[image: Balisage logo]Balisage: The Markup Conference

Flattening and unflattening XML markup:
 a Zen garden of XSLT and other tools
David J. Birnbaum
Professor of Slavic Languages and Literatures
University of Pittsburgh, Pittsburgh, PA

<djbpitt@gmail.com>

Elisa E. Beshero-Bondar
Associate Professor of English
Director, Center for the Digital Text
University of Pittsburgh at Greensburg

<ebb8@pitt.edu>

C. M. Sperberg-McQueen
Founder and Principal
Black Mesa Technologies

<cmsmcq@blackmesatech.com>

Balisage: The Markup Conference 2018
July 31 - August 3, 2018

Copyright by the authors 2018 under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license.

How to cite this paper
Birnbaum, David J., Elisa E. Beshero-Bondar and C. M. Sperberg-McQueen. "Flattening and unflattening XML markup:
 a Zen garden of XSLT and other tools." Presented at: Balisage: The Markup Conference 2018, Washington, DC, July 31 - August 3, 2018. In Proceedings of Balisage: The Markup Conference 2018.
 Balisage Series on Markup Technologies vol. 21 (2018). https://doi.org/10.4242/BalisageVol21.Birnbaum01.

Abstract
From time to time, it may be necessary or expedient
 to flatten our XML documents by replacing the start- and
 end-tags of conventional XML content elements with empty
 place-marker elements (variously known as milestone elements or as
 Trojan horse markup). When we do, we
 will often wish, later, to restore the content elements we
 flattened. The purpose of this late-breaking presentation
 is to present a survey of ways to perform the task of
 unflattening or of raising: restoring a conventional XML
 element structure of content elements from a flattened XML
 document instance (or part of one), and comparing
 different solutions to see what we can learn from
 them.

Balisage: The Markup Conference

 Flattening and unflattening XML markup:
 a Zen garden of XSLT and other tools

 Table of Contents

 	Title Page

 	Overview

 	The problem
 	Raising Frankenstein

 	Simplified sample data
 	Basic sample

 	Flattening

 	Extended basic sample

 	Overlapping markers

 	Frankenstein
 markers

 	Solutions to the problem
 	Right-sibling traversal
 	Order of raising the elements

 	Outline of XSLT code

 	Resource consumption

 	Raising
 Frankenstein

 	Inside-out recursion
 	Raising

 	Raising Frankenstein

 	Outside-in processing
 	Code outline

 	Resource consumption

 	Accumulators
 	A bluffer's guide to accumulators

 	Implementation strategy

 	Some utility functions

 	Declaring the accumulator and making it applicable

 	Templates

 	Regex

 	Pull parsing in Python
 	String output

 	XML output

 	Some things that can go wrong
 	Right-sibling traversal

 	Inside-out recursion
 	Double processing

 	Endless recursion

 	Accumulators

 	Regex

 	Pull parsing in Python
 	String output

 	XML output

 	Comparison

 	Conclusion

 	Appendix A. Raising tessellated hierarchies

 	About the Authors

 Flattening and unflattening XML markup:
 a Zen garden of XSLT and other tools

Overview
From time to time, it may be necessary or expedient to
 flatten our XML documents by replacing the start- and end-tags
 of conventional XML content elements with empty place-marker
 elements. These place-markers are variously known as
 milestone elements after
 the milestone technique described in the TEI Guidelines for
 page beginnings, column beginnings, line beginnings,
 etc. [TEI P5], or Trojan horse
 markup after the technique described by Steve
 DeRose [DeRose 2004]. To avoid
 over-stressing any particular syntax, we will
 use a more general term, markers. When we do flatten
 our documents, we will often wish, later, to convert markers back into their original form as
 content elements. The three co-authors discovered
 recently that we had each had occasion to perform this task,
 and that we had undertaken it using different
 techniques.[1]

The purpose of this late-breaking presentation is to
 survey multiple ways to perform the task of unflattening or
 raising, that is, restoring a conventional XML element
 structure of content elements from a flattened XML document
 instance. We will compare different
 solutions to see what we can learn from them. Nothing here is
 profoundly difficult or new, but each of us found it
 challenging and interesting enough that we think it may be
 worth while to share what we have learned with others.
In the following sections, we describe first a concrete
 instance of the task, with enough supporting detail to make
 clear that this is not an academic exercise but one that
 arose in a real project. We then present several
 approaches to solving the problem, including some false
 starts, which illustrate possible wrong turnings along the
 way. We then discuss and compare the different solutions with
 respect to coding difficulty and costs in space and
 time.
In the discussions that follow, we adopt the following
 terminology in an attempt to avoid unnecessary
 confusion. First, we distinguish content elements (marked by
 standard XML start- and end-tags) from virtual elements
 (indicated by markers).	content element
	a conventional XML element marked by start- and end-tags with
 (possibly empty) content between them, or by a sole-tag. Cf. marker.

	virtual element
	a logical element indicated by start- and
 end-markers.

	marker
	an empty XML element serving to mark the start or end of a virtual
 element.

We are interested in two processes that convert between content elements and virtual
 elements indicated by markers: 	flattening
	the process of replacing the start- and end-tags of content
 elements with corresponding start- and end-markers.

	raising (aka unflattening)
	the process of replacing virtual elements with content elements by converting pairs of start- and end-markers into corresponding start- and end-tags.

Our approaches for raising flattened XML may be categorized according to the following parameters:	Whether they read their input as XML or as a string.

	Whether they construct their output as XML or as a string.

	For those that read the input as XML, the
 order in which they raise the virtual elements.

 The methods that work with the input and output as XML
 are typically recursive (whether the recursion is implemented
 through functions or templates), and the recursion follows one
 of three patterns:	The input is handled in a single pass and
 the virtual elements are raised left-to-right in
 start-tag/end-tag order.
We refer to the order as left-to-right or tag-order,
 rather than as depth-first, partly because in the input the markers and the
 content of the virtual elements they mark are all siblings. That is, the
 input document is typically a shallow hierarchy and there is no difference
 between depth- and breadth-first traversal of the input tree. With respect
 to the output tree, this pattern performs a depth-first pre- and
 post-order traversal: that is, the processing of an element
 starts before the processing of its children and ends afterwards.
We refer to the construction as tag-order
 because the construction of the virtual elements
 begins in the order of their start-markers and
 ends in the order of their end-markers.

	The input is processed in multiple passes;
 on each pass the innermost or bottom-most virtual
 element(s) are raised to become content
 elements.
We refer to the construction as bottom-up
 because in each parent-child pair of the output,
 the construction of the child begins and ends
 before the construction of the parent
 begins.
As in the preceding case, because the input
 has no meaningful depth, it is more appropriate to
 describe the traversal without using hierarchical
 terms, although bottom-up is an appropriate way to
 refer to the order in which nodes of the final
 output tree are completed.

	The input is processed with a series of
 recursive calls to a function or template to
 operate on a sequence of nodes. On each call, the
 left-most start-marker in the sequence and its
 matching end-marker are selected. Material which
 precedes the selected start-marker is returned
 without change; material between the selected
 markers is processed recursively as the content of
 a newly raised element; material which follows the
 selected end-marker is processed recursively as
 the following siblings of the newly raised
 element.[2]

We refer to the construction as outside-in
 because on each call (one of) the outermost
 element(s) in the parameter sequence is raised,
 and a recursive call operates on elements
 contained within that one.

With respect to those parameters, the methods discussed
 below may be classified as follows:
Table I
	Method	Input	Output	Raising Order	Passes / Calls	Overlap handling
	Right-sibling traversal	XML	XML	Left to right	Single	Silent error
	Inside-out recursion	XML	XML	Inside-out	Depth of tree	Partial raising, well formed
	Outside-in recursion	XML	XML	Outside-in	Number of virtual elements	Partial raising, well formed
	Accumulator	XML	XML	Left to right	Single	Silent error
	Regex replacement	String	String	Left to right	Single or double	Full raising, ill formed
	Python pull parser 1	XML	String	Left to right	Single	Full raising, ill formed
	Python pull parser 2	XML	XML	Left to right	Single	Silent error

	We have implemented the last three methods in
 Python and the others in XSLT (and experimentally in
 XQuery). The accumulator method requires XSLT 3.0; the
 inside-out, and outside-in methods can all be
 implemented with (recursive) function calls in XSLT
 2.0 and 3.0 and with named templates in XSLT 1.0.
 Right-sibling traversal has been implemented using
 match templates; an experimental implementation using
 a recursive function is also contemplated.

	Input and Output refer to whether the input is read as XML or as a string,
 and whether the output is constructed as a DOM tree or as a string.

	Raising order
 describes the order in which virtual elements in the
 input are raised. Left to right,
 Inside-out and
 outside-in are as described
 above.

	Passes / Calls
 describes how many passes over the input are made, or
 how many recursive calls to the core function are
 made.

 Right-sibling traversal makes a single pass over the
 input, but because it does so using recursive calls to
 to apply-templates which select single
 nodes, the template stack will in theory grow until it
 has one template on the stack for each node in the
 flattened sequence of nodes in the input. (Since the
 calls are tail-recursive, implementations may optimize
 the calls and perform the traversal in constant stack space.)

 Regex replacement is easiest to implement in two
 passes: we replace start-markers globally and then
 end-markers globally in a pipeline (or vice
 versa). Matching both types of marker with a single
 regex is easy, but because the replacements are
 different (start-markers may contain non-Trojan
 attributes), the replacement logic may be more
 complex.

 The other left-to-right methods will use template
 stack space proportional to the depth of the tree, as
 is common in XSLT stylesheets.

 The inside-out method makes one pass over the input
 for each nesting level in the tree of virtual
 elements being raised. On each pass, the entire
 document is processed, although content elements can
 typically be handled with copy-of,
 which means their subtrees do not require template
 matching.

 In the outside-in method, each call to the function
 raises one virtual element (unless the arguments are
 all leaves, in which case it raises none), so the
 total number of calls is proportional to the number
 of virtual elements. Each node in the input is
 passed as (part of) an argument n + m times, where n is 1 plus the number of
 virtual ancestors the node has (for outermost
 elements, n= 1, for
 their children, 2, etc.), and m is 1 + the number of
 preceding siblings the node has in the final output
 tree.

	

 Overlap handling
 describes what happens when this method is used on
 input with overlapping virtual elements, where an
 attempt to raise every virtual element would produce
 ill-formed output.

 Partial raising, well
 formed means that the method raises some
 but not all virtual elements and produces well-formed
 XML by leaving some markers unraised.

 Full raising, ill
 formed means that the method converts all
 start- and end-markers to start- and end-tags without
 any rearrangement or adjustment, even when the result
 is not well formed.

 Silent error means
 that the method produces well formed XML output that
 is semantically incorrect: in some cases the method
 includes content within a raised element which does
 not belong there, in other cases content is omitted.
 In all three cases, the absence of any error signal is
 a characteristic of our simple proof-of-concept
 implementations, which were designed to handle input
 without overlapping virtual elements. All of these
 methods can be implemented with a more thorough
 check of the input, to raise an error, and optionally
 to recover from the situation, in cases involving
 overlapping virtual elements.

The problem
Raising Frankenstein
As a concrete example, we can consider the form taken by this task in the
 Variorum Frankenstein [Variorum Frankenstein]
 project edited by the second author. In this project, we collate different encodings
 of the novel deriving from five digital sources using the software CollateX [CollateX], which reads the input texts to locate their moments of
 alignment and variation. The process of collation compares XML documents as text
 files, which means that XML tags are treated as text so that strings of text that
 compare structural boundaries like paragraph breaks in one version of a document can
 be aligned with passages containing the same (or nearly the same) text lacking those
 boundaries. CollateX provides XML output that represents in one file the collation
 of all the variant input documents, and its output raises a new hierarchy made
 up of a root element and a flat sequence of TEI critical apparatus elements designed to mark
 where the documents align in comparable and variant passages. When XML elements are
 supplied in the input to the collation process, their tags are returned as text with
 angle brackets escaped, as shown in Figure 1 below.

To prepare the editions for collation we began by flattening the original
 structural markup, converting elements that wrapped volumes, chapters, paragraphs,
 and lines (among others) into self-closed start and end markers. We flattened these
 elements in anticipation of reconstructing them on the other side of the collation
 process. Because we need to retain original markup information in the eventual
 collation output for later use, flattening it allows us to preserve it without
 letting it interfere with the alignment process or the new hierarchical output of
 CollateX. The XML output produced by CollateX includes (as we expect and want) many
 fragmented start and end tags, showing us not only places where paragraph breaks
 occur in one witness to the text but not in the others, but also locations where
 part (but not all) of a deleted passage in the manuscript draft aligns with material
 in the published editions of the novel. In such situations, we wind up with an
 original start-tag inside one container element and its corresponding original
 end-tag inside another, and we cannot reconstruct that element without creating
 overlap. Knowing that the collation process will generate (by design) a hierarchy in
 conflict with the structural markup of our input documents, we prepared the input
 source documents in advance to flatten their hierarchies, because we intended to
 reconstruct the elements later building on the collation output.
Here is an example from the output of CollateX representing a single divergent
 reading in the Thomas copy of Frankenstein
 before all witnesses align. (Some line breaks have
 been introduced for legibility.)
Figure 1
<app>
 <rdg wit="#fThomas">
 contortions that ever and anon
 con<del
 sID="fThomas_C10-del_2"/>puls<del
 eID="fThomas_C10-del_2"/>vulsed
 & deformed his un-human features.
 <p eID="novel1_letter4_chapter4_p133"/>
 <p sID="novel1_letter4_chapter4_p134"/>
 The
 </rdg>
</app>
<app type="invariant">
 <rdg wit="#f1818">different accidents of life are </rdg>
 <rdg wit="#f1823">different accidents of life are </rdg>
 <rdg wit="#f1831">different accidents of life are </rdg>
 <rdg wit="#fMS">different accidents of life are </rdg>
 <rdg wit="#fThomas">different accidents of life are </rdg>
</app>
Sample CollateX output

In the example above, there is only one <rdg> element inside
 the first <app> because at this point the Thomas edition contains
 an inserted passage not present in the other editions, which have no material to
 compare with it. Following this point, the witnesses all agree, as shown in the next
 <app> element. The output actually does not contain markers
 for the virtual and <p> elements but
 rather these have been converted to a string carrying escape characters as a trace
 of their prior existence as elements: and
 <p/>.
Following the collation process, we use the XML output as the basis for
 reconstructing the individual edition files so that they may individually indicate
 hotspots, or passages that vary in the other editions. We wrote
 XSLT to run over the collation XML output to produce a separate file representing each reading
 witness (not shown here for space reasons). In this first stage, we leave all the original marker elements of the edition as escaped strings and we mark each witness’s hotspots with <seg> elements.
 Because these hotspots will sometimes overlap with structural markup from the input
 editions, we must also insert these elements as flattened start and end markers.

In the next stage, shown in Figure 2, we apply an XSLT script with
 <xsl:analyze-string> to reconstruct the source edition’s
 element markers from the strings.
Figure 2

<xsl:template match="ab/text()"
 <xsl:analyze-string select="." regex="<.[^/]+?[es]ID=[^/]+?/>">
 <!--The value of the regex attribute is the string we isolate for conversion into a new element.
 It begins and ends with a left and right angle bracket and
 contains the pattern to isolate the original non-namespaced form of our Trojan markers. --<
 <xsl:matching-substring>
 <xsl:variable name="flattenedTagContents"
 select="substring-before(., '/') ! substring-after(., '<')"/>
 <xsl:variable name="elementName"
 select="tokenize($flattenedTagContents, ' ')[1]"/>

 <xsl:element name="{$elementName}">

 <xsl:for-each select="tokenize($flattenedTagContents, ' ')[position() gt 1][contains(., '=')]">
 <!--In defining the variable below, we apply the Trojan Horse (th:) namespace prefix
 to the original forms of sID and eID in the input data. If the regular expression
 matched by [se]ID is found in the string, we concatenate the prefix with the substring before the '=' sign
 to form the attribute name. Otherwise, the substring before the '=' sign will be the attribute name. -->
 <xsl:variable name="attName" as="xs:string">
 <xsl:choose>
 <xsl:when test="matches(current(), '[se]ID')">
 <xsl:value-of select="concat('th:', substring-before(current(), '='))"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="substring-before(current(), '=')"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:variable>
 <xsl:attribute name="{$attName}">
 <xsl:value-of select="substring-after(current(), '="') ! substring-before(., '"')"/>
 </xsl:attribute>
 </xsl:for-each>
 </xsl:element>
 </xsl:matching-substring>
 <xsl:non-matching-substring>
 <!--At this point, we run xsl:analyze-string again
 to isolate other kinds of strings that represent other kinds of elements.
 (For example, the Frankenstein project has a number of milestone-style elements
 that are not intended to be Trojan markers.)
 After running a series of "string-surgeries" to make new elements with xsl:analyze-string,
 we conclude with <xsl:value-of select="."/> to output what remains as a string.-->
 <xsl:value-of select="."/>
 </xsl:non-matching-substring>
 </xsl:analyze-string>
</xsl:template>

XSLT template to reconstruct element markers from escape-character strings [3]

The script above applies regular expressions to isolate the strings we need to reconstruct the Trojan marker elements of the source edition that were reduced to text in the collation process. Going into the collation none of our files contain namespaces, but we apply them in the up-conversion process, so here we concatenate the th: namespace prefix as we reconstruct our Trojan horse attributes.
Following this element reconstruction, our next
 task will be to find a way to raise both the original markup we flattened from the
 source editions with the conflicting hierarchy posed by the seg
 elements derived from the collation process. Figure 3
 shows a sample passage from the
 Thomas copy edition file with the reconstructed but
 flattened elements (again, white space has been added for legibility):

Figure 3
<seg xml:id="C10_app90-fThomas_start"/>
contortions that ever and anon
con<del
 th:sID="fThomas_C10-del_2"/>puls<del th:eID="fThomas_C10-del_2"/>vulsed
& deformed  his un-human features.
<p loc="novel1_letter4_chapter4_p133" ana="end"/> 
<p loc="novel1_letter4_chapter4_p134" ana="start"/>
The
<seg xml:id="C10_app90-fThomas_end"/>
Sample reconstruction of the Thomas file, with flattened markup

In the passage above, the empty <seg> elements indicate the
 start and end points of the variant passage in the Thomas copy. Their partially
 shared @xml:id values coindex them while also pointing to the collation
 unit and numbered <app> element in the collation output; the
 trailing underscore separator and the string start or end
 distinguish start- from end-markers. In this example, <seg
 xml:id="C10_app90-fThomas_start"/> means that this is the start of a
 variant from apparatus unit 90, where the Thomas copy diverges from a reading shared
 by all of the other editions (in this case, the type of variation is that the other
 witnesses have no corresponding reading).
Within the <seg> virtual element, the first two
 markers (start- and end-) frame a deleted portion of a
 word (puls), and the third marks the end of paragraph 133 in Chapter
 4, followed by the beginning of paragraph 134 in the same chapter. The use of
 attributes on and <p> markers differs from
 that with the <seg> elements; in the case of
 and <p>, the Trojan horse attributes point
 to the location in the source and coindexes the start- and end-markers.[4]
While we wish to raise both hierarchies, the primary use case on which we concentrate in this paper is to raise the structural elements from the original edition (such as <p> and), while leaving the <seg> elements flattened. The question of how best to accomplish this brought the three co-authors together, and serves as a testing ground for the raising methods described in this paper. The output will look something like Figure 4 for the end of paragraph 133 and the start of paragraph 134 in the Thomas edition:
Figure 4
<p xml:id="novel1_letter4_chapter4_p133">
 …
 <seg xml:id="C10_app90-fThomas_start"/>contortions
 that ever and anon
 con<del xml:id="fThomas_C10-del_2">pulsvulsed
 & deformed his un-human features.
</p>
<p xml:id="novel1_letter4_chapter4_p134">
 The <seg xml:id="C10_app90-fThomas_end"/>
 different accidents of life are not so changeable as
 the feelings of human nature
 …
</p>
The sample passage above, after raising structural elements (and
 reflowing)

A secondary use case is to raise the <seg/> elements. When,
 later in the production process, we also raise the <seg>
 elements, we avoid overlap, or, rather we mark a moment of intersecting hierarchy,
 by fragmenting the one that spans a paragraph boundary
 into two parts:
Figure 5
<p xml:id="novel1_letter4_chapter4_p133">
 …
 <seg xml:id="C10_app90-fThomas__Pt1">contortions
 that ever and anon
 con<del xml:id="fThomas_C10-del_2"
 >pulsvulsed
 & deformed his
 un-human features.
 </seg>
</p>
<p xml:id="novel1_letter4_chapter4_p134">
 <seg xml:id="C10_app90-fThomas__Pt2">
 The
 </seg>
 different accidents of life are
 not so changeable as the feelings of human
 nature
 …
</p>
Because raising <seg> would create overlap, we split
 the element into parts.

The split <seg> elements in the passage above now indicate
 their association with each other with __Pt1 and __Pt2
 appended to the original value of the apparatus and
 reading witness location.
Our process of raising the new edition files thus entails the following steps: 	Flatten all markup (prior to and following the collation
 process)

	Reconstruct (raise) the structural elements from the source edition
 (e.g., <p>,)

	Raise the <seg> elements, which indicate moments of
 variation in the collation, splitting the raised elements into parts
 where that is required to avoid creating overlap

 The experimental transformations tested and discussed in this report
 focus primarily on the middle of these three steps, raising the structural markup.

Simplified sample data
In addition to exploring and reporting on the application of different raising
 methods to authentic data from Variorum Frankenstein, described above, for
 illustrative and development purposes when discussing program logic we use a small
 contrived hierarchical XML sample extracted from a short passage of poetry, derived
 from a quoted passage in the Frankenstein novel. The simplified
 data comes in three forms, which we call basic,
 extended, and overlap.[5]
Basic sample
A sample of the basic input format in its
 original form is:
Figure 6
<p>
 <cit>
 <quote>
 <lg>
 <l> Like one who, on a lonely road, </l>
 <l> Doth walk in fear and dread, </l>
 <l> And, having once turn’d round, walks on, </l>
 <l> And turns no more his head; </l>
 <l> Because he knows a frightful fiend </l>
 <l> Doth close behind him tread*. </l>
 </lg>
 </quote>
 <note> *
 <bibl>
 Coleridge’s “Ancient Mariner.”
 </bibl>
 </note>
 </cit>
</p>

Original hierarchical XML

Flattening
To test the method on our Simplified sample data, we first flatten the
 original XML with the following XSLT, which converts all tags except the root
 (which must be preserved as a container element to ensure that the XML is well
 formed) to Trojan milestones. We modify the Trojan milestone markup method
 described in DeRose 2004 by putting the @sID and
 @eID attributes in a namespace, for which we bind the prefix
 th: to the URI
 http://www.blackmesatech.com/2017/nss/trojan-horse
 (following Sperberg-McQueen 2018). The
 original generic identifier is retained, the start-tag is replaced by an empty
 element that adds a @th:sID attribute with a generated value, and
 the end-tag is replaced by an empty element that adds a th:eID
 attribute with the same generated value:
Figure 7
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:th="http://www.blackmesatech.com/2017/nss/trojan-horse"
 xmlns:math="http://www.w3.org/2005/xpath-functions/math"
 exclude-result-prefixes="#all"
 version="3.0">
 <xsl:output method="xml" indent="no"/>
 <xsl:template match="/*">
 <xsl:copy>
 <xsl:namespace name="th"
 select="'http://www.blackmesatech.com/2017/nss/trojan-horse'"/>
 <xsl:apply-templates/>
 </xsl:copy>
 </xsl:template>
 <xsl:template match="*">
 <xsl:element name="{name()}">
 <xsl:copy-of select="@*"/>
 <xsl:attribute name="th:sID" select="generate-id()"/>
 </xsl:element>
 <xsl:apply-templates/>
 <xsl:element name="{name()}">
 <xsl:attribute name="th:eID" select="generate-id()"/>
 </xsl:element>
 </xsl:template>
</xsl:stylesheet>
XSLT to flatten hierarchical XML to Trojan milestones

The flattened version looks roughly like the
		following (line breaks have been added within tags
		here, to shorten the lines:
Figure 8
<?xml version="1.0" encoding="UTF-8"?><p
 xmlns:th="http://www.blackmesatech.com/2017/nss/trojan-horse">
 <cit th:sID="d1e3"/>
 <quote th:sID="d1e5"/>
 <lg th:sID="d1e7"/>
 <l th:sID="d1e9"
	 /> Like one who, on a lonely road, <l th:eID="d1e9"/>
 <l th:sID="d1e12"
		/> Doth walk in fear and dread, <l th:eID="d1e12"/>
 <l th:sID="d1e15"
		/> And, having once turn’d round, walks on, <l th:eID="d1e15"/>
 <l th:sID="d1e18"
		/> And turns no more his head; <l th:eID="d1e18"/>
 <l th:sID="d1e21"
		/> Because he knows a frightful fiend <l th:eID="d1e21"/>
 <l th:sID="d1e25"
		/> Doth close behind him tread*. <l th:eID="d1e25"/>
 <lg th:eID="d1e7"/>
 <quote th:eID="d1e5"/>
 <note th:sID="d1e30"/> *
 <bibl th:sID="d1e32"/>
 Coleridge’s “Ancient Mariner.”
 <bibl th:eID="d1e32"/>
 <note th:eID="d1e30"/>
 <cit th:eID="d1e3"/>
</p>
Original XML after flattening with Trojan milestones

The output of raising must match the original
 XML.

Extended basic sample
The basic sample contains no non-Trojan empty elements and no non-Trojan
 attributes. We can test whether those features are handled properly with the
 following slightly more complicated sample:
Figure 9
<?xml version="1.0" encoding="UTF-8"?><p
 xmlns:th="http://www.blackmesatech.com/2017/nss/trojan-horse">
 <cit xml:id="fThomas_C10-cit_1" th:sID="d1e3"/>
 <quote xml:id="fThomas_C10-quote_1" th:sID="d1e5"/>
 <lg xml:id="fThomas_C10-lg_1" th:sID="d1e7"/>
 <l xml:id="fThomas_C10-l_1" th:sID="d1e9"
 /> Like one who, on a lonely road, <l th:eID="d1e9"/>
 <l xml:id="fThomas_C10-l_2" th:sID="d1e12"
 /> Doth walk in fear and dread, <l th:eID="d1e12"/>
 <l xml:id="fThomas_C10-l_3" th:sID="d1e15"
 /> And, having once turn’d round, walks on, <l th:eID="d1e15"/>
 <l xml:id="fThomas_C10-l_4" th:sID="d1e18"
 /> And turns no more his head; <l th:eID="d1e18"/>
 <l xml:id="fThomas_C10-l_5" th:sID="d1e21"
 /> Because he knows a frightful fiend <l th:eID="d1e21"/>
 <l xml:id="fThomas_C10-l_6" th:sID="d1e25"
 /> Doth close behind him tread*. <l th:eID="d1e25"/>
 <lg th:eID="d1e7"/>
 <quote th:eID="d1e5"/>
 <note xml:id="fThomas_C10-note_1" th:sID="d1e30"/> *
 <bibl xml:id="fThomas_C10-bibl_1">
 Coleridge’s “Ancient Mariner.”
 </bibl>
 <note th:eID="d1e30"/>
 <cit th:eID="d1e3"/>
</p>

Extended basic sample input

 The extended basic sample adds the following features: 	The bibl element a
 non-Trojan element, without Trojan
 attributes.

	Most elements have, in addition to their Trojan attributes,
 @xml:id attributes. The Trojan attributes must be
 removed during raising, but the non-Trojan attributes must be
 retained.

Overlapping markers
To test the behavior of the methods with input that cannot be fully raised
 without creating overlap, we use the following
 sample (some whitespace added for legibility):
Figure 10
<!--* Example adapted from LMNL sawtooth syntax
 * at http://piez.org/wendell/LMNL/lmnl-page.html
 *-->
<excerpt xmlns:th="http://www.blackmesatech.com/2017/nss/trojan-horse">
 <source th:sID="source"/>The Housekeeper<source th:eID="source"/>
 <author th:sID="author"/>Robert Frost<author th:eID="author"/>
 <s th:sID="s1"/>
 <l th:sID="L144" n="144"/>
 He manages to keep the upper hand
 <l th:eID="L144"/>
 <l n="145" th:sID="L145"/>
 On his own farm.
 <s th:eID="s1"/>
 <s th:sID="s2"/>
 He's boss.
 <s th:eID="s2"/>
 <s th:sID="s3"/>
 But as to hens:
 <l th:eID="L145"/>
 <l n="146" th:sID="L146"/>
 We fence our flowers in and the hens range.
 <l th:eID="L146"/>
 <s th:eID="s3"/>
</excerpt>

Flattened XML that cannot be raised without creating overlap

This consists of a few lines of verse, marked up
		with both the metrical structure (verse lines) and the
		division into sentences; both the first and third
		sentences span verse boundaries.

Frankenstein
 markers
The Frankenstein Variorum encoding represents an overlapping virtual hierarchy, so we need a way of distinguishing one set of elements participating in one hierarchy from the other set. The virtual elements participating in the first hierarchy hold trojan markers with attributes in the form of @th:sID and @th:eID. The second hierarchy is signalled with an alternative marker style used only on the <seg> elements. Here there is an @xml:id bearing a flag indicating the start or end position of a variant passage. These markers cannot be raised in exactly the way they were placed, since in some cases a variant passage may start inside a paragraph or chapter, and end in the next one. In this project, the decision to raise the <seg> elements necessitates a process of splitting them into pieces within structural boundaries, so that the original virtual element becomes two elements, with part one inside one structural unit and part two inside the next. Different styles of markers here facilitates handling these elements at different moments in the raising process.

Solutions to the problem
We describe several solutions to the problem, some
	formulated in XSLT 3.0 and some using other tools.
Right-sibling traversal
One way to construct content elements from flattened
 XML is to do roughly what a recursive-descent parser for
 XML does: when a recursive-descent parser sees the
 beginning of any construct, it calls a routine to handle
 that construct; if the construct contains other
 constructs, other routines are called recursively. The
 function handling a parent element starts before any
 function handling a child, and ends only after all
 children have been processed.
The standard idiom of including
	 xsl:apply-templates similarly visits each
	 node in the input tree left to right, in order, but
	 provides no mechanism for passing results or state from
	 one sibling to the next. In order to perform the raising
	 task, we perform instead a right-sibling traversal of the
	 input tree, which proceeds one element at a time
	 processing along the following-sibling axis. Each marker
	 element calls <xsl:apply-templates>
	 only on its first child, and each template passes control
	 to its immediate right sibling.
Order of raising the elements
Figure 11 through Figure 20 illustrate some stages in the
 process of raising the virtual elements in the sample
	 document by progressing through the flat sequence
	 of siblings which makes up most of the input.
Figure 11
[image:]
Illustration of left-right handling of input by
		a recursive-descent parser or by the left-right method
		described in the text. Initial state.
The input is shown arrayed along the bottom of
		the diagram: ovals filled with gray denote start- and
		end-markers, rectangles denote text nodes. The gray
		ovals above denote the logical hierarchy which is to
		be constructed (visible to human observers even if not
		visible to the software).

Figure 12
[image:]
The first input node is read and recognized as
		the start-marker for the p element.
		Both the start-marker and the element node constructed
		are shown in red, as is the arc connecting them.

Figure 13
[image:]
The second input node is read and recognized as
		the start-marker for the citation element cit.
The start-marker for the enclosing
		p element has served its purpose and is omitted
		from the diagram. The node for the p
		element is still incomplete, as indicated by its
		pink background.
		

Figure 14
[image:]
The third input node is read and recognized as
		the start-marker for the citation element cit.

Between Figure 14
	 and Figure 15, we elide several
	 stages. Figure 15 through Figure 17 illustrate the
	 complete recognition of the second line of verse.
	
Figure 15
[image:]
The eighth input node is read and recognized as
		the start-marker for the second line of verse.
The first line of verse is now complete and its
		node is now shown with black oval and white background
		instead of pink.

Figure 16
[image:]
The ninth input node is the text
		for the second line of verse.

Figure 17
[image:]
End-marker for second line of verse.

Figure 18 through Figure 20 illustrate the
	 recognition of the last two end-markers and the final
	 state of processing.
	
Figure 18
[image:]
End-marker for cit element.

Figure 19
[image:]
End-marker for paragraph.

Figure 20
[image:]
Final state: all markers are gone, and all
		elements have been raised.

Outline of XSLT code
As described above, the right-sibling traversal idiom
 in XSLT proceeds one element at a time along the following-sibling axis. In the
 general case, each template for a content element calls
 <xsl:apply-templates> not on all its children but only on
 its first child. Every template (for content elements, marker elements, text
 nodes, comments, or processing instructions) concludes with a call to
 <xsl:apply-templates
 select="following-sibling::node()[1]"/>, thus passing control to the
 template for its immediate right sibling. In the flattening case, the outermost
 element of the document may be the only content element and its template the
 only one that applies templates to its children.
For our simple test cases, processing begins
	with the template for the outermost element.[6]
	
Figure 21
<xsl:template match="*[*]">
 <xsl:copy copy-namespaces="no">
 <xsl:copy-of select="@*"/>
 <xsl:apply-templates mode="raising"
 select="child::node()[1]"/>
 </xsl:copy>
 </xsl:template>

	The template for start-markers constructs a content element
	for the corresponding virtual element; it has the following
	structure:

Figure 22
<xsl:template match="*[@th:sID]" mode="raising">

 <!--* 1: handle this element *-->
 <xsl:copy>
 <xsl:copy-of select="@* except @th:sID"/>
 <xsl:apply-templates select="following-sibling::node()[1]"
 mode="raising">
 </xsl:apply-templates>
 </xsl:copy>

 <!--* 2: continue after this element *-->
 <xsl:apply-templates select="following-sibling::*
 [@th:eID = $sID
 and namespace-uri()=$ns
 and local-name()=$ln]
 /following-sibling::node()[1]"
 mode="raising"/>

</xsl:template>
Template for start-marker

Note that there are two calls to <xsl:apply-templates>. The
 first call to <xsl:apply-templates> occurs within an
 <xsl:copy> element (which constructs an element with the
 name and attributes given by the start-marker); it selects the immediately
 following sibling node, which will in the normal run of things become the first
 child node of the new content element. The second call to
 <xsl:apply-templates> occurs after the new content
 element and it does not select the start-marker’s immediately following sibling, but instead selects the node immediately to the right of the end-marker.
Each child of the virtual element copies itself into the content element being
 created. The templates for text() nodes, comments, processing
 instructions, and any content elements present in the input all have essentially the
 same structure:
Figure 23
<xsl:template match="text() | comment() | processing-instruction | *[not(@th:*)]"
 mode="raising">
 <xsl:copy-of select="."/>
 <xsl:apply-templates
 select="following-sibling::node()[1]"
 mode="raising"/>
</xsl:template>
Template for text() nodes, comments, processing instructions,
 and content elements

If content elements can contain further markers at other levels of the tree, the
 <xsl:copy-of> should be replaced by a shallow copy and a
 recursive <xsl:apply-templates select="child::node()[1]>. That is
 not the case with our test data.
When an end-marker is encountered, the contents of the virtual element whose end
 it marks have now all been accumulated, and the right-sibling traversal of the
 input should stop. The template for end-markers will thus look like this:
Figure 24
<xsl:template match="*[@th:eID]" mode="raising">

 <!--* No action necessary *-->
 <!--* We do NOT recur to our right.
 * We leave it to our parent to do that.
 *-->

</xsl:template>
Empty template to stop the processing of end-markers

The code shown here is simplified by assuming
	 that the start- and end-markers in its input correspond
	 to the start- and end-tags of a well-formed XML
	 document. The template for end-markers, for example,
	 does not check to see that the end-marker found is the
	 one that matches the element on the top of the current
	 element stack. When confonted with the overlapping
	 virtual elements of some of our sample input, therefore,
	 the code shown here will behave as if start- and
	 end-markers were paired up by position, without regard for
	 co-indexing or element type. 	
	
Better behavior in the presence of overlapping
	 virtual elements or errors in the input can be achieved
	 by passing parameters on each call to
	 apply-templates in mode raising,
	 which keep a stack of co-indexing IDs and element types.
	

Resource consumption
A few notes on resource consumption may be
	 in order.
The templates shown each handle a single node and then call
 <xsl:apply-templates>, selecting the next node to be
 processed. The template activation stack in the XSLT processor thus contains no
 sets of nodes waiting to be processed, but the call stack may become rather
 deep: in our sample data, the maximum depth of the template stack is the number
 of nodes in the flattened portion of the input. An XSLT processor that does not
 eliminate tail-recursive template calls may thus run out of stack space (at
 least in theory—in practice, we have never seen a right-sibling recursion blow
 the stack on real, well-formed input).
Because the right-sibling idiom visits each node
	 in the flattened input just once, the cost of the process
	 should be linear in the size of the input. (In practice,
	 preliminary measurements suggest that with the Saxon
	 HE processor, the rise in cost is sub-linear to the rise
	 in input size.)
Despite its virtues, the right-sibling traveral
	 idiom is needed rarely enough in XSLT programming
	 that many XSLT authors have never used it; some find it
	 difficult.[7]
	 The inside-out algorithm described below
	 (Inside-out recursion)
	 can be regarded as an alternative which
	 is closer to conventional XSLT usage. The
	 implementation using XSLT 3.0 accumulators
	 is another approach worth learning.
	
	

Raising
 Frankenstein
For raising Frankenstein using right-sibling traversal,
 we adapt the code lightly to apply to its project markup in the following
 template rules:
Figure 25

 <xsl:template match="div[@type='collation']">
 <xsl:apply-templates select="child::node()[1]" mode="raising"/>
 </xsl:template>
 <xsl:template match="*[@th:sID]" mode="raising">
 <xsl:variable name="ln" as="xs:string" select="name()"/>
 <xsl:variable name="sID" as="xs:string" select="@th:sID"/>

 <!--* 1: handle this element *-->
 <xsl:copy>
 <xsl:attribute name="xml:id">
 <xsl:value-of select="$sID"/>
 </xsl:attribute>
 <xsl:apply-templates select="following-sibling::node()[1]" mode="raising">
 </xsl:apply-templates>
 </xsl:copy>

 <!--* 2: continue after this element *-->
 <xsl:apply-templates select="following-sibling::*
 [@th:eID= $sID
 and name()=$ln]
 /following-sibling::node()[1]"
 mode="raising">
 </xsl:apply-templates>
 </xsl:template>
 <xsl:template match="text() | comment() | processing-instruction | *[not(@loc)]"
 mode="raising">
 <xsl:copy-of select="."/>
 <xsl:apply-templates
 select="following-sibling::node()[1]"
 mode="raising"/>
 </xsl:template>
 <xsl:template match="*[@th:eID]" mode="raising"/>

Right sibling traversal method applied to
 Frankenstein

Inside-out recursion
Inside-out recursion works by finding all innermost pairs of start- and
 end-markers, that is, those that mark virtual elements that do not contain any
 markers or other virtual elements. They may contain anything else, including
 text() nodes, empty elements that are not markers, and container
 elements. The transformation forms all innermost pairs that it finds into container
 elements and passes the resulting new document back into the recursive function,
 where the (new) innermost pairs of markers are now outside the newly created
 container elements. The function recurs until there are no more markers. The maximum
 possible depth of recursion is equal to the depth of the original (pre-flattening)
 XML hierarchy.
The sequence in which virtual elements in our sample
	 document are raised in this method is illustrated by the
	 diagrams in Figure 26 to Figure 32.
Figure 26
[image:]
Illustration of inside-out handling of input.
The input is shown arrayed along the bottom of
		the diagram: ovals filled with gray denote start- and
		end-markers, rectangles denote text nodes. The gray
		ovals above denote the logical hierarchy which is to
		be constructed (visible to human observers even if not
		visible to the software).

Figure 27
[image:]
On the first pass, the inside-out algorithm
		raises all childless virtual elements.

Figure 28
[image:]
On the second pass, inside-out raises elements
		with children but no grandchildren.

Figure 29
[image:]
On the third pass, elements of the third layer
		from the leaves are raised.

Figure 30
[image:]
The fourth pass raises the children of the
		virtual root.

Figure 31
[image:]
The fifth pass raises the p element.

Figure 32
[image:]
In the final state, the inside-out algorithm has
		raised all elements.

Raising
The output of the preceding transformation is included in the Simplified sample data section, above. We then reconstruct the hierarchy
 using the inside-out recursive function th:raise() in the following
 XSLT stylesheet:
Figure 33
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="3.0"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:th="http://www.blackmesatech.com/2017/nss/trojan-horse"
 exclude-result-prefixes="#all">
 <xsl:output method="xml" indent="no"/>

 <!--* Set $debug parameter to any non-null value to output messages *-->
 <xsl:param name="debug" static="yes" required="no"/>

 <xsl:key name="end-markers" match="*[@th:eID]" use="@th:eID"/>

 <!--
 Identity template of anything lower than grandchildren of the root
 Just copy; they cannot contain markers
 -->
 <xsl:template match="/*/*/descendant::node()" mode="#all">
 <xsl:sequence select="."/>
 </xsl:template>

 <!-- Traditional identity template for root and its children -->
 <xsl:template match="@* | node()" mode="#all">
 <xsl:copy copy-namespaces="no">
 <xsl:apply-templates select="@* | node()"/>
 </xsl:copy>
 </xsl:template>

 <!--
 th:raise(.): raise all innermost elements within the document
 messages controlled by $debug stylesheet parameter
 -->
 <xsl:function name="th:raise">
 <xsl:param name="input" as="document-node()"/>
 <xsl:message use-when="$debug">raise() called with
 <xsl:value-of select="count($input//*)"/>-element document
 (<xsl:value-of select="count($input//*[@th:sID])"
 /> Trojan pairs)</xsl:message>
 <xsl:choose>
 <xsl:when test="exists($input//*
 [@th:sID eq following-sibling::*[@th:eID][1]/@th:eID])">
 <!-- If we have more work to do, do it -->
 <xsl:variable name="result" as="document-node()">
 <xsl:document>
 <xsl:apply-templates select="$input" mode="loop"/>
 </xsl:document>
 </xsl:variable>
 <xsl:sequence select="th:raise($result)"/>
 </xsl:when>
 <xsl:otherwise>
 <!-- We have no more work to do, return the input unchanged. -->
 <xsl:message use-when="$debug">raise() returning.</xsl:message>
 <xsl:sequence select="$input"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:function>

 <xsl:template match="/">
 <xsl:sequence select="th:raise(.)"/>
 </xsl:template>

 <xsl:template match="/" mode="loop">
 <xsl:apply-templates/>
 </xsl:template>

 <!--
 Innermost start-markers
 @priority needed here and below because otherwise ambiguous with identity templates
 -->
 <xsl:template match="*[@th:sID eq following-sibling::*[@th:eID][1]/@th:eID]" priority="1">
 <xsl:copy copy-namespaces="no">
 <xsl:copy-of select="@* except @th:sID"/>
 <xsl:variable name="end-marker" as="element()" select="key('end-markers', @th:sID)"/>
 <xsl:copy-of select="following-sibling::node()[. << $end-marker]"/>
 </xsl:copy>
 </xsl:template>

 <!-- nodes inside new wrapper: suppress, since they have alredy been copied -->
 <xsl:template
 match="node()[preceding-sibling::*[@th:sID][1]/@th:sID eq following-sibling::*[@th:eID][1]/@th:eID]"
 priority="1"/>

 <!-- end-tag for new wrapper; suppress because it has already been copied -->
 <xsl:template match="*[@th:eID eq preceding-sibling::*[@th:sID][1]/@th:sID]" priority="1"/>

</xsl:stylesheet>
XSLT to transform Trojan milestones into container elements

We turn off indentation (line 5) to avoid deforming the whitespace and set up
 a debug option (line 8), controlled by a
 $debug parameter.
The traditional identity template walks the entire tree, but because any
 descendant nodes lower than children of the root are guaranteed not to be or
 contain Trojan markers, we set up one identity template for those lower nodes,
 which just copied them to the output (lines 16–18). The regular identity
 template (lines 21–25) applies only to the root element and its children.
 @exclude-result-prefixes="#all" is not enough to avoid writing
 the th: namespace onto the root element of the output, even though
 the namespace in question is not used in the output. An unused namespace
 declaration is informationally harmless, but also needlessly distracting, so we
 suppress it by specifying @copy-namespaces="no" on
 <xsl:copy> in the identity template that deals with
 Trojan markers (line 22).
Our recursive raising operation (the th:raise() function, lines
 31–52) operates on document nodes, and we need to process the original document
 node of the input file differently from the new document nodes that we create on
 each pass through the recursive function. For that reason, we match the original
 document node in no mode (<xsl:template match="/">, lines
 54–56) and pass it into the raising function (<xsl:sequence
 select="th:raise(.)"/>, line
 55).
The raising function checks for the presence of @th:sID
 attributes in the input that are candidates for raising (<xsl:when
 test="exists($input//*[@th:sID eq
 following-sibling::*[@th:eID][1]/@th:eID])">, line 137 see the
 discussion of this test in Inside-out recursion challenges). If there
 aren’t any (<xsl:otherwise>, lines 46–50), the recursion is
 finished, and the function returns the result (<xsl:sequence
 select="$input"/>, line 49). If there are still
 @th:sID attributes that can be raised in the text, we create a
 variable $result (lines 39–43) of type document and apply templates
 inside the newly created document node (line 41). After the application of
 templates is finished, we recur and pass the result into another invocation of
 th:raise() (<xsl:sequence
 select="th:raise($result)"/>, line
 44).
The application of templates within the recursive function begins by applying
 templates to the (newly created) document node in loop mode
 (<xsl:apply-templates select="$input" mode="loop"/>, line
 41). The matching template (lines 58–60) simply applies templates to its
 children, unlike the template that matches the original document node (in no
 mode, lines 54–56), which passes the document into the th:raise()
 function (line 55), a difference in mode that is needed to avoid an endless
 loop. All other processing is the same for both the original document and the
 interim documents created inside th:raise(), so
 <xsl:template match="/" mode="loop"> (lines 58–60) is the
 only modal template, and it applies templates to
 its children in no mode.
There are three templates that do the actual processing of the innermost
 elements to be raised on each recursion: one that processes the start-marker,
 one that processes the content of the newly raised container element, and one
 that processes the corresponding end-marker. XSLT thinks that they have the same
 priority as the identity templates, so we specify a higher priority explicitly
 with priority="1".	start-marker: We match elements
 with a @th:sID attribute that has a value equal to the
 value of a @th:eID attribute on their first following
 sibling element that has a @th:eID attribute (line 33).
 This, then, matches only start-markers that contain nothing but
 text() nodes, non-Trojan empty elements, and
 container elements. In other words, it matches only the innermost
 flattened elements, those that do not contain any other empty
 flattened elements.[8] We process these hits by creating a container element
 with the same generic identifier as the start-marker; we instruct it
 not to copy unused namespaces, and we copy all non-Trojan
 attributes. We create the element content by copying all
 following-sibling nodes that precede the end-marker (which we find
 with the help of the end-markers key) that matches the
 start-marker we’re processing at the moment (lines 66–72). In other
 words, we copy the content of the newly raised element into
 it.

	nodes inside the new wrapper: We
 have already copied the content of the newly raised element inside
 it, which means that we don’t want to process those nodes again,
 since that would create duplicates. For that reason, we suppress all
 nodes between the start- and end-markers that we’re processing at
 the moment by matching them inside an empty
 <xsl:template> element (lines 75–78).

	end-marker: Since we create real
 start- and end-tags when we match the flattened start-marker, we
 have no more use for the flattened end-marker, so we suppress it by
 matching it, too, inside an empty <xsl:template>
 element (line 80).

When the simplified original document is flattened and then raised, as
 described above, the output of the raising operation matches the original
 input.

Raising Frankenstein
To raise the Frankenstein data, our process
 is run recursively over a collection of 165 files in the Frankenstein Variorum.
 The files have a TEI header that for project maintenance purposes needs to be updated after a version change, and only a portion of the document is to be raised. Here the most significant adaptation is that we supply an element node rather than a document node as the input parameter for the th:raise function.
Figure 34

 <?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet
 xpath-default-namespace="http://www.tei-c.org/ns/1.0"
 xmlns="http://www.tei-c.org/ns/1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:th="http://www.blackmesatech.com/2017/nss/trojan-horse"
 exclude-result-prefixes="#all"
 version="3.0">
 <xsl:output method="xml" indent="no"/>
 <!--* This stylesheet works to raise "trojan
	elements" from the inside out, this time over a collection
	of Frankenstein files output from collation. It also adapts
	djb's function to process an element node rather than a
	document node in memory to perform its recursive
	processing. *-->
 <xsl:variable name="novel-coll"
 as="document-node()+"
 select="collection('../input/frankenstein/novel-coll/')"/>

 <!--* In all modes, do a shallow copy, suppress namespace nodes,
	* and recur in default (unnamed) mode. *-->
 <xsl:template match="@* | node()" mode="#all">
 <xsl:copy copy-namespaces="no">
 <xsl:apply-templates select="@* | node()"/>
 </xsl:copy>
 </xsl:template>

 <!--* th:raise(.): raise all innermost elements within the container element this time passed as parameter *-->
 <xsl:function name="th:raise">
 <xsl:param name="input" as="element()"/>
 <xsl:choose>
 <xsl:when test="exists($input//*[@th:sID eq following-sibling::*[@th:eID][1]/@th:eID])">
 <xsl:variable name="result" as="element()">
 <div type="collation">
 <xsl:apply-templates select="$input" mode="loop"/>
 </div>
 </xsl:variable>
 <xsl:sequence select="th:raise($result)"/>
 </xsl:when>
 <xsl:otherwise>
 <!--* We have no more work to do, return the input unchanged. *-->
 <xsl:message>raise() returning.</xsl:message>
 <xsl:sequence select="$input"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:function>

 <xsl:template match="/">
 <xsl:for-each select="$novel-coll//TEI">
 <xsl:variable name="filename">
 <xsl:text>raised_</xsl:text><xsl:value-of select="tokenize(base-uri(), '/')[last()]"/>
 </xsl:variable>
 <xsl:variable name="chunk"
			 as="xs:string"
			 select="substring-before(tokenize(base-uri(), '/')[last()], '.') ! substring-before(., '_')"/>
 <xsl:result-document method="xml"
				indent="yes"
				href="output/frankenstein/novel-coll/{$filename}">
 <TEI>
		 <xsl:apply-templates select="descendant::teiHeader"/>
		 <text>
		 <body>
			 <xsl:apply-templates select="descendant::div[@type='collation']"/>
		 </body>
		 </text>
 </TEI>
 </xsl:result-document>
 </xsl:for-each>
 </xsl:template>
<!--* Template rules for altering the TEI header, otherwise uninvolved in the raising process: *-->
 <xsl:template match="teiHeader">
 <teiHeader>
 <fileDesc>
 <titleStmt><xsl:apply-templates select="descendant::titleStmt/title"/></titleStmt>
 <xsl:copy-of select="descendant::publicationStmt" copy-namespaces="no"/>
 <xsl:copy-of select="descendant::sourceDesc" copy-namespaces="no"/>
	 </fileDesc>
 </teiHeader>
 </xsl:template>
 <xsl:template match="titleStmt/title">
 <title>
 <xsl:text>Bridge Phase 4:</xsl:text><xsl:value-of select="tokenize(., ':')[last()]"/>
 </title>
 </xsl:template>

 <!--* On the input container element node, call th:raise() *-->
 <xsl:template match="div[@type='collation']">
 <xsl:sequence select="th:raise(.)"/>
 </xsl:template>
 <!--* Loop mode (applies to container element only). *-->
 <!--* Loop mode for container element: just apply templates in default unnamed mode. *-->
 <xsl:template match="div[@type='collation']" mode="loop">
 <xsl:apply-templates/>
 </xsl:template>
 <xsl:template match="*[@th:sID eq
 following-sibling::*[@th:eID][1]/@th:eID]">
 <xsl:variable name="currNode" select="current()" as="element()"/>
 <xsl:variable name="currMarker" select="@th:sID" as="xs:string"/>
 <xsl:element name="{name()}">
 <xsl:copy-of select="@* except @th:sID"/>
 <xsl:attribute name="xml:id">
 <xsl:value-of select="@th:sID"/>
 </xsl:attribute>
 <xsl:variable name="end-marker" as="element()" select="following-sibling::*[@th:eID = current()/@th:sID]"/>
 <xsl:copy-of select="following-sibling::node()[. << $end-marker]"/>
 </xsl:element>
 </xsl:template>

 <!--suppressing nodes that are being reconstructed, including the old end marker. -->
 <xsl:template
 match="node()[preceding-sibling::*[@th:sID][1]/@th:sID eq following-sibling::*[@th:eID][1]/@th:eID]"/>

 <xsl:template match="*[@th:eID eq preceding-sibling::*[@th:sID][1]/@th:sID]"/>
 </xsl:stylesheet>

Inside-out raising of the Frankenstein Variorum collection

The adaptation to the raising function to process a container element node allows for us to make changes to our TEI header. Beyond this, there are few differences between our
 generic inside-out raising example and the Frankenstein
 stylesheet. One minor difference is that we use only one identity-transformation template, and have not set a priority on the template rule to process the innermost elements. We convert the Trojan marker attributes into an xml:id with an element constructor:
Figure 35
<xsl:element name="{name()}">
 <xsl:attribute name="xml:id" select="@th:sID"/>
 <xsl:copy-of
 select="following-sibling::node()[following-sibling::*[@th:eID eq current()/@th:sID]]"/>
</xsl:element>
Element constructor to refactor @th:sID as
 @xml:sid in Frankenstein

Outside-in processing
Once the inside-out algorithm has been defined and
	 understood, it is natural to wonder whether a mirror-image
	 version of the algorithm would be possible which works
	 from the outside in. Once the pairs of outermost start-
	 and end-markers have been identified, the function can be
	 called recursively not on the entire document but only on
	 the children of the outermost elements, in an
	 instantiation of a divide-and-conquer strategy; this
	 should (or so it seems) result in faster processing.
	
Our realization of this idea is imperfect
	 in that we have not found a way to find and raise
	 all outermost
	 elements in a sequence with a single call, the way
	 the template-matching rules of the inside-out
	 approach can raise multiple elements in a single
	 call to apply-templates. Instead,
	 we find the left-most start-marker and process it,
	 then recur to continue processing the remainder
	 of the sequence after the matching end-marker.
	 This results in two recursive calls for each virtual
	 element: one to handle the children of the newly
	 raised element, and one for its right-siblings.
The order in which elements are raised
	 is illustrated in the diagrams of
	 Figure 36
	 to
	 Figure 44.
	 Some steps are elided to save space.
	
Figure 36
[image:]
Illustration of outside-in handling of input.
The input is shown arrayed along the bottom of
		the diagram: ovals filled with gray denote start- and
		end-markers, rectangles denote text nodes. The gray
		ovals above denote the logical hierarchy which is to
		be constructed (visible to human observers even if not
		visible to the software).

Figure 37
[image:]
On the first pass, the outside-in algorithm
		raises the leftmost outer element, here the paragraph.

Figure 38
[image:]
On the first recursive call, outside-in raises elements
		the citation (cit) element.

Figure 39
[image:]
On the third call, an ideal outside-in algorithm
		would raise both the quote element
		and the note, but our implementation
		raises just the leftmost of these.

Figure 40
[image:]
The fourth call to outside-in continues the
		depth-first traversal of the virtual tree.

Figure 41
[image:]
The tenth call to the outside-in function raises the sixth and final verse line.

Figure 42
[image:]
On the eleventh call, we reach the note element.

Figure 43
[image:]
The final pass raises the bibl element.

Figure 44
[image:]
In the final state, the outside-in algorithm has
		raised all elements.

Code outline
The default handling for all nodes is
	 a shallow copy, as specified in the mode
	 declaration for the default mode:
Figure 45
<xsl:mode on-no-match="shallow-copy"/>

For content nodes, the function th:raise-sequence() is called on their
 children. In the simple inputs we are dealing with, this template will match
 only the document's outermost element; for the Frankenstein data, it will match
 several others. At the time of this writing, we have not experimented to see
 whether it would be faster to test for start- and end-marker children here.
Figure 46
<xsl:template match="*[exists(node())]">
 <xsl:copy>
 <xsl:sequence
 select="@*,
 th:raise-sequence(child::node())"/>
 </xsl:copy>
</xsl:template>

The core of the implementation is the
	 th:raise-sequence function.
The function begins by creating lists of start- and end-markers (identified by their
 co-indexing IDs), so that we can find not just the leftmost start-marker but the
 leftmost start-marker with a matching end-marker in the
 sequence. If there are no matching pairs in the sequence, the
 sequence is returned without change. (This makes this implementation slightly
 more robust in the presence of overlap than the implementation shown above of
 the right-sibling traversal approach; we have not yet had time to update our
 method of right-sibling traversal to rectify the inconsistency in implementation
 philosophy.)
In the normal case, however, the function
	 will select the leftmost start-marker with a
	 matching end-marker, find the positions of the
	 start- and end-markers in the input, and then
	 partition the input sequence into three parts.
	 A call to apply-templates processes
	 nodes preceding the selected start-marker;
	 a recursive call to th:raise-sequence()
	 from within the raised elements processes the
	 nodes between the selected start- and end-markers;
	 a second recursive call processes the remainder
	 of the original sequence.
Figure 47
<xsl:function name="th:raise-sequence" as="node()*">
 <xsl:param name="ln" as="node()*"/>

 <!--* lidStarts, lidEnds: lists of IDs
 * for start- and end-markers *-->

 <xsl:variable name="lidStarts"
 as="xs:string*"
 select="for $n in $ln[th:start-marker(.)]
 return th:id($n)"/>
 <xsl:variable name="lidEnds"
 as="xs:string*"
 select="for $n in $ln[th:end-marker(.)]
 return th:id($n)"/>

 <xsl:choose>
 <!--* base case: no start-marker / end-marker
 * pairs present *-->
 <xsl:when test="empty($lidStarts[. = $lidEnds])">
 <!--* The sequence may contain elements
 * with markers inside, so we apply
 * templates, instead of just returning $ln *-->
 <xsl:apply-templates select="$ln"/>
 </xsl:when>

 <!--* 'normal' case: take first start-marker
 * with matching end-marker *-->
 <xsl:otherwise>
 <!--* find ID of first start-marker
 * with matching end-marker *-->
 <xsl:variable name="id"
 as="xs:string"
 select="$lidStarts[. = $lidEnds][1]"/>
 <!--* find position of start- and
 * end-markers with that ID *-->
 <xsl:variable name="posStartEnd"
 as="xs:integer+"
 select="for $i in 1 to count($ln) return
 if ($ln[$i]
 [(th:start-marker(.)
 or th:end-marker(.))
 and th:id(.) eq $id])
 then $i else ()"/>

 <xsl:variable name="posStart"
 as="xs:integer"
 select="$posStartEnd[1]"/>
 <xsl:variable name="posEnd"
 as="xs:integer"
 select="$posStartEnd[2]"/>

 <!--* Apply templates to all items to
 * left of start. These may include
 * markers, but if so they are not
 * matched and not raisable. They
 * may also include elements which
 * contain markers, so we need to apply
 * templates, not just return them.
 *-->

 <xsl:apply-templates
 select="$ln[position() lt $posStart]"/>

 <!--* Raise the element and
 * call raise-sequence() on its
 * content. *-->
 <xsl:copy select="$ln[$posStart]">
 <!--* copy the attributes
 * (filtering as needed) *-->
 <xsl:sequence
 select="$ln[$posStart]/(@* except @th:*)"/>

 <!--* handle children *-->
 <xsl:sequence
 select="th:raise-sequence(
 $ln[position() gt $posStart
 and position() lt $posEnd])"/>
 </xsl:copy>

 <!--* call raise-sequence() on all items
 * to right of end *-->
 <xsl:sequence
 select="th:raise-sequence(
 $ln[position() gt $posEnd]
)"/>
 </xsl:otherwise>
 </xsl:choose>
</xsl:function>

A number of ancillary functions are
	 defined in the stylesheet and used in the
	 code shown above. They are shown
	 briefly here.
	
	
The th:start-marker()
	 and th:end-marker() functions
	 encapsulate the recognition criteria for
	 markers. (These forms are redundant with
	 those given elsewhere in this paper; we have
	 not yet eliminated the redundancy in our
	 demonstration code.)
Figure 48
 <xsl:function name="th:start-marker" as="xs:boolean">
 <xsl:param name="e" as="node()"/>

 <xsl:value-of use-when="$th-style = 'th' "
	select="exists($e/@th:sID)"/>
 <xsl:value-of use-when="$th-style = 'xmlid' "
	select="ends-with($e/@xml:id,'_start')"/>

 </xsl:function>

 <xsl:function name="th:end-marker" as="xs:boolean">
 <xsl:param name="e" as="node()"/>

 <xsl:value-of use-when="$th-style = 'th' "
	select="exists($e/@th:eID)"/>
 <xsl:value-of use-when="$th-style = 'xmlid' "
		 select="ends-with($e/@xml:id,'_end')"/>

 </xsl:function>

The th:id() function
	 returns the co-indexing identifier used for
	 any given marker.
Figure 49
<xsl:function name="th:id" as="xs:string?">
 <xsl:param name="e" as="node()"/>

 <xsl:value-of use-when="$th-style = 'th' "
	select="($e/@th:sID, $e/@th:eID)"/>
 <xsl:value-of use-when="$th-style = 'xmlid' "
		 select="replace($e/@xml:id,'(_start|_end)$','')"/>

</xsl:function>

Resource consumption

		The implementation shown calls the
		th:raise-sequence() function
		once for each virtual element. The cost of
		the process should thus be roughly linear
		in the number of virtual elements in the input;
		that seems consistent with our timings of
		XSLT processors.[9]
	
Each node in the original flattened sequence is
	 passed to the central as part of the argument sequence
	 once for each level of its distance from the root of the
	 virtual tree. In this, the outside-in approach is
	 indeed the mirror image of the inside-out approach.
	
The implementation of outside-in shown here is not, however, demonstrably faster than
 our implementation of inside-out, despite the divide-and-conquer strategy. We
 have not been able to perform measurements to explain the differences in run
 time, but we can offer a couple of speculations. First, on our test data the
 inside-out approach reduces the number of nodes faster than the outside-in
 approach: in a typical XML tree there will be more leaf nodes than root nodes
 (and more than that: in our test data the fanout increases with distance from
 the root). Second, each call to the function traverses the input sequence
 several times: once to find all start-marker IDs, once to find all end-marker
 IDs, once to find the positions of the selected markers. Either or both of these
 could explain a slow run-time.

Accumulators
Another approach to the problem avoids recursion by performing a single pass over
 the input, maintaining a stack of partly-raised elements using the
 accumulator construction
 introduced in XSLT 3.0.
A bluffer's guide to accumulators
An accumulator is a sequence of values associated with the nodes of a tree. Each
 node has two values: 	a before value (calculated without
 access to the values associated with any descendants, and thus calculable before
 descendants are visited in a depth-first traversal of the tree)

	an after value (which may depend on the values associated
 with descendants and thus cannot be calculated until after they have been
 visited).

 The declaration of an accumulator specifies how to calculate the
 before and after values to be associated with a node, given the after values
 associated with the previous node and with the node’s last child. One simple way
 to calculate all the values of an accumulator would be to visit each node in the
 document in a pre-and-post-order traversal, determining the before value on the
 first visit to a node and the after value on the second. When streaming
 processing is requested, the calculation rules are not allowed to look ahead in
 the document, but accumulators can be used whether or not streaming is
 requested.
As a simple example, we can make an accumulator to keep track of the number of
 open virtual elements at any given point in the flattened input document: when we
 encounter a start-marker we will add one to the accumulated value, and when we
 encounter an end-marker we will subtract one. An accumulator is declared using an
 <xsl:accumulator> declaration, which contains a sequence of
 <xsl:accumulator-rule> elements describing how the
 accumulator’s values are calculated. Within an accumulator rule, the variable
 $value gives the value of the accumulator assigned by the
 immediately preceding node.
Figure 50
<xsl:accumulator name="level" as="xs:integer"
 initial-value="0"
 streamable="yes" >
 <xsl:accumulator-rule match="*[@th:sID]"
 select="$value + 1"/>
 <xsl:accumulator-rule match="*[@th:eID]"
 select="$value - 1"/>
</xsl:accumulator>
The declaration for a simple accumulator

The pattern in the accumulator rules here assumes that start- and end-markers use
 the @th:sID and @th:eID
 attributes described above.
At any point in a tree to which this accumulator applies, we can refer to the
 current node’s before value of the accumulator with the expression
 accumulator-before('stack') and to the after value with
 accumulator-after('stack').[10] Without accumulators, we could keep track of the relevant information by
 replacing references to accumlator-before('stack') with references to
 count(preceding::*[@th:sID]) -
 count(preceding::[@th:eID]).

Implementation strategy
To solve the raising problem with accumulators, we declare an accumulator whose
 value is an array (if the XPath 3.1 feature is supported) or a map, with which we
 maintain a stack of virtual elements that have been started, but not finished. The
 first member of the array will track the contents of the outermost element, the
 second member will track the contents of a second-level virtual element, and so
 forth. Each member of the array is a sequence of nodes containing a start marker
 (the first item in the sequence) and all the nodes seen so far that should be
 children of the raised content element.
The processing rules are relatively straightforward and may feel familiar to
 anyone who has ever constructed an in-memory tree from a SAX event stream: 	Each time we see a start-marker, we will push a new sequence onto the
 stack.

	Each time we see a text node, comment, processing instruction, or
 content element, we will append it to the sequence on the top of the
 stack.

	Each time we see an end-marker, we will
	Create a content element from the sequence on top of the
 stack: the element type and attributes come from the
 start-marker at $stack(array:size($stack))[1], and
 the contents come from the rest of the sequence:
 $stack(array:size($stack))[position() gt
 1].

	Pop the stack, i.e., discard the topmost member, whose purpose
 has been served now it has been turned into a content
 element.

	Append the newly created content element to the sequence now
 at the top of the stack.

Special handling is required for the case in which the element just
 ending is at level 1 in the stack, because once the stack has been
 popped there is no top level to which to append the new element, which
 should be written to the output tree instead.

Some utility functions
In order to allow the stylesheet to be used with either the th:
 attributes or with the ana="start|end" convention, we isolate the
 definition of start- and end-markers in two functions we place in the
 Trojan-Horse namespace:
Figure 51
<!--* th:trojan-start($e as element()): true iff $e is a Trojan
 * start-tag we want to process.
 *-->
<xsl:function name="th:trojan-start" as="xs:boolean">
 <xsl:param name="e" as="element()"/>

 <xsl:value-of use-when="$th-style = 'th' "
 select="exists($e/@th:sID)"/>
 <xsl:value-of use-when="$th-style = 'xmlid' "
 select="ends-with($e/@xml:id,'_start')"/>

 </xsl:function>

<!--* th:trojan-end($e as element()): true iff $e is a Trojan
 * end-tag we want to process.
 *-->
<xsl:function name="th:trojan-end" as="xs:boolean">
 <xsl:param name="e" as="element()"/>

 <xsl:value-of use-when="$th-style = 'th' "
 select="exists($e/@th:eID)"/>
 <xsl:value-of use-when="$th-style = 'xmlid' "
 select="ends-with($e/@xml:id,'_end')"/>

</xsl:function>
Two functions to encapsulate the definition of markers

These functions rely on a static parameter that identifies the idiom in use
 for markers.
Figure 52
<xsl:param name="th-style" select=" 'ana' " static="yes"/>
A static parameter to control the definition of markers

Marking the parameter as static allows the choice among definitions to be made
 during static analysis of the stylesheet (informally, at compile time) and not
 with a dynamic (run-time) choose/when construction.
Another function constructs a content element from a sequence of nodes
 beginning with a start-marker:
Figure 53
<!--* th:make-element($ln as node()+): make an element out of
 * one stack entry *-->
<!--* We package this as a function because it's called from
 * two different locations in the stylesheet *-->
<xsl:function name="th:make-element" as="element()">
 <xsl:param name="ln" as="node()+"/>

 <xsl:copy select="$ln[1]">
 <!--* first copy (and filter) attributes *-->
 <xsl:sequence select="$ln[1]/(@* except @th:*)"
 use-when="$th-style = 'th' "/>
 <xsl:sequence use-when="$th-style='xmlid'">
 <xsl:sequence select="$ln[1]/@*"/>
 <xsl:attribute name="xml:id"
 select="replace($ln[1]/@xml:id, '_start$','')"/>
 </xsl:sequence>

 <!--* then copy children *-->
 <xsl:sequence select="$ln[position() gt 1]"/>
 </xsl:copy>

</xsl:function>
A function to construct a content element from a start marker and sequence
 of nodes

 The functions just presented are not specific to the use of
 accumulators; they or analogous functions could be used in any of the XSLT
 stylesheets described here. But most of the other code shown in the current
 version of this paper does not use them; they are described here because the
 other code in this section uses them and would be hard to understand if they
 were not presented.

Declaring the accumulator and making it applicable
The overall pattern of accumulator declarations was shown above, and the
 declaration for an accumulator to be used as a stack follows the same pattern,
 though the rules are slightly more complex.
Figure 54
<!--* Declare stack accumulator to keep track of contents. *-->
<!--* Start with empty array. *-->
<xsl:accumulator name="stack" as="array(node()*)"
 initial-value="[]"
 streamable="yes"
 >
<!--* On Trojan start-tag, push the start-tag onto the stack *-->
<xsl:accumulator-rule match="*[th:trojan-start(.)]"
 select="array:append($value, .)"/>

<!--* On Trojan end-tag, make the currently pending element,
 pop the stack, and insert the pending element at the
 end of the new top item. *-->
<xsl:accumulator-rule match="*[th:trojan-end(.)]"
 phase="end">

 <xsl:variable name="level" as="xs:integer"
 select="array:size($value)"/>
 <xsl:variable name="e" as="element()"
 select="th:make-element($value($level))"/>
 <xsl:choose>
 <xsl:when test="$level eq 1">
 <!--* at outermost level, we have no previous
 level to add anything to, so we just pop the
 stack. *-->
 <xsl:sequence select="[]"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:sequence select="array:put(
 array:remove($value, $level),
 $level - 1,
 ($value($level - 1), $e))"/>
 </xsl:otherwise>
 </xsl:choose>
</xsl:accumulator-rule>

<!--* On any other node, append current node
 * to the top sequence in the stack *-->
<xsl:accumulator-rule
 match="node()[not(self::element())
 or (not(th:trojan-start(.))
 and not(th:trojan-end(.)))]"
 select="for $level in array:size($value) return
 if ($level eq 0)
 then []
 else array:put(
 $value,
 $level,
 ($value($level), .))"/>
</xsl:accumulator>
Declaration of an accumulator to be used as a stack

Since accumulators were introduced largely to support the streaming processing
 of very large inputs, and since the pointless calculation of accumulator values
 would make that processing unnecessarily difficult, XSLT 3.0 requires that any
 accumulators be associated more or less explicitly with an input tree or a mode.
 If the accumulator is not made applicable to a given tree in this way,
 references to the accumulator-before() and
 accumulator-after() functions will raise errors.

 We handle that by declaring the default mode of the stylesheet and adding a
 @use-accumulators attribute naming the accumulators to be
 calculated:
Figure 55
<!--* declare default mode; we make it fail on no match
 * because it turns out we need templates for all nodes.
 *-->
<xsl:mode on-no-match="fail"
 use-accumulators="stack"
 streamable="yes"/>
Declaration of mode with @use-accumulators

Note that the streamable="yes" is not required unless streaming
 processing is to be requested.[11]

Templates
The templates in this stylesheet have very little work to do: their primary
 task is to override the default templates and ensure that nodes are not copied
 unnecessarily to the output tree.
The template for start-markers does nothing; all the work is handled by the
 declaration of the accumulator.
Figure 56
<!--**
 * 1. Virtual start-tags
 **-->
<xsl:template match="*[th:trojan-start(.)]" priority="10">
<!--* Nothing to do, all the work
 * is done by the accumulator *-->
</xsl:template>
Template for start-markers

The template for end-markers is more complicated, because it must handle the
 case where the end-marker marks the end of an outermost virtual element. The
 normal accumulator rules cannot handle this case, because they write the newly
 constructed element into the new top member of the stack. But after we pop the
 stack at level one, the stack is empty and there is no top member. So we need to
 make the element and write it to the output tree ourselves. In all other cases,
 this template has no work to do.
Figure 57
<!--**
 * 2. Virtual end-tags
 **-->
<xsl:template match="*[th:trojan-end(.)]" priority="10">
<xsl:choose>
 <xsl:when
 test="array:size(accumulator-before('stack')) eq 1">
 <!--* if this end-tag ends the outermost element,
 * emit the element *-->
 <xsl:sequence
 select="th:make-element(accumulator-before('stack')(1))"/>
 </xsl:when>
 <xsl:otherwise>
 <!--* Otherwise, nothing to do *-->
 </xsl:otherwise>
</xsl:choose>
</xsl:template>
Template for end-markers

The template for the document node is identical to the default template; it is
 made necessary by the specification on-no-match="fail" on the mode
 declaration.
Figure 58
<!--**
 * 3. All other nodes
 **-->
<!--* 3.1 Document node *-->
<xsl:template match="/">
<xsl:apply-templates/>
</xsl:template>
Template for document node

The templates for other nodes make the same distinction as that for
 end-markers: when the stack is empty, the node is copied to the output tree, and
 otherwise all the work is left to the accumulator.
Figure 59
<!--* 3.2 Non-marker element nodes *-->
<xsl:template match="node()[self::element()
 and not(th:trojan-start(.))
 and not(th:trojan-end(.))]">
<!--* If we are outside the flattened area, copy the node;
 * otherwise, do nothing and leave everything
 * to the accumulator *-->
<xsl:choose>
 <xsl:when
 test="array:size(accumulator-before('stack')) eq 0">
 <xsl:copy>
 <xsl:copy-of select="@*"/>
 <xsl:apply-templates/>
 </xsl:copy>
 </xsl:when>
 <xsl:otherwise/>
</xsl:choose>
</xsl:template>
Template for content elements (or non-selected markers)

Figure 60
<!--* 3.3 Non-element nodes *-->
<xsl:template match="node()[not(self::element())]">
<!--* If we are outside the flattened area, copy the node;
 * otherwise, do nothing and leave everything
 * to the accumulator *-->
<xsl:choose>
 <xsl:when
 test="array:size(accumulator-before('stack')) eq 0">
 <xsl:sequence select="."/>
 </xsl:when>
 <xsl:otherwise/>
</xsl:choose>
</xsl:template>
Template for non-element nodes

Regex
It is not, in general, advisable to attempt to process arbitrary XML solely with
 regular expressions (regex), but it is not difficult to identify and process markers
 of the kind we are concerned with here.[12]
The following regex matches start-markers:
Figure 61
(<[^>]+?)th:sID\s*=\s*['"]\w+?['"](.*?)\/(>)
Regex to match start-markers

The regex works as follows (in dot-all mode, that
 is, where dot also matches \n):	The first capture group matches everything from the beginning of a tag
 that contains a @th:sID attribute until that attribute
 name. This necessarily includes the space that precedes the attribute
 name, as well as any attributes that might also precede it.

	We do not capture any part of the @th:sID attribute: the
 attribute name, the equal sign (with optional whitespace before or
 after), the quotation mark value delimiter (single or double), the
 attribute value (all characters up to the closing value delimiter), and
 the closing value delimiter. As long as the @th:sID and
 @th:eID values are created with the XPath
 generate-id() function, they cannot contain single or
 double quotation marks (generate-id() creates only values
 that are XML names), so we do not need to verify that the opening and
 closing delimiters match each other lexically.[13]

	The second capture group captures everything following the
 @th:sID attribute up to the /> that
 marks the end of the tag.

	We do not capture the / before the closing
 >.[14]

	The third capture group captures the closing >.

We replace all matches with the following
 replacement pattern:
Figure 62
\1\2\3
Replacement pattern for start-markers

The regex to match end-markers is similar to the one for start-markers, and
 because real end-tags cannot contain attributes, we do not need to match or copy
 them. We capture the opening < separately from whatever follows it,
 so that we can write a / into the replacement after it. The regex
 is:
Figure 63
(<)(\S+?)\s+[^>]*?th:eID=['"]\w+['"][^>]*?\/(>)
Regex to match end-markers

and the replacement pattern is:
Figure 64
\1/\2\3
Replacement pattern for end-markers

This method will incorrectly apply the replacement to matching patterns within XML
 comments and CDATA marked sections. With insincere apologies for disappointing Regex
 Edge-Case Bounty Hunters, coping with matches in these contexts, which would not
 naturally appear in our data, is not a goal in our work.[15]
A more serious limitation of this method is that because it is not XML-aware, it
 can be used only in situations where raising is guaranteed not to create overlap.
 For example, given input like:
Figure 65
<?xml version="1.0" encoding="UTF-8"?>
<root xmlns:th="http://www.blackmesatech.com/2017/nss/trojan-horse">
 <page th:sID="page1"/>
 <para th:sID="para1"/>Content on page 1 in paragraph 1
 <page th:eID="page1"/>
 <page th:sID="page2"/>Content on page 2 in para 1
 <para th:eID="para1"/>
 <para th:sID="para2"/>Content on page 2 in para 2
 <para th:eID="para2"/>
 <page th:eID="page2"/>
</root>
XML that cannot be unflattened without creating overlap

the result of converting all markers to real start-
 and end-tags would be:
Figure 66
<?xml version="1.0" encoding="UTF-8"?>
<root>
 <page>
 <para>Content on page 1 in paragraph 1
 </page>
 <page>Content on page 2 in para 1
 </para>
 <para>Content on page 2 in para 2</para>
 </page>
</root>
Invalid (overlapping) result of converting all markers to real start- and
 end-tags

The resulting document is not well-formed because the pages and paragraphs
 overlap. It is, however, possible to raise just pages but not paragraphs, or just
 paragraphs but not pages, without creating overlap, and the result would be
 well-formed.

Pull parsing in Python
The Python xml.dom.pulldom module can be used to stream an XML
 document past an event handler that can be instructed to raise a flattened hierarchy.[16] The result of pull parsing can be fashioned into output in two ways,
 as a string or as XML. With string output, it passes all events through unchanged
 except for markers, which it replaces with regular XML start- and end-tags. Because
 the output construction is not XML-aware, it has the same limitations as the regex
 approach: most significantly, it is capable of creating output that includes
 overlap, and that therefore is not well formed XML. With XML output, though, we use
 xml.dom.minidom to create XML elements within a DOM structure,
 which means that the result is necessarily well-formed. Pull parsing operates as a
 single traversal, which is to say that it begins at the document node and touches
 each element only once. With string output, the procedure can create write output as
 it handles each event; with XML output it is necessary to maintain the current
 context in a stack, which is similar to the use of a stack in the Accumulators method described above.[17] The maximum depth of the stack is equal to the maximum depth of nesting
 in the hierarchical XML.
String output
The following Python 3 code replaces markers with strings equivalent to real
 XML start- and end-tags:
Figure 67
import sys
from xml.dom.pulldom import CHARACTERS, START_ELEMENT, parseString, END_ELEMENT

def entities(input):
 return input.replace('&', '&').replace('<', '<').replace('>', '>')
output = []
with open(sys.argv[1], 'r') if len(sys.argv) > 1 else sys.stdin as input:
 for event, node in parseString(input.read()):
 if event == START_ELEMENT:
 if node.hasAttribute('th:eID'):
 # Trojan end tag
 output.append('</')
 else:
 # Trojan start tags and non-Trojan elements
 output.append('<')
 output.append(node.nodeName)
 for attname, attvalue in node.attributes.items():
 # remove Trojan attributes and namespace declaration
 if not (attname.startswith('th:') or attname == 'xmlns:th'):
 output.append(' ' + attname + '="' + attvalue + '"')
 output.append('>')
 if event == END_ELEMENT:
 if not (node.hasAttribute('th:sID') or node.hasAttribute('th:eID')):
 # non-Trojan only
 output.append('</' + node.nodeName + '>')
 elif event == CHARACTERS:
 output.append(entities(node.data))
print("".join(output))
Python code that constructs the XML output as a string

We create an empty list to hold the output, read in the source, and examine
 each event. In this simplified example, we process only
 START_ELEMENT, END_ELEMENT, and
 CHARACTERS, as follows:
	START_ELEMENT. Markers with @th:eID
 attributes are flattened end-tags, so when we encounter one, we output
 </; for other START_ELEMENT events we
 output only <. We follow this with the gi
 (node.nodeName) and then iterate over the attributes.
 For each non-Trojan attribute, we output a space, the attribute name, an
 equal sign, and the attribute value in quotation marks. Finally, we
 output the closing >.

	END_ELEMENT. Although markers are sole-tags, they fire
 both START_ELEMENT and END_ELEMENT events.
 Since we process all markers at their START_ELEMENT events,
 we ignore their END_ELEMENT events. For other
 END_ELEMENT events, we create a regular end-tag.

	CHARACTERS. We add character data content to the output,
 explicitly replacing reserved characters with XML entities.

We are parsing the input XML in an XML-aware manner, which is reasonably
 robust, but we are constructing the output XML as a string, which is not. See
 below section “Pull parsing in Python” for a discussion of the limitations.

XML output
The general approach to parsing with pulldom and constructing
 output with minidom is similar to the Accumulators method described above. Specifically, the flattened XML is traversed in a
 single pass from left to right (technically a depth-first traversal, which is
 how pulldom sees it) and events (we focus on
 START_ELEMENT, END_ELEMENT, and
 CHARACTERS) are handled as they occur. The output is assembled
 in memory as a tree, using minidom to create and attach nodes as
 needed. Open elements are stored on a stack, the maximum depth of which is,
 therefore, equal to the maximum depth of the unflattened XML. The code
 is:
Figure 68
from xml.dom.pulldom import CHARACTERS, START_ELEMENT, parseString, END_ELEMENT
from xml.dom.minidom import Document

class Stack(list):
 def push(self, item):
 self.append(item)

 def peek(self):
 return self[-1]

open_elements = Stack()
d = Document()
open_elements.push(d)

with open('flattened.xml') as input:
 for event, node in parseString(input.read()):
 if event == START_ELEMENT:
 if not node.hasAttribute('th:eID'): # process pseudo-end-tags on END_ELEMENT event
 open_elements.peek().appendChild(node)
 open_elements.push(node)
 elif event == END_ELEMENT:
 if node.hasAttribute('xmlns:th'): # don't declare now-unused th: namespace
 node.removeAttribute('xmlns:th')
 if node.hasAttribute('th:sID'): # can't remove @start until we're done with the node
 node.removeAttribute('th:sID')
 else: # pop only on container elements and Trojan end-tags
 open_elements.pop()
 elif event == CHARACTERS:
 t = d.createTextNode(node.data)
 open_elements.peek().appendChild(t)

 print(open_elements.pop().toxml())
Raising with python using pulldom

Parsing is the same as described above, so we import the same items from
 pulldom. From minidom we import only the
 Document class, which we use to initialize our output XML
 document. Our Stack class is a Python list adorned with
 stack-idiomatic terminology: we alias append() as
 push() (lists already have a pop() method), and we
 add peek() to provide access to the item at the top of the stack.
 That top item is the most recently opened element, and we peek at it in order to
 append child elements and child text() nodes as we encouter them.
 We begin by pushing the document node onto the
 stack.
We handle START_ELEMENT, END_ELEMENT, and
 CHARACTERS events in an if/elif/elif structure,
 silently ignoring other events. There are three types of elements whose start
 and end events we need to process: start-markers, end-markers, and regular
 elements (whether empty or not).
	In the case of start-markers and regular elements, we append the new
 node as a child of the item at the top of the stack (initially the
 document node; thereafter an element node) and then push the node onto
 the stack so that it becomes the new context element. The
 appendChild() and push() operations serve
 different but related purposes. Appending the new node to the current
 context (whatever is at the top of the stack) adds it to the correct
 location on the eventual output tree. Pushing it makes it the new
 current context, so that subsequent nodes will be added to it as
 children as long as it remains the current context. Nodes are
 passed by reference, rather than by value, so after these operations we
 point to the same new current node from three places:
 	the original input document,

	the top of the stack

	the location in the tree we are
 assembling under the output document node, which is at the bottom of the
 stack.

We ignore START_ELEMENT events for end-markers; all of
 their processing happens on their END_ELEMENT event. This
 is a somewhat arbitrary decision.

	The three mutually exclusive clauses in the if/elif/elif
 block that processes END_ELEMENT events work as
 follows:
	minidom treats namespace declarations as
 attributes, so the presence of an attribute with the name
 xmlns:th identifies the root note.[18] In our examples we are raising all markers, and
 therefore removing all attributes in the Trojan namespace, so we
 remove this declaration to avoid the clutter of an unneeded
 namespace declaration in the output. Because we identify Trojan
 attributes by their lexical shape (that is, by the presence of
 an explicit th: prefix), removing the namespace
 declaration early in the processing does not impinge on our
 ability to identify attribute instances that use the prefix.
 Because we never pop the root element, it will be at the top of
 the stack when our processing concludes.

	We remove the Trojan @th:sID attribute from the
 start-marker. We want to remove it eventually because it is not
 needed in the output, but we cannot remove it until the
 END_ELEMENT event of the start-marker because
 its presence tells us not to pop the stack at that
 END_ELEMENT event. In this way we push the
 element we are currently raising onto the top of the stack at
 its start-marker, but we remove its Trojan attributes only when
 we pop it at the END_ELEMENT event of the
 end-marker.

	The first two clauses process the root element and
 start-markers, both of which we leave on the stack after their
 END_ELEMENT events. In the remaining cases
 (end-markers and regular elements, whether empty of not), we pop
 the stack at the END_ELEMENT event, which makes its
 parent in the output tree where we are constructing the current
 context for the next event.

	In the case of CHARACTERS, we create a
 text() node and append it as a child of the current
 context, that is, the element at the top of the stack. When we wrote
 string output earlier we had to convert reserved characters to character
 entities ourselves, but in this case we are writing XML output, so the
 system automatically performs the entity encoding for us.

Conceptually, the entire start-marker functions as if it were the
 START_ELEMENT event for a regular element, and the entire
 corresponding end-marker functions as if it were the END_ELEMENT
 event for the same regular element. This means that we push a start-marker on
 its START_ELEMENT event (ignoring its END_ELEMENT
 event, except to remove its Trojan attribute), and pop it on the corresponding
 end-marker’s END_ELEMENT event (ignoring its
 START_ELEMENT event). In tabular
 form:
Table II
	Element type	
 START_ELEMENT
 	
 END_ELEMENT

	Regular	Push	Pop
	Start-marker	Push	Remove @th:sID
	End-marker	Ignore	Pop

Some things that can go wrong
Each of the methods described above comes with its own complications, and it was in
 the discussion of these complications that this paper originated. Some of these are
 challenges that can be overcome, others are limitations in what the method can manage,
 and others are deal-breakers that show that the method is not ultimately suitable for
 realistic use cases. In this section we review briefly the complications for each
 method.
Right-sibling traversal
Two elusive bugs in an initial implementation of the right-sibling traversal
 algorithm took the better part of a day or two to identify:
	It is remarkably easy to write
 select="following-sibling::node()" instead of
 select="following-sibling::node()[1]", and remarkably easy
 to overlook the error when scanning the code looking for the reason that the
 output is an order of magnitude larger than the input instead of
 approximately the same size. The symptom is that single nodes in the input
 appear more than once in the output.

	Similarly, it is remarkably easy to write <xsl:apply-templates
 select="..."/> instead of <xsl:apply-templates
 select="..." mode="raising"/>. The symptom is the reverse
 of the preceding: some nodes in the input drop out of the output.

 [Fuller examination of the version-control history of the stylesheets will
 probably reveal further errors, a discussion of which may be
 illuminating.]

Inside-out recursion
The two principal pitfalls with inside-recursion are double
 processing and endless
 recursion.
Double processing
When a start-marker is matched and raised, the nodes that belong inside the
 new container are copied into it inside the template that matches the
 start-marker. Because the nodes being copied are also candidates for the
 application of templates in the current pass through the function, we need to
 match them (along with the end-marker) in an empty
 <xsl:template> in order to avoid outputting them twice.
 Otherwise they would be copied when the start-marker is matched and then
 processed again when templates are applied to them in their own right.

Endless recursion
Recursion requires an exit condition to avoid falling into an endless loop. In
 an early version of the code, the recursive function tested for the presence of
 Trojan milestone attributes, and if there weren’t any, it concluded that all
 raising had been completed and stopped the recursion. This test fails in
 situations where there are Trojan elements that cannot be raised without
 creating overlap. Avoiding the endless loop in such situations requires a more
 complex test, not just for the presence of Trojan attributes, but for the
 presence of those that can be raised without creating overlap. In our simplified
 sample, instead of testing for exists($input//@th:sID), we test for
 elements that can be raised without risk of overlap with:
Figure 69
exists($input//*[@th:sID eq following-sibling::*[@th:eID][1]/@th:eID])
Test for markers that can be raised without creating overlap

Endless recursion is not an issue in situations where complete raising would
 not create overlap. This is the case with our original simplified sample, where
 the XML with Trojan markup was created by flattening original hierarchical XML,
 and since the original could not have had overlap, it can be reconstructed
 safely. Endless recursion is also not a problem when we raise only a subset of
 the markup that is guaranteed not to overlap. For example, if we have
 tessellated page and paragraph hierarchies over a prose text, where both pages
 and paragraphs have been flattened, we cannot fully raise all instances both
 types of elements if doing so would create overlap. But if our markup convention
 is that pages cannot overlap with pages and paragraphs cannot overlap with
 paragraphs, we can modify the raising routine to raise only the pages or only
 the paragraphs. See also Appendix A, where we discuss an
 alternative approach to raising with data of this type.

Accumulators
The primary problems we encountered in our implementation using accumulators were: 	Failure to use a fully implemented XSLT 3.0 processor. Initial tests
 used Saxon HE 9.6.0.5, which does not complain or warn about
 version="3.0", but which appears not to support all of
 the 3.0 constructs used. The main symptom was an error message reporting
 that XTSE0010: Element xsl:mode must not appear directly within
 xsl:stylesheet (which led to a wild goose chase through the
 3.0 spec trying to locate constraints on where mode declarations are
 allowed), followed unobtrusively by the message XTSE0010: Unknown
 XSLT element: mode. Upgrading to Saxon 9.8.0.12 solved this
 problem.

	Failure to specify @use-accumulators.
The next problem was the persistent repetition of the error message
 Accumulator stack is not applicable to the current
 document. Several attempts of increasing complexity (and, to
 be honest, decreasing plausibility) to make it applicable failed, until
 eventually it became clear that the only thing needed was to specify
 use-accumulators="stack" on the mode declaration for
 the default unnamed mode. (The mode declaration was already present; had
 it not been, it would have needed to be introduced.)

Regex
The principal challenge to writing the regex (aside from the risk of inadvertently
 creating XML that is not well-formed because of overlap, which is discussed above)
 is anticipating variation in the markup. For example, an XML start-tag with a single
 attribute looks like <gi attname="value">, but it allows optional
 whitespace around the equal sign and before the closing >
 delimiter—but not between the opening < delimiter and the generic
 identifier, and not between the / and the > at the end
 of a self-closing empty tag. Where it allows whitespace, it allows any amount of any
 combination of whitespace characters.
Within the context of a single project, the easiest way to deal with the allowable
 variation is not to allow it, that is, to enforce rigorous consistency even where
 XML syntax does not require it. But because rigorous consistency is difficult to
 achieve without computational validation, we opted for a more robust regex—that is,
 one more accepting of variation, even though allowing for variation made the regex
 harder to read and develop.
The regex expressions needed to raise Frankenstein are slightly more complex because they may or may not coexist with other attributes on a given element node.

Pull parsing in Python
The Python pull parser reads the input XML as XML and responds to parse events. We
 handle START_ELEMENT, END_ELEMENT, and
 CHARACTERS, and ignore other events, and we use XML-aware methods
 to access attributes. With respect to managing the input, then, this is a reasonably
 robust strategy. The quality of the output handling depends on whether we create
 output as a string or as an XML DOM.
String output
Creating XML output as a string is a brittle strategy. Not only is it
 susceptible to writing overlapping tags for the same reason as the regex method
 described earlier, but we also explicitly wrap attribute values in double-quote
 characters ("), which will produce results that are not well-formed
 if the attribute value happens to have contained the double-quote character
 originally. Python has an escape mechanism that is capable of dealing with
 awkwardly nested single- and double-quote characters in strings, as does XML,
 but the Python escape strategy is different from the XML one, and the code to
 perform the string manipulation needed to mediate between the two is difficult
 to read and write. Furthermore, where output is created as a string, we have to
 replace reserved characters with character entities explicitly ourselves, while
 XML-aware output does that automatically. For those reasons, it is safer to use
 XML methods to create the XML output as a (necessarily well-formed) DOM tree,
 which can then be serialized, instead of creating the output directly as a
 string. The use of pulldom to parse the input XML also requires
 accommodations to the peculiarities of pulldom namespace handling,
 which are discussed immediately below, under Python XML output challenges.

XML output
Generating XML output with Python minidom is reasonably robust
 and straightforward, but potentially confusing for the following reasons:
	The pull parser responds not to start- and end-tags, but to
 START_ELEMENT and END_ELEMENT events.
 Although markers are single tags (sole-tags), they fire both events, one
 immediately after the other. Since a start-marker and an end-marker both
 fire both types of events, dealing with the two different senses of
 start and end (marker vs event) simultaneously is potentially
 confusing for the developer. We also need to decide whether to process
 the marker at the START_ELEMENT or END_ELEMENT
 event, or to divide the processing of a marker over the two events.
 Since the two events always follow each other immediately, it might seem
 not to matter, but that assumption led us into error when dealing with
 removing Trojan attributes, about which see the following issue.

	Attributes in minidom are part of a dictionary-like
 property of the element node. We had decided (somewhat arbitrarily) to
 process start-markers at the START_ELEMENT event, and we
 wanted to remove Trojan attributes from those elements when we raised
 them. Initially we removed them when processing the
 START_ELEMENT event without noticing that we use them
 as part of the decision process on END_ELEMENT events.
 Because minidom objects are mutable, once we had removed
 the attribute at the START_ELEMENT event it was no longer
 available when we needed to test for it at the END_ELEMENT
 event, which led to errors in our stack management. We fixed the problem
 by removing the Trojan attributes only at the END_ELEMENT
 event. An alternative strategy, which also worked under testing, was to
 clone the node at the START_ELEMENT event, remove the
 Trojan attributes from the clone, and add the clone to the output tree
 and the stack. Since this approach does not remove anything from the
 original node, any original Trojan attribute is still available for
 testing when the END_ELEMENT event fires.

	The relationships among namespaces, namespace prefixes, and namespace
 declarations in minidom are alien to the XML view of
 namespaces. While minidom is namespace-aware at the level of the
 model, that awareness is not integrated with the serialization
 supported by the toxml() method (and some others). Here is
 a partial summary of the details:
	Whether minidom writes a namespace prefix into a
 serialization depends only on whether the prefix was specified
 when the element was created. It has nothing to do with whether
 the element is really in a namespace. It is possible to create
 and serialize an element with a namespace prefix that is not
 really in the namespace. It is also possible to create an
 element in a namespace without a prefix and when you serialize
 it, it will emerge without a prefix even if the namespace is not
 in scope, which means that when the serialization is parsed
 downstream, the element will be in whatever the default
 namespace is for its context.

	minidom will not write namespace declarations
 (default or prefix-binding) unless you create them explicitly as
 attributes. This means that you can create an element with a
 prefix and serialize output where the prefix is not actually
 declared, which is not well-formed.

	minidom will let you create and serialize an
 element with a namespace prefix with
 createElement() even though the element is not
 really in a namespace. An element is in a namespace only if it
 is created with createElementNS().

Because pulldom and minidom are essentially
 blind to namespace declarations, this also means that when we remove the
 declaration of the Trojan namespace while processing the root element
 (which changes the in-memory tree because pulldom and
 minidom objects are mutable), we can nonetheless still
 find Trojan attributes by their lexical shape, that is, by their
 explicit prefixes. It also means that our code is depending on those
 lexical forms: we rely on the presence of an explicit declaration of the
 Trojan namespace prefix only on the root element, and we rely on the use
 of the string th: as the namespace prefix. This means that
 XML that expresses the same namespace information in different ways
 (e.g., by binding a different prefix to the namespace URI, or by using
 namespace declarations on individual elements, instead of a prefix) will
 not be processed correctly.
These pulldom and minidom behaviors are
 far from XML-idiomatic, but except for the syntactic dependencies they
 impose (where namespaces are declared, how the declarations are spelled,
 how they are bound to prefixes), they prove not to be much of a
 practical obstacle during processing. The required accommodation entails
 writing namespace prefixes and namespace declarations (using
 attribute-like syntax) explicitly where we want them in the output, and
 matching namespaced elements and attributes with the prefix where it is
 used in the serialized input and without the prefix where it is
 not.

Comparison
The inside-out recursive approach (both the function-based XSLT 3.0 version and
 named-template-based XSLT 1.0 one) is tail-recursive, which means that an XSLT processor
 that performs tail-call optimization will not be at risk for running out of stack space.
 In cases where tail-call optimization is not available, the maximum depth of recursion
 is equal to the depth of the deepest marker in the
 input (pseudo-)hierarchy. The right-sibling traversal approach (both the XSLT 3.0 and
 the XSLT 1.0 versions) is also tail-recursive, and with an XSLT parser that does not
 perform tail-call optimization, it requires stack space equal to the maximum width of the widest
 hierarchical level.
Insofar as an open-source XSLT 3.0 processor that performs tail-call optimization is
 freely available in the open-source, platform-independent Saxon-HE product [Saxon-HE], the difference in stack requirements between the two methods has
 not been a consideration for our purposes. But insofar as XML documents of the sort that
 are of interest to digital humanists are typically wider than they are deep, users who
 are unable to employ an XSLT processor that performs tail-call optimization may favor
 inside-out processing over right-sibling traversal because inside-out processing is
 likely to require less stack space.
Developing the XSLT to reconstruct elements from the inside out may be more efficient
 than to do so from the outside in. Attempts to write code that does not control the
 order of processing must always account for the potential presence of intervening nodes
 to be reconstructed on the inside, that risk becoming duplicate (or triplicate, or
 quadruplicate, etc) nodes in the output depending on the depth of the hierarchy to be
 reconstructed.

 [Comparison of other methods to be added]

Conclusion
None of the methods described here is new, but their explicit juxtaposition,
 comparison, and evaluation in a tutorial context based on real use cases has clarified
 much about micropipelining for the author, and, it is hoped, for the reader, as
 well.

Appendix A. Raising tessellated hierarchies
Raising tessellated hierarchies is a common requirement for hierarchy inversion.[19] Consider a simple printed document that can be understood as containing a
 sequence of pages or a sequence of paragraphs, where each sequence fully covers the
 content without self-overlap, but where the two different element types overlap in a way
 that makes it impossible to use container elements for both. One typical XML workflow
 with such structures involves encoding one hierarchy with XML container elements and the
 other with milestones. For example, a novel transcribed from an original source and encoded in TEI
 might be structured with <div> elements for chapters, which contain
 <head> elements for chapter titles and <p>
 elements for paragraphs, with page beginnings encoded as empty <pb/>
 elements. If it later becomes necessary to operate on the pages as units, we can
 invert the markup by transforming the
 page-beginning milestones into page container elements, while flattening the elements
 that demarcate chapters, titles, and paragraphs.
The method described in this appendix differs from those described above because it
 works only where the hierarchy being raised is tessellated. That outcome requirement
 invites the use of <xsl:for-each-group>, which partitions its entire
 domain exhaustively into groups. The same property that makes
 <xsl:for-each-group> suitable for a situation where an entire
 text may be partitioned into tessellated paragraphs or tessellated pages makes it a poor
 choice for the contexts described in the body of this report, where new container
 elements must be created only around small islands of content.

Works cited
[CollateX]
 CollateX: software for collating textual sources.
 https://collatex.net/-

[DeRose 2004] DeRose, Steve. 2004. Markup
 Overlap: a review and a horse. Presented at Extreme Markup Languages 2004. Montréal,
 Québec, August 2-6, 2004.
 http://xml.coverpages.org/DeRoseEML2004.pdf
[Sperberg-McQueen 2018]
 Sperberg-McQueen,
 C. M.
 Representing concurrent document structures using Trojan Horse markup.
 To be
 presented at Balisage: The Markup Conference 2018,
 Washington, DC.
 On the Web in the preliminary proceedings.

[TEI P5] P5: Guidelines for
 electronic text encoding and interchange.
 http://www.tei-c.org/guidelines/P5/
[Variorum Frankenstein] Frankenstein Variorum Project.
 https://github.com/PghFrankenstein/Pittsburgh_Frankenstein
[Saxon-HE] Saxon-HE (home edition).
 http://saxon.sourceforge.net/
[XPath functions]
 XPath and XQuery functions and operators 3.1 W3C recommendation 21
 March 2017.
 https://www.w3.org/TR/xpath-functions-31/

[1] Community interest in flat-to-hierarchy and
 hierarchy-to-flat transformations is confirmed by their
 inclusion in Abel Braaksma’s 2014 proposal, on the XSLT
 mailing list, that they be included among the top 10 most
 used XSLT design patterns. See
 https://www.biglist.com​/lists​/lists.mulberrytech.com​/xsl-list​/archives​/201404​/msg00028.html.
[2] Ideally, all the outermost elements in the
 input sequence would be recognized and processed
 in a single call to the function, but we have not
 found a way to achieve this.
[3] This particular kind of “raising” from text strings is slightly tangential to the methods we concentrate on this paper, but we include some discussion of it because it is part of the practical use-case prompting our work on this paper, and is likely to be a stage in other projects that require elements to be flattened and raised. The complete XSLT stylesheet for this process is in the Frankenstein Variorum GitHub repository, and the stylesheet itself is part three series of transformations in our raising process that may be found in the parent directory, which also holds its input and output directories.
[4] Using different formats for the markup of different flattened elements
 makes it easy to raise one group of flattened element types while leaving
 another in its flattened stage. Alternatively, we could use the same
 attributes for all flattened elements and specify which ones we wanted to
 raise at the processing stage. Sperberg-McQueen 2018 proposes a
 th:doc attribute for identifying a start- or end-marker as
 belonging to a particular hierarchy.
[5] All files discussed in this report, as well as the report itself, are
 available in https://github.com/djbpitt/raising.
[6] If the flat content is contained not in the outermost element but in some other container
 element, all nodes outside the flattened region can be copied to the
 output without change. In this case the template for the container
 element will be responsible for shifting from the mode for identity
 transformation to the mode for element raising, and will have a more
 selective match pattern.
[7] And even those who don’t admit to finding it difficult may find it easy to slip up in
 the details when implementing a right-sibling traversal; see below
 (section “Right-sibling traversal”).
[8] Attributes in the th: namespace are removed
 from markers when they are converted to tags during
 raising.
[9]
		 In an experimental implementation of
		 inside-out and outside-in using tumbling
		 windows in XQuery, on the other hand, the
		 two approaches differ dramatically in run
		 time, and the costs do not appear to be
		 linear. We do not currently have good
		 data on this or any explanation.
		
[10] In streaming processing, references to the after value can only be located
 after any <xsl:apply-templates> or other expression that
 requires that descendants be processed.
[11] Despite Saxon’s apparent belief to the contrary, the declarative
 statement that the accumulator is streamable does not constitute a
 request that the XSLT processor perform streaming processing of the
 input. It is merely a claim that streaming processing is possible.

[12] In terms of the Chomsky hierarchy, XML is a Type 2 (context-free) grammar
 and regular expressions are a Type 3 (regular) grammar. Parsing a
 context-free grammar, which permits recursion, requires a stack, which is
 not available in regular grammars. While some modern regular expression
 implementations support back-referencing and recursion and thus go beyond
 the limitations of a Chomsky regular grammar, whether methods that rely on
 these extensions should be considered regular-expression parsing is unclear
 (this is a theoretical issue), as is the role of legibility in evaluating
 the suitability of the method to the task (this is a practical
 concern).
[13] “The returned identifier must consist of ASCII alphanumeric
 characters and must start with an alphabetic character. Thus,
 the string is syntactically an XML name.” [XPath functions, §14.5.4]
[14] Forward slash has to be escaped in some regex implementations,
 but not in others. Escaping where it is not required does no
 harm.
[15] Similarly, we rely on the use of th: as the namespace prefix
 and th:sID and th:eID as the attribute names for
 our Trojan attributes. Changing these assumptions is not a problem as long
 as the regex is changed to match.
[16] The authors are grateful to Ronald Haentjens Dekker for bringing this
 method to our attention. The example at his
 https://github.com/rhdekker/python_xml_pull_parser_example
 GitHub repository is a partial model for the examples here, and we
 appreciate his assistance in debugging the Trojan attribute pitfall
 described below under Python XML output challenges.
[17] We buffer output by writing it to a list, which we stringify and write all
 at once at the end, saving the overhead of repeated write operations. With
 large documents and low memory, though, the method can easily be modified to
 stream the output to the filesystem.
[18] It is legal to declare namespaces redundantly even
 where their declarations are already in force because
 they are inherited from a higher level in the tree. If
 accommodating a redundant declaration of the
 th: namespace is required, the code
 could be modified to do that by revising the
 if/elif/elif logic.
[19] Tessellated structures cover an entire domain
 with the same pattern without gaps or self-overlap, much as mosaic tiles might
 cover an entire floor.

Balisage: The Markup Conference

Flattening and unflattening XML markup:
 a Zen garden of XSLT and other tools
David Birnbaum
Professor of Slavic Languages and Literatures
University of Pittsburgh, Pittsburgh, PA

<djbpitt@gmail.com>
David J. Birnbaum is Professor and Co-Chair of
 the Department of Slavic Languages and Literatures at
 the University of Pittsburgh. He has been involved in
 the study of electronic text technology since the
 mid-1980s, has delivered presentations at a variety of
 electronic text technology conferences, and has served
 on the board of the Association for Computers and the
 Humanities, the editorial board of Markup languages: theory and
 practice, and the Text Encoding Initiative
 Council. Much of his electronic text work intersects
 with his research in medieval Slavic manuscript
 studies, but he also often writes about issues in the
 philosophy of markup.

Elisa Beshero-Bondar
Associate Professor of English
Director, Center for the Digital Text
University of Pittsburgh at Greensburg

<ebb8@pitt.edu>
Elisa Beshero-Bondar is a member of the TEI
 Technical Council, as well as an Associate Professor
 of English and Director of the Center for the Digital
 Text at the University of Pittsburgh at
 Greensburg. Her projects investigate complex texts
 such as epics, plays, and multi-volume voyage logs,
 and involve her in experimentations with the TEI,
 including refining methods for computer-assisted
 collation of editions and probing questions of
 interoperability to reconcile diplomatic and critical
 edition encodings. She is the founder and organizer of
 the Digital Mitford
 project and its annual coding school.

C. Sperberg-McQueen
Founder and Principal
Black Mesa Technologies

<cmsmcq@blackmesatech.com>
C. M. Sperberg-McQueen is the founder and
 principal of Black Mesa
 Technologies, a consultancy specializing in
 helping memory institutions improve the long term
 preservation of and access to the information for
 which they are responsible. He served as editor in
 chief of the TEI Guidelines from 1988 to 2000, and has
 also served as co-editor of the World Wide Web
 Consortium’s XML 1.0 and XML Schema 1.1
 specifications.

Balisage: The Markup Conference

content/images/Birnbaum01-021.png
00

Like
one
who,
ona
lonely
road,

90

Doth
walk
in
fear
and
|dread,|

90

And,
having
once
turn’d
round,
walks
on,

99

lg
1 1

And Because
rns he

no knows
more a

his frightful
head; fiend

90

Doth
close
behind
him
tread*.

note

bibl

OS]

Coleridge’s
“Ancient
Mariner.”

content/images/Birnbaum01-020.png
4660

Like
one
who,
ona

lonely
road,

90

Doth
walk
in
fear
and
|dread,|

90

And,
having
once
turn’d
round,
walks
on,

99

quote

lg
1 1

And Because
rns he

no knows
more a

his frightful
head; fiend

90

Doth
close
behind
him
tread*.

note

bibl

OO

Coleridge’s
“Ancient
Mariner.”

content/images/Birnbaum01-003.png
4660

Like
one
who,
ona

lonely
road,

90

Doth
walk
in
fear
and
|dread,|

90

And,
having
once
turn’d
round,
walks
on,

99

quote

lg
1 1

And Because
rns he

no knows
more a

his frightful
head; fiend

90

Doth
close
behind
him
tread*.

note

bibl

OO

Coleridge’s
“Ancient
Mariner.”

999

content/images/Birnbaum01-025.png
Like
one
who,
ona
lonely
road,

having
once
turn’d
round,
walks
on,

And
turns
no
more
his
head;

a
frightful
fiend

Doth
close
behind
him
tread* .

(Coleridge’s
“Ancient
Mariner.”

content/images/Birnbaum01-002.png
cit
quote
g note
1 1 1 1 1 1 bibl
: And, -
. Like D(.)lh having| And Because| Doth
one walk i tums he D E——
who, in once o knows close oleridge’s
ona fear tum’d more a behind - “Ancient
lonely and round. his frightful i Mariner
road, dread, alks head; fiend :

content/images/Birnbaum01-024.png
bibl

And,
Like | |Doth| |-\~ | | And | [Because| [
one | | walk 2] ftums| | he

once | | close Coleridge’s

who.| | in |Gy | | o | knows | 1Y oY Ancienc
b, y round, h him Mariner.”

lonely| | and | [*C s | |frighttal | b

road, | - fdread,| "¢ fiend i

content/images/Birnbaum01-001.png
cit
quote
g note
1 1 1 1 1 1 bibl
And, -
Like D(.)lh having| And Because| Doth
one walk i tums he D E——
who, in once o knows close oleridge’s
ona fear tum’d more a behind * “Ancient
lonely and round. his frightful i Mariner
road, dread, alks head; fiend :

content/images/Birnbaum01-023.png
Like | |Dotn| [A2 | | And | [Because
one | [walk | [V liums| | he
who, | | in | [| | no | [Kknows
ona | | fear r‘::"::‘é‘ more| | a
lonely| | and | [| his | frighttul
road, | |dread,| | “oKS| lheads| | fiend

note

bibl

,| Doth

close
2 6o
him

Coleridge’
“Ancient
Mariner.”

tread*.

content/images/Birnbaum01-022.png
note

1 1 1 1 1 ' bibl

; And, - g
who, in onee no Knows close Coleridge’s
BAZ00E DOEDOEROOGEDS 6refEs
lonely and rourd. his frightful fim, Mariner.
road, ldread | valks head; fiend i

content/images/Birnbaum01-007.png
Like
one
who,
ona

lonely
road,

Doth
walk
in
fear
and

|dread,|

And,
having
once
turn’d
round,
walks
on,

99

And
turns.
no
more
his
head;

[Because
he
knows

a
frightful
fiend

90

note

Doth
close
behind
him
tread*.

bibl

OO

Coleridge’
“Ancient
Mariner.”

9990

content/images/Birnbaum01-006.png
Like
one
who,
ona

lonely
road,

Doth
walk
in
fear
and

\dread,|

And,
having
once
turn’d
round,
walks
on,

99

And
turns.
no
more
his
head;

[Because
he
knows

a
frightful
fiend

90

note

Doth
close
behind
him
tread*.

bibl

OO

Coleridge’
“Ancient
Mariner.”

9990

content/images/Birnbaum01-005.png
Like

one
who,
ona

lonely
road,

500

And
turns.
no
more,
his.
head;

00

Because|
he
knows

a
frighiful
fiend

OO

Doth
close
behind
him
tread* .

OO

note

bibl

%

Coleridge’s
“*Ancient
Mariner.”

90

content/images/Birnbaum01-004.png
00

Like
one
who,
ona
lonely
road,

90

Doth
walk
in
fear
and
|dread,|

90

And,
having
once
turn’d
round,
walks
on,

99

lg
1 1

And Because
rns he

no knows
more a

his frightful
head; fiend

90

Doth
close
behind
him
tread*.

note

bibl

OO

Coleridge’s
“Ancient
Mariner.”

9990

content/images/Birnbaum01-026.png
one | [waik | [M2Ving| Juums| [he
once

who, | | in €1 o | | knows
wrn’d

ona | | fear | U1 fnore| | o

lonely| | and | (78| | his | frighttu

road. | [dread | | M| Jhead| | fiend

close

behind
him

tread* .

Coleridge’s
“Ancient
Mariner.”

content/images/Birnbaum01-009.png
one | [waik | [M2Ving| Juums| [he
once

who, | | in €1 o | | knows
wrn’d

ona | | fear | U1 fnore| | o

lonely| | and | (78| | his | frighttu

road. | [dread | | M| Jhead| | fiend

close

behind
him

tread* .

Coleridge’s
“Ancient
Mariner.”

content/images/Birnbaum01-008.png
one | [waik | [M2Ving| Juums| [he
once

who, | | in €1 o | | knows
wrn’d

ona | | fear | U1 fnore| | o

lonely| | and | (78| | his | frighttu

road. | [dread | | M| Jhead| | fiend

close

behind
him

tread* .

Coleridge’s
“Ancient
Mariner.”

content/images/Birnbaum01-010.png
one | [waik | [M2Ving| Juums| [he
once

who, | | in €1 o | | knows
wrn’d

ona | | fear | U1 fnore| | o

lonely| | and | (78| | his | frighttu

road. | [dread | | M| Jhead| | fiend

close

behind
him

tread* .

Coleridge’s
“Ancient
Mariner.”

content/images/Birnbaum01-014.png
one
who,
ona

lonely
road,

walk

dread, |

once
turn’d

round,|

walks
on,

a
frighiful
fiend

close
behind

him
tread*.

Coleridge’s
“Ancient
Mariner.”

99

content/images/Birnbaum01-013.png
@

cit

quote

Like
one
who,
ona
lonely
road,

Doth
walk

dread, |

And,
having
once
turn’d
round,
walks

on,

And
turns.
no
more
his
head;

a
frightful
fiend

Doth

close
e
him

tread* .

Coleridge’s
Mariner.”

content/images/Birnbaum01-012.png
quote

g note
Jand | ol . g
: aving| o SfAnd[o [Becausel TR0 : .
turns he .
once - s close (X [Coleridge’s| &
0660 00 00308 S el 560
round, more : him Mariner.”
o o his frightful o,
o head: fiend :

content/images/Birnbaum01-011.png
cit
quote
g note
1 1 1 1 1 1 bibl
And, -
Like D(.)lh having| And Because| Doth
one walk i tums he D E——
who, in once o knows close oleridge’s
ona fear tum’d more a behind * “Ancient
lonely and round. his frightful i Mariner
road, dread, alks head; fiend :

content/images/Birnbaum01-018.png
cit
quote
g note
1 1 1 1 1 1 bibl
And, -
Like D(.)lh having| And Because| Doth
one walk i tums he D E——
who, in once o knows close oleridge’s
ona fear tum’d more a behind * “Ancient
lonely and round. his frightful i Mariner
road, dread, alks head; fiend :

content/images/Birnbaum01-017.png
one | [waik | [M2Ving| Juums| [he
once

who, | | in €1 o | | knows
wrn’d

ona | | fear | U1 fnore| | o

lonely| | and | (78| | his | frighttu

road. | [dread | | M| Jhead| | fiend

close

behind
him

tread* .

Coleridge’s
“Ancient
Mariner.”

content/images/Birnbaum01-016.png
one | [walk | [Maving| sl [he
once

who,| | in €| o | | Knows
turn’d

ona [| fear | |41 fmore| | a

lonely| | and | [70u5d-1 |'his | |iighitu

road. | [dread| || fhead| | fiend

close

behind
him

tread*.

Coleridge’s
“Ancient
Mariner.”

content/images/Birnbaum01-015.png
havin,

one | | walk 8| Jtums | | he
once

who, | | in b no | [knows
wrn’d

ona | | fear | |0 0 fmore| | a

lonely| | and | [T frightful

road, | [dread,| | "5 5| head;| | fiend

close

behind
him

tread* .

Coleridge’s
“Ancient
Mariner.”

content/images/Birnbaum01-019.png
cit
quote
g note
1 1 1 1 1 1 bibl
: And, - :
. Like D(.)lh having| And Because| Doth
one walk i tums he D E——
who, in once o knows close oleridge’s
ona fear tum’d more a behind - “Ancient
lonely and round. his frightful i Mariner
road, dread, alks head; fiend :

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

