[image: Balisage logo]Balisage: The Markup Conference

A New \u: Extending XPath Regular Expressions for Unicode
Joel Kalvesmaki

Balisage: The Markup Conference 2020
July 28 - 31, 2020

Copyright ©Joel Kalvesmaki, Creative Commons Attribution 4.0 International

How to cite this paper
Kalvesmaki, Joel. "A New \u: Extending XPath Regular Expressions for Unicode." Presented at: Balisage: The Markup Conference 2020, Washington, DC, July 27 - 31, 2020. In Proceedings of Balisage: The Markup Conference 2020.
 Balisage Series on Markup Technologies vol. 25 (2020). https://doi.org/10.4242/BalisageVol25.Kalvesmaki01.

Abstract
Regular expressions from one programming language or environment to the next
 differ in details. The XPath flavor of regular expressions has unrivaled access to
 Unicode code blocks and character classes. But why stop there? In this paper I
 present a small XSLT function library that extends the XPath functions
 fn:matches(), fn:replace(),
 fn:tokenize(), and fn:analyze-string() to permit new ways
 to build classes of Unicode characters, by means of their names and decomposition
 relations.

Balisage: The Markup Conference

 A New \u: Extending XPath Regular Expressions for Unicode

 Table of Contents

 	Title Page

 	XPath Functions, Regular Expressions, and Unicode

 	Reimagining Regular Expressions for Unicode

 	Bringing \u Back

 	Testing \u

 	Caveats

 	What To Do with \u

 	About the Author

 A New \u: Extending XPath Regular Expressions for Unicode

XPath Functions, Regular Expressions, and Unicode
In XPath and XQuery Functions
 3.1, four functions depend upon regular expressions:
 fn:matches(), fn:replace(), fn:tokenize(),
 and fn:analyze-string(). Their regular expressions are defined on the basis
 of XML Schema Part 2: Datatypes
 Second Edition (herein XS2), which has been extended to include start- and
 end-of-string matches, reluctant quantifiers, and back-references. To build classes of
 Unicode characters one uses \p{} or its converse \P{},
 explained in XS2's Appendix F,
 Character Classes. The curly brackets for \p take two types of
 construction:
	Categories: A capital letter
 ([LMNPZSC]) specifying a general Unicode category, perhaps
 followed by a lowercase letter to specify a subcategory. This feature is very
 handy for finding letters (\p{L}), private use area characters
 (\p{Co}), digits from any system of numeration
 (\p{N}), or the inverse of these categories (by replacing
 \p with \P).

	Blocks: "Is" followed by a string
 ([a-zA-Z0-9-]+) that corresponds to the name of a block of
 Unicode characters. This feature is very useful for finding all Arabic
 (\p{IsArabic}) characters, all arrows
 (\p{IsArrows}), general punctuation
 (\p{IsGeneralPunctuation}), or the inverse of these categories
 (by replacing \p with \P).

In most other programming languages, regular expressions do not support
 \p{}, or if they do, they are based on relatively simple POSIX
 character classes, which are restricted to a limited set of key terms (e.g.,
 Lower, ASCII, Alnum,
 XDigit).
Some flavors of regular expressions access Unicode characters via \u.
 JavaScript and Python, for example, allow \uFFFF, where FFFF
 is a single hexadecimal number identifying a codepoint. Perl uses a slightly different
 syntax: \x{FFFF}.
XPath does not have \u, but it doesn't need it, as used in other
 programming languages. The entity, e.g., {, is a sufficient
 replacement for \u. And it's better. The entity need not be padded with
 zeros, and can be more than four digits. That is, it can access characters outside plane
 one, U+10000 and beyond. Entities can be marshalled to define a range using the hyphen
 (e.g., [j-±]).
In sum, as XML developers, we have unparalleled access to Unicode characters in our
 regular expressions. And we can expand on that excellence. In this article I introduce
 TAN-regex, an XSLT-based
 library of XPath functions that extend regular expressions to capture Unicode characters
 based upon their name and their relationships to composite and base characters.

Reimagining Regular Expressions for Unicode
The characters that make up the Unicode standard are a motley bunch. We who delve into
 its darker corners probably have our favorite bêtes noires. As a scholar who works with
 ancient Greek, I find the Greek and Coptic blocks to be the most visible witness to
 Unicode's choppy progress. Sets of characters from both languages spawned new, dedicated
 blocks (e.g., Coptic U+2C80..2CFF, Greek Extended U+1F00..1FFF), and Greek characters as
 individuals or small groups have popped up here and there, in assorted blocks. Although
 the general idea has been to keep blocks consistent and complete, that ideal is not
 often realized. It would be nice to access characters that naturally group with one
 another but straddle Unicode blocks. Desideratum one.
The Supplemental Punctuation block (U+2E00..U+2E2F) has a number of characters I must
 access regularly, to process ancient and medieval inscriptions, e.g., ⹄ U+2E44 DOUBLE
 SUSPENSION MARK (in Unicode Notational
 Conventions, ranges are expressed with two dots and the name is rendered in
 small capitals). Although that character is in Unicode because of a proposal I wrote, I
 regularly forget the hexadecimal number, and must look it up. When working with
 characters outside the ASCII block we customarily have at hand supplementary tools.
 Within oXygen XML editor, the Character Map
 is quite valuable. For general use, I personally prefer BabelMap
 (Windows only) and Richard Ishida's Unicode code converter,
 the former to find and copy characters and the latter to analyze them. The recently
 redesigned home page for Unicode is also quite
 useful. You will no doubt think of other tools you like. Those tools are essential, but
 they can also be an inconvenient departure from the algorithm being constructed. It
 would be nice to get those characters in a human-friendly way while staying mentally
 within my XSLT code. Desideratum two.
Sometimes I am looking not for a single character but for all permutations of that
 letter. That is, if I am searching a text for every variation of b, I would like to
 build a character class for any character that according to the Unicode database has a b
 as a component (in addition to b itself, there are 20 such characters, from U+1D47
 MODIFIER LETTER SMALL B to U+1D68B MATHEMATICAL MONOSPACE SMALL B). In this case,
 auxiliary tools are of limited use, requiring ad hoc browsing and patchwork results.
 Unicode decomposition (see Unicode Standard Annex 15)
 via fn:normalize-unicode(*, 'NFKD') is not a help here, because that only
 helps you get from a precomposed character to its components. I am interested in the
 reverse of the process. Desideratum three.
So, despite XPath's deep engagement with Unicode, there remain three key obstacles to
 building classes of Unicode characters. Many Unicode character classes I wish to build
 do not map onto either a code block or a Unicode property—the two types of access
 provided by \p{}. Those constructors cover either too much or too little.
 Writing a regular expression based on hexadecimal entities can be cumbersome and
 haphazard, requiring correct use of external tools. Reading it can be equally
 challenging. And going from a character to its composites can be tricky.
Most of the Unicode character classes I build are united by some logic. In some cases,
 I know I could build a character class based upon words in the names of the individual
 Unicode characters. So I began to wonder, couldn't I simply use the Unicode name DOUBLE
 SUSPENSION MARK, and not worry about remembering the hexadecimal value of the codepoint?
 Or if I wanted all suspenion marks, not just mine, couldn't I just write "SUSPENSION
 MARK"? Doing so would make reading and writing a regular expression much easier. And it
 seems consistent with current conventions. After all, I can already invoke the name of a
 Unicode block in my regular expression. Why not also the name of a character, equally
 immutable?
The proposition might sound risky. Yes, Unicode names are unique and stable, but there
 are characters that for all intents and purposes are misnamed, so to use a name runs the
 risk of getting characters you did not want and failing to get those you did.
We already run that risk. We face it each time we use \p{} or even
 \w (word characters), whose results can sometimes surprise or annoy.
 Unicode nomenclature and classification can run against our druthers. If
 \p{} were extended to Unicode character names, we would need simply to
 extend the caution we already must exercise. For example, if I am looking for the
 medieval/late antique Greek numeral 6, the ϛ (U+03DB), I cannot use "episemon," the
 oldest name for this character (ἐπίσημον, attested 2nd c. CE by Clement of Alexandria).
 Instead, I need to familiarize myself with, and use, the official name, GREEK SMALL
 LETTER STIGMA, regardless of history (the earliest appearance I have found for "stigma"
 dates to an 18th century manuscript).
I also realized that we regularly remember keywords, but not necessarily their order
 within a name. If I wish to cite the name for ỗ (U+1ED7) is it LATIN SMALL LETTER O WITH
 CIRCUMFLEX AND TILDE or ...TILDE AND CIRCUMFLEX? It would be nice if once did not have
 to know. A Unicode name starts with the centermost components, but that principle helps
 only slightly, because there's no reason why I should presume to know which component is
 drawn closer to the center, or that Unicode decisions have always been consistent. Why
 not build a class constructor simply through select keywords in the name?
That is, I propose to break any character's name into individual words, treating each
 one like a property, much like space-delimited values of @class in HTML
 elements. If you are familiar with HTML conventions, you might immediately see the
 upside to tagging Unicode characters like this:

<div id="x1ed5" class="above and circumflex hook latin letter o small with">ổ</div>
<div id="x1ed6" class="and capital circumflex latin letter o tilde with">Ỗ</div>
<div id="x1ed7" class="and circumflex latin letter o small tilde with">ỗ</div>
<div id="x1ed8" class="and below capital circumflex dot latin letter o">Ộ</div>
.

In each @class, words in the character name have been intentionally set
 lowercase and alphabetized, to show that, for our purposes, order and capitalization may
 be treated arbitrarily. This name signature, i.e., the character's name parts
 alphabetized and space-joined, is not necessarily unique, and should not be treated as
 an identifier. See section “Caveats”.
If we wanted to select the ỗ in the example above, the third <div>, to
 style it in a certain way, in our CSS stylesheet we could simply write:
 .o.circumflex.tilde.small. Because only one codepoint has those four
 words in its name, we do not need to cite all eight words (but we could if we wanted).
 From there we can expand the class as needed. If we wanted to include the uppercase
 version, we could simply drop the word "small": .o.circumflex.tilde, which
 matches exactly two characters (as of Unicode version 13.0). Dropping other words
 increases the size of the set.
The dot-notation approach used in CSS + HTML classes can then be leveraged to build a
 wide variety of regular expression classes based on Unicode character names. Pure dot
 notation might create a class that is too large for some purposes, so the syntax should
 provide a way to exclude classes. For example, we might want all letter U's with
 diaereses, but not those with a caron (ˇ), i.e., drop Ǚ and ǚ. The exclamation mark to
 mean "not" has precedence (albeit not in CSS selectors), and seems intuitive as a mark
 of exclusion; for the previous example, we would write something like
 .u.diaeresis!caron.
A name-based approach to classes of Unicode characters opens up interesting, new
 possibilities. One can use .combining to find combining characters. One can
 use .latin to find a close approximation to all Latin characters, or
 .greek to all Greek ones. Using .with gets all Unicode
 characters that have a "withness" property, i.e., characters that are composed of more
 than one element (whether or not Unicode decomposition is defined). Similarly
 .with.and points to characters that have at least three components
 (e.g., ᵳ U+1D73 LATIN SMALL LETTER R WITH FISHHOOK AND MIDDLE TILDE), whereas
 .with!and points to those that have only two components (e.g., À U+00C0
 LATIN CAPITAL LETTER A WITH GRAVE).
Dot- and exclamation-mark-selectors have quite a bit of potential, but they are not
 useful for an important desideratum I had set out at the beginning of this section,
 namely, the creation of character classes based upon the relationship of composite and
 component characters. Let us suppose, for example, I want to build the Unicode class of
 variants on the Latin letter b. If I use .b as described above I capture
 290 characters, including many that are not directly related to the Latin letter.
 Perhaps that's fine for some situations, but in others, I am looking for a much smaller
 class, namely the twenty decomposable variations of b, according to the Unicode
 database.
For such cases, we can adopt a different type of notation, with a +
 signifying that the string that follows should be expanded to all composites. That is,
 +b would expand to bᵇḃḅḇ⒝ⓑ㍴㏔㏝ｂ𝐛𝑏𝒃𝒷𝓫𝔟𝕓𝖇𝖻𝗯𝘣𝙗𝚋
 (in Unicode version 13.0). +bB would expand to include both upper- and
 lowercase results.
A kind of reversal could be implemented with a similar syntax, i.e., a minus instead
 of a plus, so that, for example, -ḃãäḅẫậ would return simply
 baabaa. Such a transformation is not as pressing a need as the other
 cases, but if we are going to the trouble of building composites, one might as well
 provide a similar way to reverse course.

Bringing \u Back
Much of this re-imagination took place in the course of developing the function
 library of the Text Alignment Network (TAN, http://textalign.net), a suite of XML formats intended to make Text Encoding
 Initiative (TEI) files more semantically and syntactically interoperable. I soon
 realized that my tinkering with regular expressions could have very broad, practical
 applications, relevant to those who might not care much about TEI or TAN. So I isolated
 this part of the TAN function library as a separate package or module, TAN-regex, to support
 quick, easy imports or includes by projects that did not want to fetch the entire TAN
 function library.
The namespace of TAN-regex is identical to the TAN namespace,
 tag:textalign.net,2015:ns (a tag URN), but tethered to the prefix
 rgx:. (You can adopt whatever prefix you like in your host
 application.)
I had considered the idea of incorporating the new syntax directly into the escape
 class \p{}. Although this idea had merits, I decided against it, mainly
 because I wanted to compel anyone writing or reading the code to understand that this
 was a clear departure from the core specifications. I also did not want to try to
 support the negated class builder, \P{}. So I opted for \u{}.
 It was nice to have \u back.
The primary goal of the small XSLT library TAN-regex was to write versions of
 fn:matches(), fn:replace(), fn:tokenize(),
 and fn:analyze-string() that supported \u. The challenge could
 be reduced to ensuring that any instance of \u{} in the standard parameter
 $pattern was replaced with a string for the intended character class,
 padded by [and] if not embedded as part of a character
 class.
The master data for Unicode characters, including their names, is the Unicode
 Character Database, a set of tables in plain text, e.g., https://unicode.org/Public/13.0.0/ucd/, upon which code charts and related
 resources (e.g., Common Locale Data Repository) depend. This master data is also
 converted to an XML format, e.g., https://www.unicode.org/Public/13.0.0/ucdxml/. For name-word constructors, I opted to
 use the version that excluded the Unihan characters, since their names (all numbered)
 would not be useful objects of query. The TAN-regex stylesheet
 ucd/ucd-names.xsl converts a given version of the XML version of the
 Unicode Character Database to a simple catalog of <char>s with name
 words tokenized, lowercased, and placed in <n>s, with results saved in
 the subdirectory ucd at, e.g., ucd-names.13.0.xml. Creating
 such a file is quite fast, a couple of seconds.
The decomposition process cycles through the XML database that includes the Unihan
 characters, to ensure complete decomposition. The TAN-regex stylesheet
 ucd/ucd-decomp.xsl converts the UCD database to two different forms.
 One type of output, e.g., ucd-decomp-simple.13.0.xml, is slim, and features
 a pair of elements, <mapString> and <transString> with
 text nodes of identical length. They provide a simple one-for-one translation for those
 precomposed characters that can be resolved to a single base character. The other output
 file, e.g., ucd-decomp.13.0.xml, is a collection of <char>s
 with a child for each base component. For both types of output,
 decomposition must be performed against the Unicode database recursively, because some
 characters are defined as decomposing to characters that themselves admit decomposition.
 The iterative function requires at least four passes through the UCD database to ensure
 a complete inventory of atomic components. Therefore, running
 ucd-decomp.xsl takes a couple of minutes.
In the end the TAN-regex subdirectory ucd is about fifty megabytes,
 populated as it is with optimized data from Unicode version 5.1 through 13.0 (at
 present). Supporting each Unicode version allows users to create regular expressions
 based upon a particular Unicode version, should that be desired.
To access the function library simply include or import TAN-regex.xsl,
 the only XSLT file of note at the root of the project. (But don't forget to also get a
 copy of the subdirectory ucd.) The functions do not depend upon templates,
 so the library can be used via <xsl:import> or
 <xsl:include> equally, your choice.
Most users will care only about the functions rgx:matches(),
 rgx:replace(), rgx:tokenize(), and
 rgx:analyze-string(). But those shadow functions rely upon component
 functions that will be helpful for developers.
Each one relies directly upon rgx:regex(). If that function detects the
 new escape class, \u{}, it will invoke rgx:parse-regex(),
 which takes as parameters a regular expression and a Unicode version number and returns
 an XML tree fragment whose string value is a suitable substitution for
 $pattern.
The value within the curly brackets of any \u{} is interpreted by
 rgx:process-regex-escape-u(), which also requires a Unicode version.
 The curly brackets allow multiple items, space-delimited. Each item is checked. If the
 item matches a hexadecimal number (perhaps two of them separated by a hyphen), it is
 converted to the corresponding codepoint.
If an item starts with +, the output of
 rgx:string-to-composites() is returned. That function takes a string,
 breaks it into characters, and for each character returns a string that concatenates all
 characters that use the input character as a component.
If an item starts with -, the process invokes
 rgx:string-base(), a function that performs limited decompositon of
 Unicode characters. The input is passed along with a Unicode version through
 fn:translate(), which takes the relevant version of
 ucd-decomp-simple.*.*.xml to convert decomposable characters that can
 be reduced to one major base character. If there is no such one-to-one correspondence,
 the original character is returned. rgx:string-base() is similar to
 fn:normalize-unicode(., 'NFKD'), except that all component parts that
 are not the sole base letter are discarded. It is actually closer in spirit to
 fn:lower-case() and fn:upper-case() in that the length of
 the input string is always preserved, keeping intact any characters that cannot be so
 reduced.
If an item starts with . or !, it is treated as a name
 query, and rgx:get-chars-by-name() returns matching characters, treating a
 string prefixed by . as a word that must appear in a character name, and
 one prefixed by ! as a word that must not appear. Names equivalences are
 not case-sensitive. This function returns fragments from the Unicode names database, for
 example:

 <char cp="0029" val=")">
 <na>
 <n>right</n>
 <n>parenthesis</n>
 </na>
</char>

Each <n> can be capitalized and string-joined to render the character
 name in the customary fashion. Perhaps an even more convenient way to get such fragments
 is with the key get-chars-by-name, e.g., key('get-chars-by-name',
 ('parenthesis'), $default-ucd-names-db). You may then filter and sort the
 results as you like.
rgx:parse-regex() takes the results from
 rgx:process-regex-escape-u() and pads the output string in square
 brackets if the original \u{} is not within the context of a character
 class; if it is, the string is returned unchanged.
TAN-regex comes with a few other related functions that could be useful in certain
 contexts. The functions that convert hexadecimal numbers to decimal and vice versa are
 generalized, to allow conversions to and from bases 2 through 16 and 64
 (rgx:dec-to-n() and rgx:n-to-dec()).
The function rgx:string-to-components(), the inverse of
 rgx:string-to-composites(), takes an input string and returns a
 sequence of strings. It chops the input into characters, and for each character returns
 its component characters. If the character does not decompose, the character itself is
 returned.
rgx:string-base() and rgx:string-to-components() are two
 quick ways to handle decomposition. They rely upon a decomposition database provided by
 rgx:get-ucd-decomp-db(), whose tree can be used to build your own
 functions. For example, you could use on the decomposition database the XPath expression
 /*/char[b[1]/@gc eq 'Nd'][b[2]/@gc eq 'Sm'], which matches the twenty
 characters that decompose into first a numeral and second a symbol, such as ¼. A sample
 tree fragment:
<char cp="00BC" val="¼">
 <b gc="Nd">1
 <b gc="Sm">⁄
 <b gc="Nd">4
</char>
rgx:string-to-components() is for all intents and purposes the same as
 for $i in fn:string-to-codepoints($string) return
 fn:normalize-unicode(fn:codepoints-to-string($i), 'NFKD'), i.e., a sequence
 of strings that correspond one-to-one to each character in the input string. When
 concatenated, the output of rgx:string-to-components() should be identical
 to fn:normalize-unicode($string, 'NFKD'). The sequence form of output in
 rgx:string-to-components() might be useful in cases where a developer
 wishes to intercept the decomposing normalization process.
But rgx:string-base(.) is importantly different. The length of output
 always matches the length of the input string, and makes substitutions only if a
 composite can be replaced by a single distinct base character. It would be comparable to
 fn:substring(fn:normalize-unicode(., 'NFKD'), 1, 1) if every composite
 Unicode character was made of one base character followed by zero or more non-base
 characters. But many composite Unicode characters do not fit this model. Some have more
 than one base character (e.g., ⅐ U+2150 VULGAR FRACTION ONE SEVENTH) and others begin
 with a non-base character (e.g., ำ U+0E33 THAI CHARACTER SARA AM, ⒜ U+249C PARENTHESIZED
 LATIN SMALL LETTER A). The purpose of rgx:string-base() is not to imitate
 the decomposition process, but to provide a type of normalization comparable to
 fn:lower-case() and fn:upper-case(), for relaxed string
 comparisons. The escape class \u{-} is but one beneficiary; the function is
 also useful in contexts where two strings need to be relaxed to be compared.
All the above functions can be run against any version of Unicode from 5.1. If no
 version is supplied, the most recent version of Unicode will be used (currently 13.0).
 If you are writing a regular expression that requires a specific version of Unicode, put
 the version number in the $flags parameter, along with any other flags,
 e.g., rgx:tokenize($my-string, '\u{+b}','13.0i').

Testing \u
TAN-regex includes a subdirectory, tests, which has a stylesheet
 test.xsl to produce ad hoc results from the functions. The subdirectory
 also includes a battery of XSpec tests, tan-regex.spec. All XSpec tests are
 currently successful.
Experiments run with TAN-regex based on Unicode version 13.0 produced some surprising
 results. Comments below are documented in test.xsl.output.xml.
As might be expected, none of the 43,026 characters that matched
 !combining (i.e., characters that do not have the word COMBINING in
 their name) also match the category for combining marks, \p{M}. You might
 expect the reverse to be true, that the inverse category .combining and
 \p{M} would result in coterminous sets. But only 330 of the 462
 characters that matched .combining also matched \p{M}. After
 some diagnosis, it turned out that the processor, likely because of the underlying Java
 version (1.8, build 25.261), did not recognize the other 132 characters, and classified
 them as not assigned, \p{Cn}.
Of the 1,157 characters matching .symbol, 213 do not match the symbol
 category, \p{S}. This is not a bug or anomaly. It simply shows that there
 are many Unicode characters that have "SYMBOL" in their name but are not classified as
 symbols. For example, ϕ U+03D5 GREEK PHI SYMBOL is classified as a lowercase letter,
 \p{Ll}. So the constructor \u{.symbol] usefully allows us
 to construct a class of Unicode characters that people might treat as symbols,
 irrespective of their Unicode general category.
There are 946 characters matching .digit and .numeral. Of
 these, 297 do not have the number property, \p{N}. After weeding out those
 characters that were not classified by Saxon, 36 remain, such as ݳ U+0773 ARABIC LETTER
 ALEF WITH EXTENDED ARABIC-INDIC DIGIT TWO ABOVE and ꣧ U+A8E7 COMBINING DEVANAGARI DIGIT
 SEVEN. Those examples show that some Unicode characters have secondary qualities that
 are communicated only through the name. TAN-regex's \u provides a unique
 way to query and fetch such secondary characteristics. This quality should be seen as
 complementing (and not replacing) the already powerful method of accessing Unicode
 characters through their general category properties (e.g., \p{L} for
 letters).

Caveats
TAN-regex fuctions based on \u{} may penalize some applications, if not
 properly deployed.
Consider an XML file with 125,000 leaf nodes (an XML document with fifty elements on
 level 2 each with fifty elements, each with another fifty), each with some text, and an
 XSLT stylesheet that checks for a match on each leaf. When the leaf template uses
 something simple such as fn:matches(., 'A'), the process on a Dell Inspiron
 5570 (Intel Core 1.6GHz i5-8250U with 4 physical and 8 logical cores) takes 0.5 seconds.
 Using rgx:matches(., 'A') takes 1.1 seconds, perhaps an acceptable
 increase. When \u is introduced, this increases somewhat:
 rgx:matches(., '\u{.circle}') takes 2.7 seconds, provided the processor
 supports @cache on XSLT 3.0 functions (Saxon PE and EE do so, but Saxon HE
 does not).
When working with a processor that does not support cached functions,
 rgx:matches(., '\u{.circle}') takes 9359.3 seconds (one hour forty-six
 minutes), because the value of .circle is calculated time and again. The
 solution in such a situation is to tether \u{.circle} to a global variable,
 so that it is calculated only once. To do this, first define a global variable:

 <xsl:variable name="regex-circle" select="rgx:regex('\u{.circle}')"/>

Then invoke that global variable as needed, for example, rgx:matches(.,
 concat($regex-circle, '\s+', $regex-circle)) finds any two characters with
 "circle" in their Unicode name, separated by one or more space characters. (For further
 efficiency, you might bind the composite value of the second parameter to a global
 variable.)
When the process on the 125K leaf-node file is shifted to a global variable approach,
 fn:matches(., $regex-circle) takes 2.0 seconds. The corresponding
 rgx:matches(., $regex-circle) takes 2.8 seconds.
Even if you are using a processor that handles cached XSLT 3.0 functions, you will
 find it useful to build global variables with rgx:regex(), to be invoked
 mnemonically where you like. For example:
<xsl:variable name="class-of-chars-with-symbol-in-name"
 select="rgx:regex('\u{.symbol}')"/>

<xsl:function name="my:strip-symbols" as="xs:string?">

 <xsl:sequence select="rgx:replace($input, $class-of-chars-with-symbol-in-name, '')"/>

</xsl:function>
Keep in mind that rgx:regex() will convert \u{} to a
 character class, framed by square brackets. If you want only a string of characters,
 use, e.g., rgx:process-regex-escape-u(), whose results permit further
 processing as desired.
It might be objected that composition and decomposition via + and - are unnecessary.
Rather than building a class of composites, one could simply first pass the input
 through fn:normalize-unicode($input, 'NFKD'), to convert it to component
 parts, then search accordingly. But that approach works in only some cases. If you are
 looking for a sequence of characters, you must anticipate an unknown number of extra
 characters, many but not all combining characters. Take for example the input "ẵbcẚ⒝c".
 When filtered through fn:normalize-unicode() the string expands to length
 eleven (U+0061 U+0306 U+0303 U+0062 U+0063 U+0061 U+02BE U+0028 U+0062 U+0029 U+0063).
 If you are searching for "abc," which you expect to match twice, you cannot use as your
 regular expression 'abc'; you must use something like:
 fn:matches(fn:normalize-unicode('ẵbcẚ⒝c', 'NFKD'),
 'a[\p{M}\p{Pe}\p{Lm}]*\p{Ps}?b[\p{M}\p{Pe}]*c'), and hope that you have
 correctly built the classes of ignorable characters that might follow an a or b. The
 preceding regular expression anticipates the possibility of encountering ẚ U+1E9A, ⒜
 U+249C, or ⒝ U+249D, but it might result in false positives, such as a match on this
 input string: "a]{b)c". Constructing an airtight regular expression under this technique
 might be impossible. For any two strings that have identical NFKD-normalization forms,
 e.g., "⒜⒝⒞" and "(a)(b)(c)", your regular expression will match either both or none,
 which you might not want. Even if you are not so picky, writing a strong regular
 expression under this method can become quite time-consuming and result in unreadable
 code. The TAN-regex equivalent, rgx:matches(., '\u{+a}\u{+b}\u{+c}') is
 faster to write, easier to read, and probably more accurate.
A close approximation of decomposition (-) is already available to us via XPath
 expressions. For example, \u{-ḃ} is merely another way of saying
 concat('[', fn:substring((fn:normalize-unicode('ḃ', 'NFKD')), 1, 1),
 ']'). That works for this simple example, but many times, as explained above
 in the discussion of rgx:string-base(), the normalized string might bring
 unwanted surprises.
Not every name has a unique name signature (i.e., words in the name alphabetized and
 joined by spaces). About 0.8% of Unicode characters have name signatures that are
 duplicates of the name signature of at least one other character (394 characters in 182
 groups, as of Unicode version 13.0), e.g., ⫓ U+2AD3 SUBSET ABOVE SUPERSET and ⫔ U+2AD4
 SUPERSET ABOVE SUBSET. A future version of TAN-regex may support name component
 order.
One other hazard that needs to be watched for are ambiguous name words. For example,
 "a" can mean either the letter a or it can be the indefinite article. So
 .a!Latin captures not only А U+0410 CYRILLIC CAPITAL LETTER A but also
 ⊅ U+2285 NOT A SUPERSET OF. If you use \u{} you must still study the
 Unicode standard, particularly Character Properties: Name, section 4.8 of
 The Unicode Standard Core Specification.

What To Do with \u
To this point I have depicted TAN-regex and its component functions in broad strokes.
 These are building blocks for other applications. I conclude with an example relevant to
 those of us who work with texts with numerous accents. I illustrate with polytonic
 Greek, but the principle could be applied to other languages.
When processing ancient Greek texts, we frequently need to normalize the accents.
 Greek has a number of accentuation rules, and it is common for context to demand that an
 acute ΄ accent be switched to grave `. But sometimes we need to switch back. If we wish
 to look a word up in a dictionary, the grave accent must be converted to its normal
 acute version, e.g., ἀδελφὸς → ἀδελφός or ἂν → ἄν. (Note how the ΄ can be one of several
 combining marks.) The problem is a challenge because there are dozens of Greek Unicode
 characters with the acute and grave, in various precomposed configurations. Conversions
 are possible and straightforward, but the most obvious solutions are verbose, and
 time-consuming to build.
To accommodate the need to switch accents on a complex character, TAN-regex includes
 the function rgx:replace-by-char-name(), which shows how to combine and use
 the lower-level TAN-regex functions. The function
 rgx:replace-by-char-name() takes as input a string that should be
 changed (parameter 1), three sequences of strings (parameters 2-4), and an indication
 whether a replacement should be strict (parameter 5). A 6-arity version of the function
 also permits a Unicode version (parameter 6). The string sequences in the second through
 fourth parameters ($words-in-name-to-drop,
 $words-in-replacement-char-name,
 $words-not-in-replacement-char-name) are supposed to be keywords in
 Unicode character names. Changes are made to only those characters in the input string
 whose names have a word that matches the list in $words-in-name-to-drop.
 Those keywords are dropped from the input character's name and the search for names is
 conducted again, using the other two keyword parameters to filter the results. If any
 substitute characters are found, they are returned, otherwise the original character is
 returned.
In the case of the problem above, changing the grave to an acute, one can write
 rgx:replace-by-char-name('ἀδελφὸς ἂν ᾖ.', 'varia', 'oxia', (), true()).
 The input string ἀδελφὸς ἂν ᾖ. ("He should be a brother.") is processed letter by
 letter. Nothing happens unless a letter has a Unicode name with the word VARIA (= grave
 accent). So the only two characters that are affected are the ὸ U+1F78 GREEK SMALL
 LETTER OMICRON WITH VARIA and ἂ U+1F02 GREEK SMALL LETTER ALPHA WITH PSILI AND VARIA. In
 each case "VARIA" is dropped and a search is made for Unicode characters with the rest
 of the name words, as long as they also include the word "OXIA" (= acute). Each of the
 two letters has a single replacement, i.e., U+1F79 GREEK SMALL LETTER OMICRON WITH OXIA
 and U+1F04 GREEK SMALL LETTER ALPHA WITH PSILI AND OXIA. The output is the desired
 change of the grave accents to acute: 'ἀδελφός ἄν ᾖ.'
Another type of normalization often need to perform on ancient Greek is to drop from
 words any accents that result from enclitics. (An enclitic is a word whose accent shifts
 back to the previous word, similar to the way, when pronouncing the phrase "Codify it,"
 the "it" prompts us to slightly emphasize "fy.") The result is that some Greek words
 have two accents instead of the customary one, e.g., ἄνθρωπός τις ("a certain human
 being"). Tokens need to be adjusted before looking them up in a lexicon or database, so
 we normally want to drop only the second accent and keep the first. This task can be
 cumbersome to do in XSLT because of the many codepoints that represent permutations of
 Greek vowels and their combining marks. Building a regular expression to capture
 double-accented Greek words is quite a chore. And changing the second accent requires a
 choose-when-test operation with a minimum of fourteen branches; probably more, depending
 upon the kinds of decisions being made.
Fortunately, such normalization can be applied in a relatively straightforward manner
 by using both rgx:regex() and
 rgx:replace-by-char-name():<xsl:variable name="greek-pattern-for-accented-vowels"
 select="rgx:regex('\u{.greek.tonos .greek.oxia .greek.varia .greek.perispomeni}')"/>
<xsl:variable name="greek-pattern-for-acute-vowels"
 select="rgx:regex('\u{.greek.tonos .greek.oxia}')"/>
<!-- In the variable below the first word uses U+03CC GREEK SMALL LETTER OMICRON WITH TONOS,
 the second word U+1F79 GREEK SMALL LETTER OMICRON WITH OXIA. They look identical, but
 the first is the preferred (normalized) form. -->
<xsl:variable name="greek-words-with-two-accents" select="'σῶσόν σῶσόν'"/>
<xsl:variable name="second-accent-dropped-from-greek" as="xs:string*">
 <xsl:analyze-string select="$greek-words-with-two-accents"
 regex="({$greek-pattern-for-accented-vowels}\S*)({$greek-pattern-for-acute-vowels})">
 <xsl:matching-substring>
 <xsl:value-of select="regex-group(1)"/>
 <xsl:value-of
 select="rgx:replace-by-char-name(regex-group(2),
 ('oxia', 'tonos', 'with'), (), (), true())"
 />
 </xsl:matching-substring>
 <xsl:non-matching-substring>
 <xsl:value-of select="."/>
 </xsl:non-matching-substring>
 </xsl:analyze-string>
</xsl:variable>
<xsl:value-of select="string-join($second-accent-dropped-from-greek, '')"/>
<!-- The above results in 'σῶσον σῶσον' -->

In the code above, σῶσόν (save) returns σῶσον. ἐλέησόν με (have mercy on me) returns
 ἐλέησον με.
The processes described above could be replicated, more efficiently, with traditional
 decomposition, replacement on the parts, and then normalization. But that is because my
 example has been Greek decomposable letters. It gets much trickier when there are no
 components, such as switching something that is left-oriented into its equivalent
 right-oriented character. For example, to switch upward-pointing arrows into
 downward-pointing arrows:

 <xsl:variable name="upwards-arrows" as="xs:string" select="'↑↥'"/>
<xsl:value-of select="rgx:replace-by-char-name($upwards-arrows, 'upwards', 'downwards', (), true())"/>

The result is ↓↧. This method could be used to develop applications that
 programmatically change chess pieces (U+2654..U+265F), recycling labels
 (U+2673..U+267A), domino tiles (U+1F030..1F09F), or playing cards (U+1F0A)..U+1F0FF).
 The potential for variations is endless.
TAN-regex is released under a GNU General Public license, to encourage others to
 change, adapt, and improve the code. Updates to the library will be made at https://github.com/textalign/TAN-regex.
Enjoy the new \u!

Balisage: The Markup Conference

A New \u: Extending XPath Regular Expressions for Unicode
Joel Kalvesmaki
Founder and director of the Text Alignment Network (TAN), Joel
 Kalvesmaki is an XML developer for the Government Publishing Office and a
 scholar in early Christian studies. Those two worlds intersect in TAN and the
 Guide to Evagrius
 Ponticus, an XML-driven online reference work on the
 fourth-century monk-theologian.

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

