Graphical user interfaces in the X stack

Zahra Al-Awadai, Anne Bruggemann-Klein,

Christina Grubmuller, Philipp Ulrich

Technical University of Munich

Graphical user interfaces in the X stack | Balisage 2019

Outline

Introduction: previous work and context, the X stack

« XML everywhere: implementing and modeling web applications

 current focus on graphical user interfaces (GUIs)

» paper explores a number of options for GUIs in the X stack

 today: two highlights

Highlight 1 : Multi-client web applications in the X stack

 Philipp Ulrich

Highlight 2 : Modeling & implementation of eveni-driven systems with statecharts and SCXML
 Christina Grubmuller

Concluding remarks: summary, evaluation, and further work

First, a few words on GUIs and the X stack

Graphical user interfaces in the X stack | Balisage 2019

Graphical user interfaces in the X stack

of graphical user interface (GUI), running in a web browser
« presents application data
« offers user interaction
« does internal processing
* interacts with server component
of this work: for GUls in web applications (survey)

« XHTML with XForms and SVG, Web Components, WebSocket Element for multi-client
applications, SCXML

 Highlights from paper: WebSocket Element, SCXML

e data are declarative and encoded in XML

* internal processing within GUI is declarative

Graphical user interfaces in the X stack | Balisage 2019

Multi-client web applications in the X stack

Philipp Ulrich

Graphical user interfaces in the X stack | Balisage 2019

What are we building: Demo Tic-Tac-Toe

Graphical user interfaces in the X stack | Balisage 2019

What are multi-client web applications?

Web Browser HTML, SVG, CSS,
Web applications XForms, SCXML

- Client-server architecture HTTP T XML data

L Jett
- The application runs on the server)

A
(RestXQ)v XML data

 The clients use web browsers

BaseX XQuery

« Communication over HTTP ¢TAP|

XQuery, SCXML, XML database

Multi-client web applications

« Multiple clients are communicating through a server with each other

» Requires serverpush - How?

Examples
« Games (Blackjack, Tic-Tac-Toe), especially those based on secrets (Poker, Battleship)

» Applications (Chats or collaborative editors)

Graphical user interfaces in the X stack | Balisage 2019

HTTP - HyperText Transfer Protocol

« Stateless protocol used in web applications

» Defines how messages are constructed and sent

 Utilizes request/response cycles (ping-pong pattern)
— HTTP requests by the clients get answered with a HTTP response from the server

— Generally the server cannot send data to the clients without a prior HTTP request
— Workarounds such as Long- or Busy polling don‘t scale

- No serverpush possible

Graphical user interfaces in the X stack | Balisage 2019 7

WebSocket protocol

Enables bidirectional communication between client and server

Upgrades a regular HTTP connection after a handshake

Data transmission over a permanent TCP connection

Less overhead and latency compared to HTTP

Suitable especially for real-time applications (video, audio chats or multiplayer games)

- WebSocket to push data from the server to clients!

Graphical user interfaces in the X stack | Balisage 2019

Scenario Tic-Tac-Toe

 Clients on different machines (browsers)

« Server has to push the state of the game to all connected clients > serverpush

Client X A Server A Client O
HTTP BaseX HTTP

Browser Browser

Graphical user interfaces in the X stack | Balisage 2019

Scenario Tic-Tac-Toe without WebSocket

* Client X wants to set the first X on the board

X e
Your turn! Waiting...
Playing as X Playing as X

X

Client X: State 1 Client X: State 2
Client X N mm) [Server B Client O
Browser HTTP BaseX HTTP Browser
&=)

- No serverpush

Graphical user interfaces in the X stack | Balisage 2019

Scenario Tic-Tac-Toe with WebSocket

* Client X wants to set the first X on the board

X e
Your turn! Waiting...
Playing as X Playing as X

X

Client X: State 1 Client X: State 2
Client X A - Server A Client O A
HTTP HTTP
Browser Browser
BaseX
WebSocket WebSocket WebSocket WebSocket
Element _ - Element

- WebSocket used as response channel

Graphical user interfaces in the X stack | Balisage 2019

Architecture

Client

BaseX HTTP Server

View

WebSocket WebBocket | WebSocketModule XQuery API
Element
Jetty Webserver Controller Game
HTTP RestXQ API Module
(XQuery)
XML Database
Controller Model

Graphical user interfaces in the X stack | Balisage 2019

12

Client side: Websocket Element

Graphical user interfaces in the X stack | Balisage 2019

A client side WebSocket module

HTML 5 browsers support WebSocket API

Imperative JavaScript code is necessary to establish the WebSocket connection
* Programming skills required
« Adaption to the web application is necessary

» Code can quickly become complex when multiple connections are established

Graphical user interfaces in the X stack | Balisage 2019

14

WebSocket JavaScript Code

let url = "ws://localhost:8984/ws/chatWebAPI";
let ws = new WebSocket url ;

ws.onopen = function event

// Send ping messages regularly to keep the connection alive

setInterval(function ping
send "ping", "" ;

,» 150000);

// Get the first state of the chat when joining

let draw_url = url + "/draw";

$.get(draw_url, function(resp, other
console.log 'Get url response: '

if resp !== null
$("#chatWindow").html(resp);

+ resp ;

\\ .
/o

ws.onmessage = function event
$("#chatWindow").html(event.data);

Graphical user interfaces in the X stack | Balisage 2019

15

WebSocket Element

Solution

A declarative Custom Elements HTML element, customizable through parameters, to establish
and handle a WebSocket connection

<ws-stream id = "myID" url = "ws://localhost:8984/ws"
subscription = "/path" geturl = "/ttt/draw">
Content</ws-stream>

Client side WebSocket interface

Custom HTML element to build WebSocket connections in a declarative way

Code for WebSocket handling is hidden in the implementation of the HTML component
Acts as a container for the received data (= Tic-Tac-Toe game)

Customizable through the use of parameters

- On page load, a WebSocket connection is established specified by the parameters

Graphical user interfaces in the X stack | Balisage 2019 16

WebSocket Element Code

if(this.wsElementParams.url != null){
let ws = Stomp.client(this.wsElementParams.url, stompParams.protocols);
ws.debug = function(str
console.log(str + "\n" ;
ws.heartbeat.outgoing = stompParams.heartbeatOutgoing;
ws.heartbeat.incoming = stompParams.heartbeatIncoming;
ws.reconnect_delay = stompParams.reconnectDelay;

let stompConnectedCallback = function
console.log "ID: " + streamElement.wsElementParams.id +

"

- Connected to STOMP server" ;

let stompOnMessage = function message
if(streamElement.hasAttribute('xslt')){
let xsltURL = streamElement.getAttribute('xslt');
let xslParam = streamElement.getAttribute('xslparam');

if(xslParam !== undefined
let xslParamsJSON = streamElement.parseXSLTParams xslParam ;
console.log "xslParamsJSON: " + JSON.stringify(xslParamsJSON) ;

let promise = streamElement.transform message.body, xsltURL, xslParamsJSON);
promise.then(function result
console.log("Transformed document " + result)
$(streamElement.wsElementParams.idString).html(result);

console.log("ID: + streamElement.wsElementParams.id + " - MSG: " + message);

$(streamElement.wsElementParams.idString).html(message.body);

Graphical user interfaces in the X stack | Balisage 2019

Customizing with parameters

<ws-stream id = "myID" url = "ws://localhost:8984/ws"

subscription = "/path" geturl = "/ttt/draw">

Content</ws-stream>

* id — Identification and management of the WebSocket Element

« url — Target address to establish the WebSocket connection

« subscription — Used to define different channels, client will subscribe to the path

« geturl — URL to load a first state into the element via a GET request [optional]

« xslt — path to a XSL stylesheet for client side transformation [optional]

« xslparam - Additional parameters for the XSL transformation [optional]

« reconnectDelay — Delay until a reconnect is attempted after a connection loss [optional]

-> More optional parameters that can be used by more advanced users

Graphical user interfaces in the X stack | Balisage 2019 18

Usage

It is as simple as importing all the necessary dependencies...

<script src="/static/tictactoe/JS/jquery-3.2.1.min. js"></script>
<script src="/static/tictactoe/JS/stomp. js"></script>
<script src="/static/tictactoe/JS/ws-element. js"></script>

... and declaring the element on your page

<ws-stream id = "myID" url = "ws://localhost:8984/ws"
subscription = "/path" geturl = "/ttt/draw">
Content</ws-stream>

Graphical user interfaces in the X stack | Balisage 2019

19

Conclusions & advantages

« Declarative way of using WebSocket
« Simple usage and customizable through parameters
« Alot shorter than writing imperative JavaScript code to establish a WebSocket connection
« Can be reused across multiple applications
* Acts like a HTML element
 (CSS can be used to style it

» JavaScript can be used to add or remove it

» ltis recognized as valid HTML element by the browser (Custom Elements specification)

Graphical user interfaces in the X stack | Balisage 2019

20

Statecharts in the X stack

Christina Grubmuller

Graphical user interfaces in the X stack | Balisage 2019

Modeling behavior of event-driven systems

GUI components considered as event-driven systems
* Functionality is triggered by events from user interactions

 Tool for modeling the behavior of event-driven systems:

Why are Statecharts relevant for XML technologies?
« XML-encoding language for Statecharts has been standardized:

« SCXML supports semantics of Statecharts and defines additional elements

Rise of systems that are able to interpret SCXML-encoded behavior
* In recent studies, Statechart processors based on SCXML-XQ were examined
« We test Apache Commons SCXML.: A fully functional SCXML interpreter written in Java

- Model as the event-driven system:

Graphical user interfaces in the X stack | Balisage 2019 22

TUTI
Using Apache Commons SCXML in the X Stack

Model component of a web application as an event-driven system

—> Integration of Java components (interpreter) needs a redesigned architecture
Additional elements in the Model:

« Java bindings of BaseX allow for using external Java classes in XQuery modules

« Communication modules on both sides to manage interpreter instances

BaseX

....................................

SCXML Interpreter HTTP +RestXQ

T l \ SCXML Files

Client (Web
Browser) HTTP Communication
\ (Java)
c;ent (Web | HTTP Web Server (Jetty) | RestXxQ Controller Communication XML Database
rowser) (XQuery) (SCXML Data)
/ / \K
Client (Web /4 N Application XML Database
Browser) (XQuery) (Game Data)

Graphical user interfaces in the X stack | Balisage 2019 23

Demonstration of the approach .

Implementation of the game Blackjack
* Modeling the behavior with Statecharts

* Encoding Statecharts in SCXML
» Using Apache Commons SCXML as interpreter

Result: Behavior of Model components fully
controlled by SCXML interpreter instances!

- Demo of the implementation

Graphical user interfaces in the X stack | Balisage 2019

\

GAME_RUNNING

bid [lastPlayer = false]

N

removePlayer

. addPlayer
\\[START }_ startRound [playerCount > 0] (_

bid/lastPlayer = true]

PLAY_CARDS

PLAYERPHASE

INITAL_CARDS

. insure [dealerHasAce = true &&

enoughMoneyInsure = true] SHOW _CARDS
FIRST_CARDS

DOUBLE
stand\[lastPlayer =
true]

double
[enoughMoneyDouble
 true] [lastPlayey = false]

ready\ [value <= 21]

HIT
ready [value > 21 &&
lastPlayer = false]

stand [lastPlayer
= false

J

newRound

[lastPlayer = true] | SHOW_RESULT
ready [value > 21 &&
lastPlayer = true]

quit

GAME_OVER

24

TUTI

Code comparison example: ,Hit" function

Implementation without SCXML VS.

declare
%updating function bj:hit($gameID as xs:string)
{

let $variables := Definition of variables here

return

C

if (($nextPlayerBoolean = true() and $nextPlayer != $firstPlayer) or
(exists($currentPlayer/hasDoubled) and $nextPlayerBoolean = false() and $nextPlayer != 1)) then
(bj:setNextPlayer($game),
replace value of node $currentPlayer/HAND/value with $newValue,
insert node $newCard into $currentPlayer/HAND/CARDS,
if($currentPlayer/hasDoubled) then (delete node $currentPlayer/hasDoubled) else (),
db:output(bj:redirect($newlURL)))

else (
if(($nextPlayerBoolean = true() and $nextPlayer = $firstPlayer) or

(exists($currentPlayer/hasDoubled) and $nextPlayerBoolean = false() and $nextPlayer = 1)) then

(replace value of node $currentPlayer/HAND/value with $newValue,
insert node $newCard into $currentPlayer/HAND/CARDS,
replace value of node $game/DEALER/isActive with "true",
replace value of node $game/DEALER/HAND/value with $game/DEALER/HAND/endValue/text(),
if($currentPlayer/hasDoubled) then (delete node $currentPlayer/hasDoubled) else (),
db:output(bj:redirect($newURLENd)))
else
(replace value of node $currentPlayer/HAND/value with $newValue,
insert node $newCard into $currentPlayer/HAND/CARDS,
db:output(bj:redirect($newURL)))

* Lines of code in return statement;

Without SCXML: 20 VS.

Graphical user interfaces in the X stack | Balisage 2019

Implementation using SCXML interpreter

declare
%rest:path("blackjack/hit/{$gameID}")
%rest:POST
%updating function bj:hit($gameID as xs:string)
{
let $variables := Definition of variables here
return
C

replace value of node $currentPlayer/Hand/value with $newValue,
insert node $newCard into $currentPlayer/Hand/Cards,
bj:sendLocal Event($gameID, "ready")
D)

b

With SCXML: 3

25

Advantages of the approach

Modeling the behavior of systems using Statecharts
 Clear picture of the behavior of systems under certain conditions

« First definition of functionality needed for implementation
Encoding of Statecharts to SCXML is a straightforward process with defined rules

The approach facilitates a strict

» Implementation of application logic is free of behavioral aspects

- Application functions only have “one” responsibility

« Systems are easily maintainable and adaptable (change or add functionality)

» Reduction of code complexity

Graphical user interfaces in the X stack | Balisage 2019

26

Concluding remarks

Graphical user interfaces in the X stack | Balisage 2019

Summary

and of for use in the

. : form-based, in the WIMP (Window, Icon, Menu, Pointer) paradigma

well-known technology: XHTML, XForms, SVG: summarized in the paper

extending HTML through Web Component technology: applied to WebSocket Element, more
detailed explanation in the paper

supporting in the X stack through

— server-side support in detail in the paper

— client-side support in the form of the WebSocket element presented here:
declarative extension of HTML through Web Component technology

declarative support for through

— encoding of statecharts in SCXML

— interfacing with Apache statechart processor for direct execution of SCXML statechart for
model component of web application - to be adapted to GUIs

. for all technologies

Graphical user interfaces in the X stack | Balisage 2019 28

Austerity requirement: XML technology only

Because there is a good chance that web applications can be generated from models !
» research work by Zahra Al-Awadai
Because it adds spice to teaching document engineering !

« Opportunity to review and apply principles of software engineering
— separation of concerns
— model-driven development
— declarative approaches / configurations first

» Give context and background to students' experiences with XML
in student jobs and database lectures

» Opportunity to create something impressive from scratch, no frameworks

Because it leverages XML competencies for end-user development !

Graphical user interfaces in the X stack | Balisage 2019 29

Ongoing and further work

. . fully integrate into teaching of XML technology

Bring into the browser

. with XML technology
— SCXML in the browser
— Saxon JS
— non-WIMP interfaces: D3js

Parallel work with the , based on JSON and JavaScript

— a principled approach

— exploring potential for clear architecture and model-driven declarative implementation
— leverage React as GUI technology

Graphical user interfaces in the X stack | Balisage 2019

30

Backup slides

Graphical user interfaces in the X stack | Balisage 2019

TUTI

Implementing web applications: XML everywhere

Complete stack for implementing web applications with XML technology: X stack

« end-to-end encoding of data in XML (no impedence mismatch)

 declarative programming

* based on open standards

 standard-conformant, mature, stable implementations across platforms

Client
Web Browser

View / GUI

A

Web Browser

HTML, SVG, CSS,
XForms, SCXML

HTTP W

Server with

Web server

application
core

API T
Y

HTTP T XML data

Jetty

A
(RestXQ)v XML data

Controller

l,TAPl

Model

BaseX

XQuery

l,TAPl

XQuery, SCXML, XML database

Graphical user interfaces in the X stack | Balisage 2019

32

TUTI

Modelling web applications: XML is in there, too

Reqguirement engineering and modelling with XML technology

« schema languages for XML
— UML Class Diagrams define data
- XML Schema and XML instances

« State Chart XML (SCXML)
— UML State Diagrams define behaviour of event-driven systems,

such as GUIs and back components in web applications
- encoded in SCXML
- executed with SCXML processors

Graphical user interfaces in the X stack | Balisage 2019 33

Server side: BaseX

Graphical user interfaces in the X stack | Balisage 2019

BaseX WebSocket module 'B\A%E

BaseX supports WebSocket communication and STOMP
 Server side WebSocket interface
« RestXQ ,like* annotation are used to bind WebSocket events to functions

« BaseX implemented a yet to release STOMP WebSocket server which we are using

declare
$ws:connect ('/")
function test:onConnect() {
trace("Connection established")
i
Connection is established

declare

$rest:path("send/{Smsg}")

$rest:GET

function test:send($msqg) {
let $processedMsg := <message>{$msg}</message>
return (ws:emit ($processedMsqg))

}i
Send a message to all clients

Graphical user interfaces in the X stack | Balisage 2019 35

