[image: Balisage logo]Balisage: The Markup Conference

Fractal information is
Wendell Piez

Balisage: The Markup Conference 2018
July 31 - August 3, 2018

Copyright ©2018 by the author.

How to cite this paper
Piez, Wendell. "Fractal information is." Presented at: Balisage: The Markup Conference 2018, Washington, DC, July 31 - August 3, 2018. In Proceedings of Balisage: The Markup Conference 2018.
 Balisage Series on Markup Technologies vol. 21 (2018). https://doi.org/10.4242/BalisageVol21.Piez01.

Abstract
We wrestle often with the granularity of data formats, object models, interfaces, and
 APIs: their strengths, their weaknesses, and the supports they provide to creators and
 consumers. Opinion is often muddled or extrapolated from limited experience: “X is
 lightweight”, “Y is ‘self-describing’”, “everyone prefers Z”. This is a fractal experience;
 there is self-similarity across scales. Issues that arise at one level of the system have
 weird echoes elsewhere. Indeed, one way of discriminating among options (XML, HTML,
 Markdown, JSON, YAML, SAX, DOM, etc.) is to consider their different approaches to the
 problem of managing the chaos and representing (ir)regularity. This examination leads to a
 better understanding of how to exploit their differences to make them work better
 together.

Balisage: The Markup Conference

 Fractal information is

 Table of Contents

 	Title Page

 	Information is fractal

 	Scales of resolution

 	The dissolve into detail

 	What's not so plain about plain text

 	Semantic staircase: from stream, to structure

 	Reassessed in 2018

 	Living in a JSON world

 	Mappings and metamappings

 	Who doesn't want their own syntax?

 	Approaches to chaos

 	Making peace with complexity

 	About the Author

 Fractal information is

Information is fractal
Fractals are defined mathematically, and phenomena with fractal properties are ubiquitous
 in nature. Postpone for a moment the question of whether to consider fractal
 here in a literal, or in an analogical and metaphorical (loose) sense — whether, that is, we
 should consider the phenomena we witness (in technologies of text encoding) as fractals, or
 only fractal-like. What are fractals like? One does not need to be a mathematician to
 observe:
	Self-similarity across scales
Disparate parts are similar (alike) but also different
Boundaries become shaggy whenever we zoom in

	There are rules, and there are also apparent anomalies, exceptions or
 variations
(Or, more strictly: there are rules; but how the rules apply in the given context,
 must be determined dynamically; it cannot be known ahead.)
Another way to put it: regular, but also irregular
Or, regularity punctuated by irregularity – even while anomalies point to deeper
 orderings or wider contexts

	Fractal phenomena turn up where there is some kind of recursion in the neighborhood. This includes those special recursive forms
 we call indefinite iteration or periodicity.

Scales of resolution
Examples of fractal-like phenomena might be given at any of a number of layers or levels
 of scale. Looking only at the realm of human culture and economy (that is, to say nothing of
 physics or any of the natural sciences), we might pause to consider any of:
	Cultural production
The archive!

	Documentary production (or: the written word)

	Electronic/documentary media

	Non-proprietary, open, standards-based media

	Text-based formats

	Formalisms, formal languages, programming languages

	Markup languages and data description syntaxes

This paper is concerned with only the most minute and low-level of these. The intention
 here is to offer text encoding technologies as a synecdoche, a part representing the whole.
 From what we recognize in the problems we face as developers and users of text technologies,
 we might extrapolate to other realms not considered here.
At the same time the effort here is given not so much to arguing that fractal phenomena
 exist, but rather in exploring the consequences of recognizing fractal phenomena, when we see
 them, as such — at various levels of this scale but most particularly at the most minute and
 granular: markup technologies and text encoding technologies, looked at up close.
Figure 1
[image:]Some XML data, viewed graphically.

In other words, this paper asks the reader to set aside the literal in favor of the
 metaphorical; instead of looking at what is, we look at what (it) is like (what). This is
 intentional, strategic and necessary, since we don't all know everything already. (To be more
 generous to ourselves we might imagine we know everything, but details remain to be filled
 in.) Indeed, it is something of a metaphystical mystery why, for example, we might be so
 assured that natural phenomena such as mountains and clouds are fractal: we only know that
 describing them as such, has explanatory power and even predictive capability, if not in
 absolute terms, then at least as or in the aggregate.

The dissolve into detail
This is an interesting and possibly strange angle of approach to considering where markup
 technologies, in particular (in the minutest particular), are in this moment. Yet the very
 local is like the very general: in both cases, the puzzle is in how one is able to maintain
 the requisite attitude of uncertainty, in the face of the need to amass incredible levels of
 detail and contextual information from any new situation (which we have stipulated, is both
 like and unlike any other situation). One way we can do this, is by plotting how to do so. To
 learn how to make and follow such plots, is the essence of technical knowledge and
 expertise.
Here, my meta-plot begins with the recognition of a particular moment, which I call the
 dissolve into detail. The word dissolve here
 is a noun, as in a cinematographer's dissolve, a dissolution. I am using the term to describe
 a moment that follows the shock of seeing something new and recognizing both its newness, and
 its likeness-yet-unlikeness to what one knows. It is a moment that may never happen: indeed,
 most of our lives are spent with the complexities of the world we face every day, carefully
 masked from us.Note
In another paper I have called this latter attitude the semantic
 collapse, namely the state of knowledge that one is invited to inhabit by
 designers. It is when the database does not look like a database, but like a
 calendar.

 When the dissolve into detail does happen, it can be debilitating and discouraging
 (one reason we do not like it). Yet it is important and salutary. It is a dissolve or
 dissolution not because the detail disappears, but because the witnessing and intentional self
 does, if only for a moment, into confusion or wonder. Indeed, to be able to proceed from the
 dissolve or dissolution into detail, to a later state of relative understanding and mastery
 (resolution) is precisely what makes a person an expert in some domain - that
 they have enough relevant experience, to be able to judge something new, moving from the
 dissolve more or less quickly (in a way that may entail discovery of some nature) to some
 other attitude (in which, presumably, an intentional self is rehabilitated).
Whether this occurs or not, the dissolve itself is a commonplace experience, at least for
 some of us. Maybe one is faced with debugging a faulty thermostat or installing an app on a
 smartphone – when one is suddenly faced with the fact that one is presented with relevant and
 consequential detail. The detail is not understood: it is seen precisely, yet without making
 sense, its parts in view but not yet connected in an organic meaningful whole, so rich and
 pregnant with potential (with detail). It is either thrilling, or intimidating,
 or both. In order to master the detail – this is why it is a moment of dissolution – one
 faces, first, a momentous choice: to turn away (perhaps finding and cede the problem to an
 expert – someone capable of resolving the detail) – or take on the burden of being such an
 expert, oneself.
In the face of technological change, the reason we so often face blind men and
 elephant problems (the inescapable parable here) is that we are all experts, but in
 something somewhat different, and gathered together to discover and delineate something new,
 we have yet to master the details of the elephant. Interestingly, the parable also suggests
 that to understand the detail of the elephant one must understand it as a whole. We will come
 back to this.

What's not so plain about plain text
No surprise that when posed with technical questions, the most important and salient
 issues turn out to be technical ones: what makes them determinedly "fractal" is the (repeated)
 experience of more questions in every new anchoring context. It should not require
 demonstration that our domain is a domain of domains, as well as a domain among many
 others.
Stated in this way, we should well consider, what is a domain? For purposes of these
 conversations, consider domains to be defined by rules and characterized by languages. (Thus
 we loosely encompass both technology, and culture.)
If (as) a domain is defined to a great extent by its language, the domain of text encoding
 technologies is a domain in which a term such as plain text has a specific,
 technical meaning, referring to some sort of (categorical) entity that nonetheless (however
 abstract it is) becomes reified in the imagination as a "thing". So there is a set of abstract
 criteria by which (someone familiar the domain) can determine or measure, whether something is
 or is not plain text.
Yet at the very same time, we also acknowledge (even while using the language of our
 domain) that even here, around the edges, we may occasionally have to clarify or
 qualify.
In other words, there is a moment when we say plain text, followed by a
 moment in which we ask but what do mean by that? and are confronted by the fact that, well,
 things are complicated. There is history … err.… this is the dissolve into detail. (For many
 or most attendees at this conference, the dissolve into the detail of plain text first
 happened long ago. We may even remember when.) After longer familiarily with the topic, things
 start to make sense – there is resolution. The dissolve into detail does not stop, and the
 details do not disappear or change; but once more familiar, they become both clearer and
 possibly, less scary.
So it is with plain text. We can note a few examples of strings that might, or might not –
 subject to qualifications – qualify as plain text. The dissolve in detail takes
 us into competing definitions and contexts, within each of which, meanings will be slightly
 different, to different effects. So it is, for example, that the meaning of plain
 text shifts – or the questions around its meanings shift – with the widespread
 adoption of Unicode.Figure 2
Example of plain text
Example of "plain text"
Example of *plain text*
Example of “plain text”
“plain text”
<p>Example of <q>plain text</q></p>
<p>Example of <i>plain text</i></p>
Some examples of plain text or of nominal plain text. Even as such, however, the
 most basic categories are debatable around the edges. We can only surmise what is meant,
 based on what we know.
So – we might observe that in itself, even for a data object to constitute plain
 text might be necessary, but not likely sufficient. It is all about what and how much we
 know in advance.

In the case of plain text, we call it so (not to get into too much detail)
 because we mean to distinguish it from formatted text, at least as it
 presupposes that the format of text is something other than text itself,
 moreover not represented directly by it (perhaps not even in Unicode) and thus
 to be expressed as more text, except now not as (the presumptive) text itself
 but, paradoxically, as the text-that-is-not-a-text. (Code or
 markup. The irony and arbitrariness of this distinction implies another
 paper. Nonetheless it is worth remarking how commonplace and ordinary it eventually seems that
 we can so easily
 distinguish:This is a text
from{*\ftnsep\chftnsep}\pgndec\pard\plain \s0\widctlpar\hyphpar0\cf0\kerning1\dbch\af5\langfe2052\dbch\af6\afs24\alang1081\loch\f3\fs24\lang1033{\rtlch \ltrch\loch
This is a text}
\par }

Many Balisage readers will recognize the second of these as This is a text
 embedded in a (piece of) an RTF document, that is to say Microsoft's Rich Text
 Format. (This is lines 15-17 of a 17-line file for this line of writing.) But this
 audience is exceptional, as most people on being presented with this are not likely to know
 what this is, much less that this is RTF (or what RTF is or even that there is or necessarily
 should be such a thing). They do, however, as literate readers – indeed, demonstrating a
 sophisticated kind of pattern matching which might be taken to define literacy
 – can readily separate the text from the encoding. And due to
 this fact only, they might agree that this chunk of text taken (in toto) is not quite
 plain subject to some definition of that term.
And this comes up despite how (what is also paradoxical, as well as known to this
 audience) both these examples are plain text, as distinguished from some other
 sort of encoded information (which would not, indeed, submit readily to transcription here), a
 (so-called) binary format. (Which here, means only not text,
 since all digital electronic formats are binary.) The point here is that plain
 text is hard to define – as is text. (We start talking about
 encodings of alphanumeric characters and their histories and definitions, as well as of the
 histories of computer and text processing platforms on which these various schemes and
 protocols have been implemented.)
The definition of the term itself is relative to the point of definition. What do
 you mean by plain text is a reasonable question to ask. (What seems like a clear
 boundary, on getting closer, shows further detail.)
For rough purposes of the discussion to follow, we might provisionally define plain text
 as an arbitrary but finite sequence (string) of Unicode characters (or of an
 analogous abstraction we can call a character), fully aware that this is both
 too broad and too narrow. As experts – as members of a community of practice that both does,
 and does not (ever entirely, subject to qualifications) agree, on what plain text, we can do
 this.
At the same time, it is important to keep in mind that even the relative narrow domain of
 "plain text" or "plain text-based formats", is very broad. Not only are there more than one
 working definition for plain text itself, but also (given such a definition) there is an
 extreme broad and diverse kinds and applications of plain text.
Indeed, it is the muddle of discriminations that one can then begin to make, that the
 problems start. The kinds and uses of plain text.
There is something fractal about this too? What we consider plain, normal,
 or unadorned - vs what we consider to be superfluous, additive, enhancement - is relative.
 Even within what we might (otherwise) consider to be an extremely narrow category of being –
 encoded electronic text – we find a great variability and dependency, in detail, on local
 circumstance. In other words, further occasions of dissolution into further detail, and
 possibly confusion and vexation.
Nonetheless, those circumstances having been defined, plain text is
 nonetheless a (relatively) stable thing, a controllable thing – so stable and so controllable,
 even, that entire infrastructures can be built over and around it. We take plain text so much
 for granted, that mostly it can just disappear. So we are on a knife's edge: on the one side,
 plain text never means only plain text: there always has to be some narrower definition. On
 the other side: having settled on what plain text is, what we can do with it is entirely open
 ended.

Semantic staircase: from stream, to structure
Step in closer and things get complicated again.
Among sorts of varieties of applications of plain text is an extremely wide range of
 different formats, including everything from what we might call raw - that is,
 text without markup or inline encoding of any sort, through a spectrum up through rather
 complex organizations optimized for certain kinds of processing, data mining, and execution.
 One might indeed draw a map showing the tradeoff space between different
 approaches to plain text, with two axes representing (a) readily accessible processibility
 (that is, the explicit, overt and ready capabilities of the text for automated data processing
 operations), vs (b) the necessary up front commitment in the form of constraints over the text
 - that is, the rules of its use, including the use of embedded encodings, invocations of
 spirits and powers, and all sorts of magical incantations. For these to be operational and
 effective, they have to be done right.
I drew such a map as a speculative exercise in my 2012 paper, Three Questions
 and an Experiment, in opening a symposium on data modeling at Brown
 University:
[image:]A slope of optimization, as described in 2012

Reassessed in 2018
[image:]Rendered as a staircase with some more examples projected onto it
 (2018)

A few years later, it becomes possible to reflect on this further. The picture has not
 changed much in basic outline, which is reassuring. I have made a correction (as I now see it)
 the order between rules no mixed element content and no
 recursion, in part since, at least in principle, JSON shows that it is possible to
 support recursive structures, without being tolerant of arbitrary mixed content.Note
A JSON array can be used to simulate arbitrary ordered (mixed) content, but array
 items must be unlabeled. The tradeoff is thus, either contents can be significantly
 ordered, or labeled, but not both at the same time.

 Other than that, the diagram has only been fleshed out. In 2018 we can see how HTML
 remains entrenched, with its more mature models (to say nothing of the binding of model to
 syntax represented in HTML5). Markdown especially among bespoke syntaxes has
 become more prevalent, especially given its evident utility for tight-cycle documentation.
 (For posting Issues on Github, it offers much to like.)
At the high end of the stairway, we see the emergence of structured data formats such as
 YAML, which would indeed show how encoding this high on the commitments ladder
 becomes both hugely powerful (especially when aggregated), yet at the same time rather
 inflexible as a reflection of its focus. It is important to note here that non-proprietary,
 openly specified serializations may not do anything functionally superior to what is provided
 by earlier technologies – it is only that what is proprietary, is doomed to die away. In any
 case, the activity at the top of the scale (where indeed, application binding tends to
 happen), perhaps distracts us from developments at lower levels, that happen concurrently.
 There, at lower layers, the design problems are much more intractable – largely because
 real-world data sets are so rich and flawed at the same time,
 and requirements are so exigent, and its generality so relevant – so sensitive
 to context, to initial conditions.
As an illustration of the kind of progress we have made, consider how, as a source format
 for (say) a static web publication, it is clear enough why markdown and YAML make such a nice
 pairing – if only for simple sorts of texts whose structures will never get very
 deep, only broad (such as, for example, a personal blog with subject
 tagging). By the same token, it will also be clear where this architecture will have its
 limits.
What is clearer in 2018 that this graduation might better be called a staircase, because
 what is important here is not the slope, or whether the slope is curved, or indeed whether two
 dimensions is adequate to the problem, but rather the incremental nature of the sorts of
 commitments that can be made. Note that since each step represents a new commitment, it
 entails a narrowing: an achievement of expressive power in
 one domain, at the cost of expression in others. This is true whether the commitment be made
 at the level of syntax (reserved tokens and rules for combining them) but also when, how and
 by whom, names are given to things. A generalized tagging syntax like XML, for example,
 settles one set of rules while allowing others to set other sets of rules, at higher levels.
 In turn, this reflects how commitments at lower levels of the staircase become the basis for
 new commitments at higher levels. It becomes a stack.
The suggestion of 2012, however, remains valid: what is needed is not any particular
 format on any point of the staircase, but rather, capable technologies working at any and all
 of them, plus tools that enable us to move data up and down the stairway –which is to say,
 into and out of environments where control and regulation - where our capability of imposing
 full control and regulation - may be (in some important ways) sometimes be more the exception
 than the rule. This is the world of real data and information. Not everything all nicely
 organized up front. But organization is there, amidst the mix and mess. And organization, once
 resolved, can also underlie architectures.

Living in a JSON world
The simple fact is that while there may be fashions and trends, most decisions regarding
 architecture and platforms are not made on the basis of technical considerations. Nor should
 they be - this is not intended as a critique, and for various reasons, an imperative might
 not be, that a technology is well suited to a task or
 use.
Nonetheless the fact remains that (at least these days) JSON appears
 to a certain (common) class of users and
 developers to be the obvious first choice for a serialization format. To them, it must often
 seem mysterious why an architecture might be built around anything else. The benefits of XML
 in contrast, are not at all clear to them.
Yet, they are not all that clear to us either, often; indeed perhaps the bigger mistake is
 to see the choice in exclusive terms. Indeed, this has already been shown (for example by
 Robin LaFontaine at Balisage 2017) to be unnecessary, inasmuch as JSON syntax can readily be
 "adopted" into a family of supported syntaxes for serialization, in an XML based system. Over
 and above, that is, the more flexible modeling capabilities of a syntax that easily supports
 arbitrary mixed content, XML offers string features for modeling and manipulating even
 "naturally" JSON data, whatever they it be.
In itself this is a major achievement for which we have to thank the developers of the
 most recent XPath, XQuery and XSLT versions, who by describing means for both manipulation of
 map objects, and a serialization model between XPath and JSON syntax, have ensured that they
 are available even in commodity toolkits. Capabilities first described at conferences like
 this one (for example, Jonathan Robie at Balisage 2012) are now part of the toolkit off the
 shelf.
As Robin showed last year, once such a mapping (in effect, a tag description) of the basic
 JSON data model, with its objects, properties and values, into an XML-compatible
 representation, is established, the rest becomes a matter of using our transformation and
 query tools as designed. Indeed, the most recent versions of the standards provide not one but
 two ways to do this – either via an XPath/XDM map object, or by means of an XML
 vocabulary-and-model describing such a thing. Using either of these approaches, XML tools can
 see and handle JSON data in the same way as they see XML – that is, as
 already parsed and rendered into an addressable form. Effectively, this means that JSON can be
 integrated freely as either an input, or an output (result) of an XML-based transformation or
 pipeline.
What is especially of interest is how, indeed, such a capability exposes the issues of
 working across the data format divide. As soon as there is no syntactic barrier, the actual
 modeling mismatches between (typical) XML-based document formats or data description formats,
 and analogous JSON formats, become exposed as problems of transformation.
As this happens, the complexity of the problem does not change – but it shifts. By
 stabilizing a relationship – defining a clear boundary – at one level, by providing a
 technical bridge between XML and JSON representations of data, we reveal and highlight the
 challenges that remain potential blockers, or hindrances, at another closer level of
 detail.

Mappings and metamappings
It is not difficult to demonstrate the weaknesses of JSON for documentary data: on line,
 there are several tools offered for free use, which offer this functionality, readily
 demonstrating the challenges and issues. Just paste a bit of well-formed XML and see what an
 analogous JSON might be, following the mapping implemented by the tool. Inevitably exposed to
 view are also the lapses that occur, inasmuch as the JSON object models fail to honor the
 organization of data in the original.Figure 3

 <p>P content may include <a>A and B and <a>more A.</p>

 {
 "p": {
 "a": [
 "A",
 "more A"
],
 "b": "B",
 "__text": "P content may include \n and \n and \n."
 }
}

JSON produced by an online converter, http://convertjson.com/xml-to-json.htm.

This lapse happens because XML elements are more permissive than either of the possible
 analogue data objects, available in JSON. This is because the reflection of JSON's power as a
 data format (its glovelike fit to Javascript) is also its weakness in this respect, that it
 cannot represent the (nominal) contents of any Javascript object, as anything
 but another Javascript object. What in XML is the straightforward, literal occurrence of a
 sequence of labeled items, in JSON must be twisted and tortured, simply because it has no
 object type whose cardinality, ordering and naming is as unconstrained in its context as are
 XML elements.
While it has not escaped the notice of commenters (Kurt Cagle, Ken Holman) that this makes
 JSON inappropriate for certain kinds of data set, there is a contrary point that is not often
 emphasized. Evidently JSON (or Javascript-like object modeling more generally, even in other
 OO languages) does have its uses, or application designers would not be using them. The
 question is not only, when not to use JSON, but also, when to use it and how to use it in such
 a way that it can complement – not merely complicate – the workings of more fluid and flexible
 (markup-based) approaches.
Regarding the two technologies' different affordances, in other words, is critical to
 understanding how each can be exploited in its own way. Fortunately, while this field is
 complex, it is not unchartable nor even uncharted (including at this conference). For example,
 one approach specifically to managing the points of alignment between XML and JSON
 representations of similar data, is by means of a unifying schema or more properly metaschema.
 This helps to control the costs of working in XML and JSON together by reducing the technical
 overhead of coordinating them to the overhead of implementing and maintaining a single
 higher-level specification. In this arrangement, schemas (XSDs and JSON Schemas) like
 documentation and tooling become products of the single metaschema.
Metaschemas are not a new idea; indeed most mature schemas under maintenance, have some
 sort of metaschema technology maintained below or alongside them. Nor is the idea of amending
 XML schemas to support mapping into JSON new (having been proposed at this conference by David
 Lee in 2011). Using a metaschema rather than an annotated RNG, however, abstracts the modeling
 of the document artifact (as an abstraction) all the way, even, from XML syntax and content
 models, to permit a parallel projection of any serialized instance using XML tags, into an
 analogous and equivalent JSON instance, capable indeed of automated (blind) conversion back
 again into XML, without loss of information.
In the specific case of aligning XML with JSON, the most concerning points of friction are
 typically where object/content models show (in XML terms) (a | b)*. Such a
 structure, in which both arbitrary ordering, and type naming, occurs together, has no precise
 analog in JSON terms. Elements in XML are both named (typed) and ordered with respect to their
 siblings, while in JSON, properties on (or "members of") a JSON object must be singular, while
 their relative ordering with relation to one another (on a single object) is undefined, and
 JSON has nothing by which to order anything beyond arrays, whose items are unlabelled.… the
 dissolve into detail that occurs here, typically requires an element-to-object mapping of some
 sort, with an ad hoc (syntax marking) convention of some kind.
In other words - a generalized XML->JSON mapping is possible, but not pretty. If it is
 ungainly, however, this is not because of any lack of grace in the syntax – it is because the
 processing model to which JSON is ordinarily subjected, does not readily adapt to the kind of
 handling required by the data (especially with respect to recursive descent of tree structures
 to arbitrary levels of depth).
Moreover, in the instance, better results can always be gotten by putting in a bit more
 effort and mapping the data across, not with a generalized rule for handling any XML, but with
 particular rules for casting this particular kind of XML – and a metaschema can be designed to
 provide precisely the information set we need to effect this.
A metaschema can make it relatively trivial to head off mapping problems by simply
 constraining models to prevent them from occurring to begin with. Its language (that is, the
 language of the metaschema) can stipulate and implicitly enforce (by a conformant processor)
 an organization over the data, that maps (more) cleanly to both XML and JSON, effectively
 declaring the mappings between XML and JSON with the same expressions as it uses to declare
 the models themselves. In return for managing (by excluding or sequestering) problematic XML
 features such as arbitrary mixed content, wild XML can be tamed
 for a JSON world.
Where this approach will not work is when you really do need mixed-repeatable (a |
 b)* content models. Of course, this is useful clarification in itself, since these
 are precisely the sort of data sets that are not going to work very well in JSON syntax – as
 is easily demonstrable by dropping any of them into an auto-converter.
If you have followed this far, there are two things to note. First, we have now (whether
 you agree with me or not about the particulars of all this) long ago passed the threshold of
 the dissolve into detail. We may or may not be along the way to resolution. Yet at the same
 time, it is also noteworthy the extent to which this landscape has actually already been
 charted before, for example by contributors to this conference and others.
Aligning XML with YAML presents not dissimilar problems as aligning XML with JSON: because
 it is higher on the slope, an arbitrary YAML instance can be cast without loss
 into a semantically equivalent XML, while coming the other way may (or may not!) entail
 restricting the XML (or ad-hoc annotating/extending the YAML target) so as to avoid certain
 problematic features. Like JSON (and unlike more tabular serialization formats,
 such as CSV), YAML supports recursive structures: but this does not mean just any XML will map
 cleanly to YAML. Again, arbitrary mixed content is going to be a challenge, for example. (So
 it is forbidden in the canonical XML-YAML mapping as described at http://yaml.org/xml.html.)
 So we are faced with a similar-but-different set of tradeoffs.
These are because JSON and YAML (serving as serializations of abstract data models) sit
 higher on the semantic staircase than many kinds of XML, including (most significantly) the
 major documentary formats with their arbitrary mixed (inline) content.

Who doesn't want their own syntax?
Markdown syntax has also emerged more prominently even since the early 2000s, when
 markdown syntaxes first appeared on wiki platforms. For certain operations – hand authoring,
 even maintenance of documentation if/as it is firmly embedded as file system READMEs – it has
 apparently found a lasting place.
There is much to like about the essential approach to encoding represented by markdown.
 Especially if they can help design the mappings themselves, some authors seem to enjoy the
 exercise of mapping inline character combinations, to encoding practices. For some people
 getting used to markdown, it feels a little like language design or even like a cat-and-mouse
 game with the interpreter (can I get it to make this). This facility is important to keep in
 mind.
However, Markdown presents a set of problems of its own. Presumably, markdown works by
 masking in an attractive, amenable text-based syntax, the complexities
 otherwise requiring the cumbersome overhead of tagging, with its pointy angle
 brackets:Who doesn't like *donuts*?
<p>Who doesn't like donuts?</p>
In
 doing this, markdown does indeed offer an interface that makes it suitable for a range of
 tasks. But it gets you only so far. It gets you this distance rapidly and cleanly, but one you
 are there, you are subject to its constraints of expression: you can go no further with it
 because there is nowhere further to go.
For example, here it is only arbitrary and conventional that a line of text such as this
 should become a p? Equally plausible (at least in the general case, or in
 some alternate world), one might suppose, it should be mapped to a q not
 a p, or anything else. More importantly, however, once having mapped an
 unmarked line to p, the markdown version has forsaken any possibility of mapping lines to
 anything else but p in the future. There will never be any mixing of p elements with q
 elements. As XML practitioners know, this limitation on the sorts of things you can do with
 blocks and lines, simply doesn't scale to real-world complexities. Markdown-based static site
 generators, accordingly (just to offer one example), will tend to do a lot of postprocessing
 and working with not just the raw markdown itself, but its HTML analog. i.e., no longer
 markdown, at all. Markdown by itself, simply cannot support the semantic for even the kinds of
 processing (navigation etc.) that are routinely supported on the platforms for which it is
 intended: markdown is no replacement for HTML (or anything else) simply because it is unusable
 without HTML (or some analogue) along with it and supporting it.
This is turn reveals markdown's fatal flaw, namely that there really isn't any such thing.
 (Look at markdown, and things dissolve into detail.) Notwithstanding several attempts (some
 valiant) to formalize it, markdown as a general class (and a very diverse one)
 works because it is actually not a syntax at all, but merely a mask (in the form of a mapping
 convention) on top of another set of constraints as expressed in its target language, not
 stricly syntactic, but with regard to content models and structures imposed on top of or in
 accordance with (other) syntactic contracts. (That is, the downstream consumer of the markdown
 processor presumably doesn't care whether its HTML has double or single quotes as attribute
 delimiters as long as they parse in an HTML parser; but it depends on HTML to represent the
 contents as "paragraphs", "preformatted", "lists", "headers", and all the other
 HTML-affordances that make a markdown representation might offer).
Consequently, there is no real need or even utility in treating markdown like a properly
 specified language, rather than (what it is) a clever utilitarian hack to make the work of
 encoding certain kinds of semantics, less onerous for the
 technically-uninclined user. In other words, we should not even bother trying to parse
 markdown properly (by which, I mean in reference to some formal grammar and specification of
 its syntax) – since the question in any case is not, does it parse or not, but what do we do
 when it fails? In other words, what sort of information do we get from a successful parse of a
 markdown structure? If the answer is, whether it will map cleanly into our preferred target
 format – well, we can do that anyway, without a grammar for the markdown at all, given only
 the mapping conventions to follow – which either will, or will not, produce a syntax that we
 can parse.
Meanwhile, markdown parsers (really processors) are various and sundry, but
 one thing they mostly have in common is, they aren't finished.
Given all this sleight of hand, getting into and out of markdown on an XML stack is not
 more challenging than working with markdown in other contexts. Producing markdown from any XML
 tool chain is straightforward: a clean approach is to produce HTML, then use a general utility
 (such as a second XSLT) to produce a markdown syntax "rendition" of this HTML.
To come the other way, it should be sufficient to map the markdown into XML or HTML
 tagging, then attempting to parse that (literal markup). Upon a successful parse, an XDM (or
 functional equivalent) can be returned. Mathematically and practically, this is equivalent to
 parsing the markdown to begin with (according, presumably, to a sufficient grammar of its own)
 – and for systems that already have HTML and XML parsers, considerably easier.
While the failure point with JSON tends to be arbitrary sequencing of element types and
 especially mixed content, the failure point for markdown is in its inability to support
 structures beyond the HTML soup that one infers from a sequence of represented
 "paragraphs", "lists", "tables" and the rest. Consequently, markdown as a primary platform for
 content production and editing might be expected to work best in systems where such authoring
 and editing comes already "pre-fragmented", rather than representing full text or rich
 semantic contents.
Nonetheless the success and appeal of markdown syntaxes is very revealing, suggesting that
 they do in fact play a role, and indeed one complimentary to the role of either generalized
 markup syntaxes, or more structured data formats. The question is, getting the data across the
 boundaries. Only when we can parse and map markdown syntaxes as easily as we can XML document
 models (or indeed JSON objects), will we be able to take full advantage of them.
Such capabilities are nearly in our hands. While it is an open secret that markdown
 syntaxes typically have no grammar and thus no formal, validable parse – there is also an
 opportunity here, to streamline these systems. A further question is whether the strengths of
 markdown might be even better exploited in systems that knew about and supported some deeper
 level of semantic description. Semantic markdown – the way to something like
 this, might be in a markdown syntax that supported both (some sort of) semantic annotation,
 and some level of on-the-fly declaration of syntax constructs.

Approaches to chaos
The main reason we see questions such as "XML or JSON" or (in another context) "Java or
 Python" as either/or, is that any one of these demands so much attention and dedication (of
 effort and resources), that we can hardly imagine (as either individuals or on behalf of
 institutions) committing to any other (at least within the scope of the task or problem). One
 solution to this problem is to become tribalistic: this has the virtue at least of
 seeming the easiest and most obvious way to approach things. If
 mastering XML and everything related to it (schemas and transformations and queries) were to
 take only a week, and mastering JSON and Javascript and browser event handling and interface
 design and transaction handling, took only one more – this might seem more like having one box
 of toys (the blocks) out one week, and another (the screw-and-girders set) the next. The
 realities of sunk costs, however, make it such that once Java or Python or Ruby has been
 chosen, it is very hard to unchoose it or even to choose something else for the next thing
 (while mixed environments have their own risks and costs!); and once one has become an expert
 in XML (just for example) it may seem gratuitous that one should then have to become expert in
 something else. It is useful to keep in mind that the reason it takes more than a week to
 master XSLT or XQuery or Javascript or Python is that any single one of these languages – seen
 as what they really are, raw materials for creation – is endless and has no bottom. Spend a
 week and you discover how much more you have to learn. Dissolve into detail, then spend years
 resolving it.
Yet at the same time, this landscape of languages, whatever its metaphysical status as a
 "thing", and however it changes and grows from year to year, is nevertheless objective,
 something that can be observed and studied. (A JSON object has properties of type string,
 boolean, numeric, array, etc. etc. I cannot add a new type to this list while my JSON remains
 JSON. As long as JSON is JSON, I can talk about strings and booleans with JSON developers. The
 JSON tools I know, if JSON is any good, just work this way. So much the better: what this
 means in effect is, the terms of discussion between me and the JSON developers, is stable even
 when our interchange problems, are very much not.
In other words, it may be that text-encoding technologies are fractal not in the way that
 a Julia set is fractal (that is, a mathematical function that is shown to be
 fractal according to a mathematical principle) but rather, the way the coast
 of Scotland (an actual place) is fractal or fractal. It turns out that thinking
 analogically is of the essence – this is basically the only way we have of dealing with what
 we haven't surveyed yet – while at the same time, science and objective study are just as
 important as art.
So for example, using a metaschemas as an approach – not a solution, but a site for
 negotiation – to reconciling XML-based and Javascript-based (JSON) serialization formats for
 appropriate datasets, is an idea that can only emerge on the basis of not only a particular
 mapping (of a particular XML to a particular JSON or the reverse), but a generalized one,
 subject to codification by the metaschema. The particular powers and capabilities of the
 particular metaschema format – how effectively it manages to bridge between disparate
 representations of the same data – will depend entirely on this generalized
 analysis.
The same thing is true of the idea of a generalized local markdown – we can only get to
 such a thing after we have pondered, not only the problem of parsing markdown into systems
 where it can be processed and rendered (in ways we are used to doing with markup), but also
 the problem of how and where the semantics of a particular markdown syntax (and application)
 are actually defined. When it turns out, that a markdown instance has no formal validity at
 all, but only a purported or presumed relation to another (valid) entity in another syntax
 (HTML or other) – at that point, it becomes clearer that we do not, in markdown, have any
 single thing at all, but merely a commonality in a certain strategy of representation (of
 inline encoding as "ASCII artish" embellishment), which can be readily applied in other
 domains, or generalized. In turn, such an insight can liberate us to take many more liberties
 with this idea.
Such capabilities may prove to be vital and essential features of technologies to come, or
 they may prove not to be worth the overhead. The important thing is that they now begin to be
 thinkable. There was a time when every parser had to be, effectively, hand made. Now with
 standards and generalized syntaxes (both those one finds "friendly" and those one finds
 strange or inimical), these pressures have eased.
To put it another way, we are developing both the experience and tools (which are, indeed,
 codifications of experience), that will alleviate all these problems considerably. (See also
 the work of Hans Juergen Rennau.) The detail does not disappear, but it becomes more casual
 and familiar, the inevitable variation more thinkable, and not only because we are now jaded,
 but because we actually means and methods for dealing with it. So for example, just as we now
 have ways of dealing with overlap problems – having seen them before – similarly, the problems
 of casting information across syntactic boundaries will become more familiar as we come to
 recognize their commonalities. And while the landscape shifts and develops over time – as new
 heights are explored and the territories expand – in the basic outlines of its domains, and in
 many of its patterns, it is likely to remain consistent.

Making peace with complexity
One of the interesting things about elephants is that their size, their skin, their
 massive legs and ears, their trunks and even their tusks make more sense when the animal is
 considered as a whole organism – an extremely large herbivore, very social (hence the tusks,
 essential for marking and signaling status), who communicates with her kin using low-frequency
 sound over miles. (Hence the trunk, the ears, and the sensitive feet.) In other words, the
 detail makes sense only in the context of the whole.
XML, JSON, YAML, declarative and procedural languages are in this picture, not exactly
 things, but properties of things, characteristics or regularities within the systems where we
 find them. Like an elephant, such a system (maybe it's a publishing system, web site or
 transcation processor) can only really be understood as an operational whole within its
 context. But since our elephants are so different from one another, we simplify our
 conversations about them by distinguishing them by type. My elephant reads XML
 or my hippo uses markdown injected into a hosting platform with CSS for its page
 layout.
This suggests that we should hold our judgments lightly – there is a big difference (for
 example) between asking how we will exchange arbitrary mixed content, given the constraints
 and commitments of the facing systems (actual or likely), and judging an entire technology
 stack to be unworthy of attention – and not only, that the latter judgement involves a kind of
 layer violation (since we are judging the type not considering the instance).
 They also differ in their attitude and approach – a more limited and provisional observation
 is simply more likely to be accurate. It is exactly when we think we have answers, that we
 find there is another dissolve into detail to face.
Given such reasons for humility, also, it helps also to keep in mind that the most
 effective world-changing technologies are those that show what is possible, that imagine
 altogether new abilities and insights. We only participate in this, however, if we fully
 engage with it. Adapting to a world of multifarious data exchange may require that we be
 ecumenical in our tolerance of formats. Again, the semantic staircase suggests why. XML and
 its kindred standards/technologies are designed and built to address some very general
 problems of data description; they do this by means of the twin features of (a) the built-in
 tree design, and (b) the capability of the application designer to provide names to XML
 elements and attributes (so names are not privileged or reserved by the language), making XML
 a metalanguage capable of application (via one expression or another) to a huge variety of
 kinds of information sets – most especially those that come naturally as
 hierarchies. (Certain other features such as attributes and inline mixed content are also
 helpful for dealing with such an open-ended problem set.) On top of these two very simple
 ideas, a very complex architecture is built supporting open-ended processing models, which
 must commonly support (in part but not only because they are documentary production or
 publishing formats, not just structured dataset) a broad range of transformation capabilities.
 Over and over again, the resulting set of technologies (especially XSLT, XQuery and both
 together) have been shown to work well, not only at the lower end of weaker control and data
 description, but also higher up the stack, where we would expect object-oriented and other
 (supposedly more highly optimized) serializations should rule.
Just as the bumpy field called plain text provides a foundation, so also does this set of
 rules (rules upon rules) provide a next level of infrastructure to build on. It is complex and
 has its complexities; but it is stable and reliable.
In great part this is because of everything that markup syntaxes such as XML do not set out to do, the complexities they choose not to address, leaving them to be addressed elsewhere, by other means. That is
 because these are essentially tools for naming and managing whatever complexities we may be
 faced with, at some level of resolution, not necessarily
 high, but detailed enough to give us some purchase – thus the complexity of the solution, does
 not exceed the complexity of the problem. XML's affordances in particular seem to dramatize
 how any language (and most certainly a machine readable one) is an early optimization, while
 at the same time the only way to master a thing is to represent it. In this context, one of
 the more interesting things to me about the ideas proposed here for advancing the use of XML
 for modeling – by helping it to get along with non-XML competitors, its current neighbors in
 the space – is that they could all be implemented using XSLT. The field is open.

Some references
Holman, G. Ken. “Horses for courses: A perspective on an XML vs. JSON discussion.”
 August 6, 2017.
 https://www.xml.com/articles/2017/08/06/xml-vs-json-discussion/
La Fontaine, Robin. “Making a difference by processing JSON as XML.” Presented at
 Balisage: The Markup Conference 2017, Washington, DC, August 1 - 4, 2017. In Proceedings of
 Balisage: The Markup Conference 2017. Balisage Series on Markup Technologies, vol. 19 (2017). doi:https://doi.org/10.4242/BalisageVol19.LaFontaine01
Lee, David A. “JXON: an Architecture for Schema and Annotation Driven JSON/XML
 Bidirectional Transformations.” Presented at Balisage: The Markup Conference 2011, Montréal,
 Canada, August 2 - 5, 2011. In Proceedings of Balisage: The Markup Conference 2011. Balisage
 Series on Markup Technologies, vol. 7 (2011). doi:https://doi.org/10.4242/BalisageVol7.Lee01
Novatchev, Dimitre. FXSL -- the Functional Programming Library for XSLT.
 http://fxsl.sourceforge.net/
Pemberton, Steven. Treating JSON as a subset of XML. XML Prague 2012.
 http://www.xmlprague.cz/2012/files/xmlprague-2012-proceedings.pdf
Rennau, Hans-Jürgen. “From XML to UDL: a unified document language, supporting
 multiple markup languages.” Presented at Balisage: The Markup Conference 2012, Montréal,
 Canada, August 7 - 10, 2012. In Proceedings of Balisage: The Markup Conference 2012. Balisage
 Series on Markup Technologies, vol. 8 (2012). doi:https://doi.org/10.4242/BalisageVol8.Rennau01
Robie, Jonathan. “XQuery, XSLT and JSON: Adapting the XML stack for a world of XML,
 HTML, JSON and JavaScript.” Presented at Balisage: The Markup Conference 2012, Montréal,
 Canada, August 7 - 10, 2012. In Proceedings of Balisage: The Markup Conference 2012. Balisage
 Series on Markup Technologies, vol. 8 (2012). doi:https://doi.org/10.4242/BalisageVol8.Robie01

Balisage: The Markup Conference

Fractal information is
Wendell Piez
Wendell Piez is an independent consultant specializing in XML and XSLT, based in
 Rockville MD.

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Piez01-002.png
typed & compiled objec

tables

(no) mixed element content
(optional/repeatable content)

(no) mixed inline content
(text and element siblings)

(no) recursive structures

document grammars / schema valid
simple hierarchies (“trees”)

MCH (multiple concurrent hierarchies)
arbitrary overlap

tagging rules

tag grammars

text + syntax P ot =~ — - =

Constraints and costs
plain text (including opportunity costs)

(bits)

D R TP
Power

content/images/Piez01-003.png
)
@
i
©
E
©
)
=
®
=]

plain text

content/images/Piez01-001.jpg
13 DocSketch: DHQ docum

<« C | @ buteo:8984/DocSke! Q%N e B O ~ 5 (& & :

Information access in the art history domain: Evaluating a federated search engine for Rembrandt research [Verberne, Boves and van den Bosch]
file:///F:/Data/OHQ/SVN/dha/ trunk/articles/000265/000265 . xnl

‘The App-Maker Model: An Embodied Expansion of Mobile Cyberinfrastructure [Oppegaard and Rabby]
file:///F:/Data/DHQ/SWN/dhg/ trunk/articles/000267/000267 . xml

TaDiRAH: a Case Study in Pragmatic Classification [Borek, Dombrowski, Perkins and Schich]
file:///F:/Data/OHQ/SVN/dha/ trunk/articles/000235/000235 . xml

M 1 Vo

Sound and Digital Humanities: reflecting on a DHs! course [Barber]
file:///F:/Data/DHQ/SVIN/dhg/ trunk/articles/000235/000239 . xml

