would need simply to
            extend the caution we already must exercise. For example, if I am looking for the
            medieval/late antique Greek numeral 6, the ϛ (U+03DB), I cannot use "episemon," the
            oldest name for this character (ἐπίσημον, attested 2nd c. CE by Clement of Alexandria).
            Instead, I need to familiarize myself with, and use, the official name, GREEK SMALL
            LETTER STIGMA, regardless of history (the earliest appearance I have found for "stigma"
            dates to an 18th century manuscript).
I also realized that we regularly remember keywords, but not necessarily their order
            within a name. If I wish to cite the name for ỗ (U+1ED7) is it LATIN SMALL LETTER O WITH
            CIRCUMFLEX AND TILDE or ...TILDE AND CIRCUMFLEX? It would be nice if once did not have
            to know. A Unicode name starts with the centermost components, but that principle helps
            only slightly, because there's no reason why I should presume to know which component is
            drawn closer to the center, or that Unicode decisions have always been consistent. Why
            not build a class constructor simply through select keywords in the name?
That is, I propose to break any character's name into individual words, treating each
            one like a property, much like space-delimited values of @class in HTML
            elements. If you are familiar with HTML conventions, you might immediately see the
            upside to tagging Unicode characters like this: 

            . . . . . . .
<div id="x1ed5" class="above and circumflex hook latin letter o small with">ổ</div>
<div id="x1ed6" class="and capital circumflex latin letter o tilde with">Ỗ</div>
<div id="x1ed7" class="and circumflex latin letter o small tilde with">ỗ</div>
<div id="x1ed8" class="and below capital circumflex dot latin letter o">Ộ</div>
. . . . . . .

        
In each @class, words in the character name have been intentionally set
            lowercase and alphabetized, to show that, for our purposes, order and capitalization may
            be treated arbitrarily. This name signature, i.e., the character's name parts
            alphabetized and space-joined, is not necessarily unique, and should not be treated as
            an identifier. See section “Caveats”.
If we wanted to select the ỗ in the example above, the third <div>, to
            style it in a certain way, in our CSS stylesheet we could simply write:
                .o.circumflex.tilde.small. Because only one codepoint has those four
            words in its name, we do not need to cite all eight words (but we could if we wanted).
            From there we can expand the class as needed. If we wanted to include the uppercase
            version, we could simply drop the word "small": .o.circumflex.tilde, which
            matches exactly two characters (as of Unicode version 13.0). Dropping other words
            increases the size of the set.
The dot-notation approach used in CSS + HTML classes can then be leveraged to build a
            wide variety of regular expression classes based on Unicode character names. Pure dot
            notation might create a class that is too large for some purposes, so the syntax should
            provide a way to exclude classes. For example, we might want all letter U's with
            diaereses, but not those with a caron (ˇ), i.e., drop Ǚ and ǚ. The exclamation mark to
            mean "not" has precedence (albeit not in CSS selectors), and seems intuitive as a mark
            of exclusion; for the previous example, we would write something like
                .u.diaeresis!caron.
A name-based approach to classes of Unicode characters opens up interesting, new
            possibilities. One can use .combining to find combining characters. One can
            use .latin to find a close approximation to all Latin characters, or
                .greek to all Greek ones. Using .with gets all Unicode
            characters that have a "withness" property, i.e., characters that are composed of more
            than one element (whether or not Unicode decomposition is defined). Similarly
                .with.and points to characters that have at least three components
            (e.g., ᵳ U+1D73 LATIN SMALL LETTER R WITH FISHHOOK AND MIDDLE TILDE), whereas
                .with!and points to those that have only two components (e.g., À U+00C0
            LATIN CAPITAL LETTER A WITH GRAVE).
Dot- and exclamation-mark-selectors have quite a bit of potential, but they are not
            useful for an important desideratum I had set out at the beginning of this section,
            namely, the creation of character classes based upon the relationship of composite and
            component characters. Let us suppose, for example, I want to build the Unicode class of
            variants on the Latin letter b. If I use .b as described above I capture
            290 characters, including many that are not directly related to the Latin letter.
            Perhaps that's fine for some situations, but in others, I am looking for a much smaller
            class, namely the twenty decomposable variations of b, according to the Unicode
            database.
For such cases, we can adopt a different type of notation, with a +
            signifying that the string that follows should be expanded to all composites. That is,
                +b would expand to bᵇḃḅḇ⒝ⓑ㍴㏔㏝ｂ𝐛𝑏𝒃𝒷𝓫𝔟𝕓𝖇𝖻𝗯𝘣𝙗𝚋
            (in Unicode version 13.0). +bB would expand to include both upper- and
            lowercase results. 
A kind of reversal could be implemented with a similar syntax, i.e., a minus instead
            of a plus, so that, for example, -ḃãäḅẫậ would return simply
                baabaa. Such a transformation is not as pressing a need as the other
            cases, but if we are going to the trouble of building composites, one might as well
            provide a similar way to reverse course. 

Bringing \u Back
Much of this re-imagination took place in the course of developing the function
            library of the Text Alignment Network (TAN, http://textalign.net), a suite of XML formats intended to make Text Encoding
            Initiative (TEI) files more semantically and syntactically interoperable. I soon
            realized that my tinkering with regular expressions could have very broad, practical
            applications, relevant to those who might not care much about TEI or TAN. So I isolated
            this part of the TAN function library as a separate package or module, TAN-regex, to support
            quick, easy imports or includes by projects that did not want to fetch the entire TAN
            function library.
The namespace of TAN-regex is identical to the TAN namespace,
                tag:textalign.net,2015:ns (a tag URN), but tethered to the prefix
                rgx:. (You can adopt whatever prefix you like in your host
            application.)
I had considered the idea of incorporating the new syntax directly into the escape
            class \p{}. Although this idea had merits, I decided against it, mainly
            because I wanted to compel anyone writing or reading the code to understand that this
            was a clear departure from the core specifications. I also did not want to try to
            support the negated class builder, \P{}. So I opted for \u{}.
            It was nice to have \u back.
The primary goal of the small XSLT library TAN-regex was to write versions of
                fn:matches(), fn:replace(), fn:tokenize(),
            and fn:analyze-string() that supported \u. The challenge could
            be reduced to ensuring that any instance of \u{} in the standard parameter
                $pattern was replaced with a string for the intended character class,
            padded by [ and ] if not embedded as part of a character
            class.
The master data for Unicode characters, including their names, is the Unicode
            Character Database, a set of tables in plain text, e.g., https://unicode.org/Public/13.0.0/ucd/, upon which code charts and related
            resources (e.g., Common Locale Data Repository) depend. This master data is also
            converted to an XML format, e.g., https://www.unicode.org/Public/13.0.0/ucdxml/. For name-word constructors, I opted to
            use the version that excluded the Unihan characters, since their names (all numbered)
            would not be useful objects of query. The TAN-regex stylesheet
                ucd/ucd-names.xsl converts a given version of the XML version of the
            Unicode Character Database to a simple catalog of <char>s with name
            words tokenized, lowercased, and placed in <n>s, with results saved in
            the subdirectory ucd at, e.g., ucd-names.13.0.xml. Creating
            such a file is quite fast, a couple of seconds.
The decomposition process cycles through the XML database that includes the Unihan
            characters, to ensure complete decomposition. The TAN-regex stylesheet
                ucd/ucd-decomp.xsl converts the UCD database to two different forms.
            One type of output, e.g., ucd-decomp-simple.13.0.xml, is slim, and features
            a pair of elements, <mapString> and <transString> with
            text nodes of identical length. They provide a simple one-for-one translation for those
            precomposed characters that can be resolved to a single base character. The other output
            file, e.g., ucd-decomp.13.0.xml, is a collection of <char>s
            with a child <b> for each base component. For both types of output,
            decomposition must be performed against the Unicode database recursively, because some
            characters are defined as decomposing to characters that themselves admit decomposition.
            The iterative function requires at least four passes through the UCD database to ensure
            a complete inventory of atomic components. Therefore, running
                ucd-decomp.xsl takes a couple of minutes.
In the end the TAN-regex subdirectory ucd is about fifty megabytes,
            populated as it is with optimized data from Unicode version 5.1 through 13.0 (at
            present). Supporting each Unicode version allows users to create regular expressions
            based upon a particular Unicode version, should that be desired.
To access the function library simply include or import TAN-regex.xsl,
            the only XSLT file of note at the root of the project. (But don't forget to also get a
            copy of the subdirectory ucd.) The functions do not depend upon templates,
            so the library can be used via <xsl:import> or
                <xsl:include> equally, your choice.
Most users will care only about the functions rgx:matches(),
                rgx:replace(), rgx:tokenize(), and
                rgx:analyze-string(). But those shadow functions rely upon component
            functions that will be helpful for developers.
Each one relies directly upon rgx:regex(). If that function detects the
            new escape class, \u{}, it will invoke rgx:parse-regex(),
            which takes as parameters a regular expression and a Unicode version number and returns
            an XML tree fragment whose string value is a suitable substitution for
                $pattern. 
The value within the curly brackets of any \u{} is interpreted by
                rgx:process-regex-escape-u(), which also requires a Unicode version.
            The curly brackets allow multiple items, space-delimited. Each item is checked. If the
            item matches a hexadecimal number (perhaps two of them separated by a hyphen), it is
            converted to the corresponding codepoint. 
If an item starts with +, the output of
                rgx:string-to-composites() is returned. That function takes a string,
            breaks it into characters, and for each character returns a string that concatenates all
            characters that use the input character as a component.
If an item starts with -, the process invokes
                rgx:string-base(), a function that performs limited decompositon of
            Unicode characters. The input is passed along with a Unicode version through
                fn:translate(), which takes the relevant version of
                ucd-decomp-simple.*.*.xml to convert decomposable characters that can
            be reduced to one major base character. If there is no such one-to-one correspondence,
            the original character is returned. rgx:string-base() is similar to
                fn:normalize-unicode(., 'NFKD'), except that all component parts that
            are not the sole base letter are discarded. It is actually closer in spirit to
                fn:lower-case() and fn:upper-case() in that the length of
            the input string is always preserved, keeping intact any characters that cannot be so
            reduced.
If an item starts with . or !, it is treated as a name
            query, and rgx:get-chars-by-name() returns matching characters, treating a
            string prefixed by . as a word that must appear in a character name, and
            one prefixed by ! as a word that must not appear. Names equivalences are
            not case-sensitive. This function returns fragments from the Unicode names database, for
            example:

            <char cp="0029" val=")">
   <na>
      <n>right</n>
      <n>parenthesis</n>
   </na>
</char>

        
Each <n> can be capitalized and string-joined to render the character
            name in the customary fashion. Perhaps an even more convenient way to get such fragments
            is with the key get-chars-by-name, e.g., key('get-chars-by-name',
                ('parenthesis'), $default-ucd-names-db). You may then filter and sort the
            results as you like.
rgx:parse-regex() takes the results from
                rgx:process-regex-escape-u() and pads the output string in square
            brackets if the original \u{} is not within the context of a character
            class; if it is, the string is returned unchanged.
TAN-regex comes with a few other related functions that could be useful in certain
            contexts. The functions that convert hexadecimal numbers to decimal and vice versa are
            generalized, to allow conversions to and from bases 2 through 16 and 64
                (rgx:dec-to-n() and rgx:n-to-dec()).
The function rgx:string-to-components(), the inverse of
                rgx:string-to-composites(), takes an input string and returns a
            sequence of strings. It chops the input into characters, and for each character returns
            its component characters. If the character does not decompose, the character itself is
            returned.
rgx:string-base() and rgx:string-to-components() are two
            quick ways to handle decomposition. They rely upon a decomposition database provided by
                rgx:get-ucd-decomp-db(), whose tree can be used to build your own
            functions. For example, you could use on the decomposition database the XPath expression
                /*/char[b[1]/@gc eq 'Nd'][b[2]/@gc eq 'Sm'], which matches the twenty
            characters that decompose into first a numeral and second a symbol, such as ¼. A sample
            tree fragment:
<char cp="00BC" val="¼">
   <b gc="Nd">1</b>
   <b gc="Sm">⁄</b>
   <b gc="Nd">4</b>
</char>
rgx:string-to-components() is for all intents and purposes the same as
                for $i in fn:string-to-codepoints($string) return
                fn:normalize-unicode(fn:codepoints-to-string($i), 'NFKD'), i.e., a sequence
            of strings that correspond one-to-one to each character in the input string. When
            concatenated, the output of rgx:string-to-components() should be identical
            to fn:normalize-unicode($string, 'NFKD'). The sequence form of output in
                rgx:string-to-components() might be useful in cases where a developer
            wishes to intercept the decomposing normalization process.
But rgx:string-base(.) is importantly different. The length of output
            always matches the length of the input string, and makes substitutions only if a
            composite can be replaced by a single distinct base character. It would be comparable to
                fn:substring(fn:normalize-unicode(., 'NFKD'), 1, 1) if every composite
            Unicode character was made of one base character followed by zero or more non-base
            characters. But many composite Unicode characters do not fit this model. Some have more
            than one base character (e.g., ⅐ U+2150 VULGAR FRACTION ONE SEVENTH) and others begin
            with a non-base character (e.g., ำ U+0E33 THAI CHARACTER SARA AM, ⒜ U+249C PARENTHESIZED
            LATIN SMALL LETTER A). The purpose of rgx:string-base() is not to imitate
            the decomposition process, but to provide a type of normalization comparable to
                fn:lower-case() and fn:upper-case(), for relaxed string
            comparisons. The escape class \u{-} is but one beneficiary; the function is
            also useful in contexts where two strings need to be relaxed to be compared.
All the above functions can be run against any version of Unicode from 5.1. If no
            version is supplied, the most recent version of Unicode will be used (currently 13.0).
            If you are writing a regular expression that requires a specific version of Unicode, put
            the version number in the $flags parameter, along with any other flags,
            e.g., rgx:tokenize($my-string, '\u{+b}','13.0i').

Testing \u
TAN-regex includes a subdirectory, tests, which has a stylesheet
                test.xsl to produce ad hoc results from the functions. The subdirectory
            also includes a battery of XSpec tests, tan-regex.spec. All XSpec tests are
            currently successful.
Experiments run with TAN-regex based on Unicode version 13.0 produced some surprising
            results. Comments below are documented in test.xsl.output.xml.
As might be expected, none of the 43,026 characters that matched
                !combining (i.e., characters that do not have the word COMBINING in
            their name) also match the category for combining marks, \p{M}. You might
            expect the reverse to be true, that the inverse category .combining and
                \p{M} would result in coterminous sets. But only 330 of the 462
            characters that matched .combining also matched \p{M}. After
            some diagnosis, it turned out that the processor, likely because of the underlying Java
            version (1.8, build 25.261), did not recognize the other 132 characters, and classified
            them as not assigned, \p{Cn}.
Of the 1,157 characters matching .symbol, 213 do not match the symbol
            category, \p{S}. This is not a bug or anomaly. It simply shows that there
            are many Unicode characters that have "SYMBOL" in their name but are not classified as
            symbols. For example, ϕ U+03D5 GREEK PHI SYMBOL is classified as a lowercase letter,
                \p{Ll}. So the constructor \u{.symbol] usefully allows us
            to construct a class of Unicode characters that people might treat as symbols,
            irrespective of their Unicode general category.
There are 946 characters matching .digit and .numeral. Of
            these, 297 do not have the number property, \p{N}. After weeding out those
            characters that were not classified by Saxon, 36 remain, such as ݳ U+0773 ARABIC LETTER
            ALEF WITH EXTENDED ARABIC-INDIC DIGIT TWO ABOVE and ꣧ U+A8E7 COMBINING DEVANAGARI DIGIT
            SEVEN. Those examples show that some Unicode characters have secondary qualities that
            are communicated only through the name. TAN-regex's \u provides a unique
            way to query and fetch such secondary characteristics. This quality should be seen as
            complementing (and not replacing) the already powerful method of accessing Unicode
            characters through their general category properties (e.g., \p{L} for
            letters).

Caveats
TAN-regex fuctions based on \u{} may penalize some applications, if not
            properly deployed. 
Consider an XML file with 125,000 leaf nodes (an XML document with fifty elements on
            level 2 each with fifty elements, each with another fifty), each with some text, and an
            XSLT stylesheet that checks for a match on each leaf. When the leaf template uses
            something simple such as fn:matches(., 'A'), the process on a Dell Inspiron
            5570 (Intel Core 1.6GHz i5-8250U with 4 physical and 8 logical cores) takes 0.5 seconds.
            Using rgx:matches(., 'A') takes 1.1 seconds, perhaps an acceptable
            increase. When \u is introduced, this increases somewhat:
                rgx:matches(., '\u{.circle}') takes 2.7 seconds, provided the processor
            supports @cache on XSLT 3.0 functions (Saxon PE and EE do so, but Saxon HE
            does not).
When working with a processor that does not support cached functions,
                rgx:matches(., '\u{.circle}') takes 9359.3 seconds (one hour forty-six
            minutes), because the value of .circle is calculated time and again. The
            solution in such a situation is to tether \u{.circle} to a global variable,
            so that it is calculated only once. To do this, first define a global variable:

            <xsl:variable name="regex-circle" select="rgx:regex('\u{.circle}')"/>

        
Then invoke that global variable as needed, for example, rgx:matches(.,
                concat($regex-circle, '\s+', $regex-circle)) finds any two characters with
            "circle" in their Unicode name, separated by one or more space characters. (For further
            efficiency, you might bind the composite value of the second parameter to a global
            variable.)
When the process on the 125K leaf-node file is shifted to a global variable approach,
                fn:matches(., $regex-circle) takes 2.0 seconds. The corresponding
                rgx:matches(., $regex-circle) takes 2.8 seconds. 
Even if you are using a processor that handles cached XSLT 3.0 functions, you will
            find it useful to build global variables with rgx:regex(), to be invoked
            mnemonically where you like. For example:
<xsl:variable name="class-of-chars-with-symbol-in-name" 
   select="rgx:regex('\u{.symbol}')"/>

<xsl:function name="my:strip-symbols" as="xs:string?">
  . . . . . 
    <xsl:sequence select="rgx:replace($input, $class-of-chars-with-symbol-in-name, '')"/>
  . . . . . 
</xsl:function>
Keep in mind that rgx:regex() will convert \u{} to a
            character class, framed by square brackets. If you want only a string of characters,
            use, e.g., rgx:process-regex-escape-u(), whose results permit further
            processing as desired. 
It might be objected that composition and decomposition via + and - are unnecessary. 
Rather than building a class of composites, one could simply first pass the input
            through fn:normalize-unicode($input, 'NFKD'), to convert it to component
            parts, then search accordingly. But that approach works in only some cases. If you are
            looking for a sequence of characters, you must anticipate an unknown number of extra
            characters, many but not all combining characters. Take for example the input "ẵbcẚ⒝c".
            When filtered through fn:normalize-unicode() the string expands to length
            eleven (U+0061 U+0306 U+0303 U+0062 U+0063 U+0061 U+02BE U+0028 U+0062 U+0029 U+0063).
            If you are searching for "abc," which you expect to match twice, you cannot use as your
            regular expression 'abc'; you must use something like:
                fn:matches(fn:normalize-unicode('ẵbcẚ⒝c', 'NFKD'),
                'a[\p{M}\p{Pe}\p{Lm}]*\p{Ps}?b[\p{M}\p{Pe}]*c'), and hope that you have
            correctly built the classes of ignorable characters that might follow an a or b. The
            preceding regular expression anticipates the possibility of encountering ẚ U+1E9A, ⒜
            U+249C, or ⒝ U+249D, but it might result in false positives, such as a match on this
            input string: "a]{b)c". Constructing an airtight regular expression under this technique
            might be impossible. For any two strings that have identical NFKD-normalization forms,
            e.g., "⒜⒝⒞" and "(a)(b)(c)", your regular expression will match either both or none,
            which you might not want. Even if you are not so picky, writing a strong regular
            expression under this method can become quite time-consuming and result in unreadable
            code. The TAN-regex equivalent, rgx:matches(., '\u{+a}\u{+b}\u{+c}') is
            faster to write, easier to read, and probably more accurate. 
A close approximation of decomposition (-) is already available to us via XPath
            expressions. For example, \u{-ḃ} is merely another way of saying
                concat('[', fn:substring((fn:normalize-unicode('ḃ', 'NFKD')), 1, 1),
                ']'). That works for this simple example, but many times, as explained above
            in the discussion of rgx:string-base(), the normalized string might bring
            unwanted surprises.
Not every name has a unique name signature (i.e., words in the name alphabetized and
            joined by spaces). About 0.8% of Unicode characters have name signatures that are
            duplicates of the name signature of at least one other character (394 characters in 182
            groups, as of Unicode version 13.0), e.g., ⫓ U+2AD3 SUBSET ABOVE SUPERSET and ⫔ U+2AD4
            SUPERSET ABOVE SUBSET. A future version of TAN-regex may support name component
            order.
One other hazard that needs to be watched for are ambiguous name words. For example,
            "a" can mean either the letter a or it can be the indefinite article. So
                .a!Latin captures not only А U+0410 CYRILLIC CAPITAL LETTER A but also
            ⊅ U+2285 NOT A SUPERSET OF. If you use \u{} you must still study the
            Unicode standard, particularly Character Properties: Name, section 4.8 of
                The Unicode Standard Core Specification.

What To Do with \u
To this point I have depicted TAN-regex and its component functions in broad strokes.
            These are building blocks for other applications. I conclude with an example relevant to
            those of us who work with texts with numerous accents. I illustrate with polytonic
            Greek, but the principle could be applied to other languages. 
When processing ancient Greek texts, we frequently need to normalize the accents.
            Greek has a number of accentuation rules, and it is common for context to demand that an
            acute ΄ accent be switched to grave `. But sometimes we need to switch back. If we wish
            to look a word up in a dictionary, the grave accent must be converted to its normal
            acute version, e.g., ἀδελφὸς → ἀδελφός or ἂν → ἄν. (Note how the ΄ can be one of several
            combining marks.) The problem is a challenge because there are dozens of Greek Unicode
            characters with the acute and grave, in various precomposed configurations. Conversions
            are possible and straightforward, but the most obvious solutions are verbose, and
            time-consuming to build.
To accommodate the need to switch accents on a complex character, TAN-regex includes
            the function rgx:replace-by-char-name(), which shows how to combine and use
            the lower-level TAN-regex functions. The function
                rgx:replace-by-char-name() takes as input a string that should be
            changed (parameter 1), three sequences of strings (parameters 2-4), and an indication
            whether a replacement should be strict (parameter 5). A 6-arity version of the function
            also permits a Unicode version (parameter 6). The string sequences in the second through
            fourth parameters ($words-in-name-to-drop,
                $words-in-replacement-char-name,
                $words-not-in-replacement-char-name) are supposed to be keywords in
            Unicode character names. Changes are made to only those characters in the input string
            whose names have a word that matches the list in $words-in-name-to-drop.
            Those keywords are dropped from the input character's name and the search for names is
            conducted again, using the other two keyword parameters to filter the results. If any
            substitute characters are found, they are returned, otherwise the original character is
            returned.
In the case of the problem above, changing the grave to an acute, one can write
                rgx:replace-by-char-name('ἀδελφὸς ἂν ᾖ.', 'varia', 'oxia', (), true()).
            The input string ἀδελφὸς ἂν ᾖ. ("He should be a brother.") is processed letter by
            letter. Nothing happens unless a letter has a Unicode name with the word VARIA (= grave
            accent). So the only two characters that are affected are the ὸ U+1F78 GREEK SMALL
            LETTER OMICRON WITH VARIA and ἂ U+1F02 GREEK SMALL LETTER ALPHA WITH PSILI AND VARIA. In
            each case "VARIA" is dropped and a search is made for Unicode characters with the rest
            of the name words, as long as they also include the word "OXIA" (= acute). Each of the
            two letters has a single replacement, i.e., U+1F79 GREEK SMALL LETTER OMICRON WITH OXIA
            and U+1F04 GREEK SMALL LETTER ALPHA WITH PSILI AND OXIA. The output is the desired
            change of the grave accents to acute: 'ἀδελφός ἄν ᾖ.' 
Another type of normalization often need to perform on ancient Greek is to drop from
            words any accents that result from enclitics. (An enclitic is a word whose accent shifts
            back to the previous word, similar to the way, when pronouncing the phrase "Codify it,"
            the "it" prompts us to slightly emphasize "fy.") The result is that some Greek words
            have two accents instead of the customary one, e.g., ἄνθρωπός τις ("a certain human
            being"). Tokens need to be adjusted before looking them up in a lexicon or database, so
            we normally want to drop only the second accent and keep the first. This task can be
            cumbersome to do in XSLT because of the many codepoints that represent permutations of
            Greek vowels and their combining marks. Building a regular expression to capture
            double-accented Greek words is quite a chore. And changing the second accent requires a
            choose-when-test operation with a minimum of fourteen branches; probably more, depending
            upon the kinds of decisions being made.
Fortunately, such normalization can be applied in a relatively straightforward manner
            by using both rgx:regex() and
            rgx:replace-by-char-name():<xsl:variable name="greek-pattern-for-accented-vowels"
        select="rgx:regex('\u{.greek.tonos .greek.oxia .greek.varia .greek.perispomeni}')"/>
<xsl:variable name="greek-pattern-for-acute-vowels"
    select="rgx:regex('\u{.greek.tonos .greek.oxia}')"/>
<!-- In the variable below the first word uses U+03CC GREEK SMALL LETTER OMICRON WITH TONOS, 
    the second word U+1F79 GREEK SMALL LETTER OMICRON WITH OXIA. They look identical, but 
    the first is the preferred (normalized) form. -->
<xsl:variable name="greek-words-with-two-accents" select="'σῶσόν σῶσόν'"/>
<xsl:variable name="second-accent-dropped-from-greek" as="xs:string*">
    <xsl:analyze-string select="$greek-words-with-two-accents"
        regex="({$greek-pattern-for-accented-vowels}\S*)({$greek-pattern-for-acute-vowels})">
        <xsl:matching-substring>
            <xsl:value-of select="regex-group(1)"/>
            <xsl:value-of
                select="rgx:replace-by-char-name(regex-group(2), 
                ('oxia', 'tonos', 'with'), (), (), true())"
            />
        </xsl:matching-substring>
        <xsl:non-matching-substring>
            <xsl:value-of select="."/>
        </xsl:non-matching-substring>
    </xsl:analyze-string>
</xsl:variable>
<xsl:value-of select="string-join($second-accent-dropped-from-greek, '')"/>
<!-- The above results in 'σῶσον σῶσον' -->

In the code above, σῶσόν (save) returns σῶσον. ἐλέησόν με (have mercy on me) returns
            ἐλέησον με. 
The processes described above could be replicated, more efficiently, with traditional
            decomposition, replacement on the parts, and then normalization. But that is because my
            example has been Greek decomposable letters. It gets much trickier when there are no
            components, such as switching something that is left-oriented into its equivalent
            right-oriented character. For example, to switch upward-pointing arrows into
            downward-pointing arrows:

            <xsl:variable name="upwards-arrows" as="xs:string" select="'↑↥'"/>
<xsl:value-of select="rgx:replace-by-char-name($upwards-arrows, 'upwards', 'downwards', (), true())"/>

        
The result is ↓↧. This method could be used to develop applications that
            programmatically change chess pieces (U+2654..U+265F), recycling labels
            (U+2673..U+267A), domino tiles (U+1F030..1F09F), or playing cards (U+1F0A)..U+1F0FF).
            The potential for variations is endless. 
TAN-regex is released under a GNU General Public license, to encourage others to
            change, adapt, and improve the code. Updates to the library will be made at https://github.com/textalign/TAN-regex.
Enjoy the new \u!
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