[image: Balisage logo]Balisage: The Markup Conference

It’s more than just overlap: Text As Graph
Refining our notion of what text really is—this time for sure!
Ronald Haentjens Dekker
Head of Research and Development and Software Architect
Huygens ING

<ronald.dekker@huygens.knaw.nl>

David J. Birnbaum
Professor and Chair
Department of Slavic Languages and Literatures, University of Pittsburgh

<djbpitt@gmail.com>

Balisage: The Markup Conference 2017
August 1 - 4, 2017

Copyright © 2017 by the authors.

How to cite this paper
Haentjens Dekker, Ronald, and David J. Birnbaum. "It’s more than just overlap: Text As GraphThe authors are grateful to Elisa Beshero-Bondar, Elli Bleeker, Gijsjan Brouwer, Bram
 Buitendijk, and Astrid Kulsdom for their valuable contributions and support.." Presented at: Balisage: The Markup Conference 2017, Washington, DC, August 1 - 4, 2017. In Proceedings of Balisage: The Markup Conference 2017.
 Balisage Series on Markup Technologies vol. 19 (2017). https://doi.org/10.4242/BalisageVol19.Dekker01.

Abstract
The XML tree paradigm has several well-known limitations for document modeling and
 processing. Some of these have received a lot of attention (especially overlap), and some
 have received less (e.g., discontinuity, simultaneity, transposition, white space as
 crypto-overlap). Many of these have work-arounds, also well known, but—as is implicit in the
 term “work-around”—these work-arounds have disadvantages. Because they get the job done,
 however, and because XML has a large user community with diverse levels of technological
 expertise, it is difficult to overcome inertia and move to a technology that might offer a
 more comprehensive fit with the full range of document structures with which researchers
 need to interact both intellectually and programmatically. A high-level analysis of why XML
 has the limitations it has can enable us to explore how an alternative model of Text as
 Graph (TAG) might address these types of structures and tasks in a more natural and
 idiomatic way than is available within an XML paradigm.

Balisage: The Markup Conference

 It’s more than just overlap: Text As Graph

 Refining our notion of what text really is—this time for sure!

 Table of Contents

 	Title Page

 	Introduction

 	The TAG/hypergraph model for text
 	Overview

 	TAG example

 	How TAG represents selected structural properties of text
 	Order

 	Textual content

 	Markup

 	Overlap and self-overlap

 	Discontinuity

 	TAG components
 	Nodes

 	Edges and hyperedges

 	Constraints

 	Challenges for text modeling
 	Overlap

 	Discontinuity

 	Hierarchy, containment and dominance

 	Artifactual hierarchy

 	White space as crypto-overlap

 	Scope of reference

 	Data model versus syntax

 	Semantics versus application level

 	TAG in the Alexandria Markup text repository
 	Importing documents into Alexandria
 	Importing plain text into Alexandria Markup

 	Importing LMNL into Alexandria Markup

 	Importing TexMECS into Alexandria Markup

 	Exporting from Alexandria Markup in sawtooth syntax

 	TAGQL: A query language for TAG in Alexandria Markup
 	Sample query: Find all lines in the second quatrain of a sonnet

 	Sample query: Find enjambment

 	The Alexandria Markup server API

 	Java/Python clients

 	Conclusions

 	Appendix A. William Shakespeare, Sonnet 71

 	Appendix B. Features of text not currently represented in TAG or in Alexandria Markup
 	Order
 	Simultaneity

 	Transposition

 	Intradocumentary variation

 	Constraint language

 	Markup language

 	Appendix C. Hypergraph visualizations

 	Appendix D. Requirements

 	About the Authors

 It’s more than just overlap: Text As Graph[1]
Refining our notion of what text really is—this time for sure!

Introduction
The XML tree paradigm has several well-known limitations for document modeling and
 processing, some of which have received a lot of attention (especially overlap; see the
 overviews in Sperberg-McQueen and Huitfeldt 2000 and DeRose 2004) and
 some of which have received less (e.g., discontinuity, simultaneity, transposition, white
 space as crypto-overlap). Many of these have work-arounds, also well known, that—as is
 implicit in the term work-around—have disadvantages, but because they get the
 job done and because XML has a large user community with diverse levels of technological
 expertise, it is difficult to overcome inertia and move to a technology that might offer a
 more comprehensive fit with the full range of document structures with which researchers need
 to interact both intellectually and programmatically. Proceeding from a high-level view of why
 XML has the limitations it has, this presentation explores how an alternative model of Text as
 Graph (TAG) might address these types of structures and tasks in a more natural and idiomatic
 way than is available within an XML paradigm.
From an informatic perspective all documents are structured, including those that are
 traditionally identified as plain text. Some of the structural properties of plain-text
 documents are expressed through formatting conventions, such as the use of blank lines to
 separate paragraphs, or of indentation to mark the beginning of a paragraph, or of centering
 to mark a header. The sequence of words in a text, delimited in a complex way that involves
 white space, punctuation, and other symbols, constitutes, on a certain level, an implicit
 organizational tier above the sequence of characters.[2] The conventions at work in plain text do not formally, completely, unambiguously,
 or in a wholly standardized way differentiate the content of a document from the coded
 representation of its structure (or, perhaps more accurately, structures), which problematizes
 using plain text for document processing (whether for data mining, publication, or other
 purposes). The challenges this poses have come to be addressed by representing the structural
 properties of a document not through plain-text characters (which might be considered
 pseudo-markup), but through formal, standardized markup, such as XML.
The XML data model is an ordered tree, or, more precisely, a rooted and ordered directed
 acyclic graph that prohibits multiple parentage, which in the document-processing community
 has come to be understood as representing an Ordered Hierarchy of Content Objects (OHCO). It
 is well known that the OHCO model works reasonably well for describing structures that consist
 of single ordered hierarchies, such as the exhaustive tesselated division of a novel into
 chapters and the chapters into paragraphs, but it is not well suited to modeling structures
 that cannot be represented fully by a single tree.[3] The markup community has focused intensively on overlapping hierarchies as a
 challenge to the OHCO model,[4] and with good reason, but we argue below that overlap is only one manifestation of
 a higher-level problem, and this perspective has implications for deciding how best to
 overcome it. If overlap were the problem, projecting multiple
 trees over the content might solve it (e.g., through the SGML CONCUR feature[5]), as might the adoption of a model that permits but does not require hierarchy,
 including multiple hierarchies, such as the range model exemplified by LMNL.[6] But if the problem is that a tree is inadequate for higher-level reasons that are
 only partially exemplified by overlap, we might have more success if we address the issue at
 that higher level. The Text As Graph model that we introduce below is not intended to be a
 solution to the overlap problem in XML; it is built around a fresh
 consideration of the textual structures, both latent and overt, that a data model will need to
 be able to represent. It is nonetheless not accidental that TAG agrees in some respects with
 XML, in others with GODDAG or TexMECS, and in others with LMNL, since all of these
 specifications have sought, in partially converging ways, to model text structure.[7]
Below we identify specific situations that pose problems for an OHCO perspective. With
 respect to hierarchy, in addition to overlap, where text may have multiple overlapping
 hierarchies, text may not be hierarchical at all. We also identify situations where text is
 not ordered, as well as those where XML creates artifactual content objects that do not
 clearly correspond to what a human would consider a textual content object. In other words,
 TAG seeks to interrogate and address the O, the H, and the CO of OHCO, and not only the
 well-known multiple-hierarchy challenge.

The TAG/hypergraph model for text[8]
Overview
The Text As Graph (TAG) data model consists of a directed property hypergraph for
 modeling text, markup (roughly comparable to XML elements), and annotations (roughly
 comparable to what XML attributes would be like if they could contain markup, including
 attributes on attributes). A hypergraph consists of a set of nodes and a set of edges and
 hyperedges. Nodes and (hyper)edges may have properties, including type (see,
 for example, the four types of nodes listed below).
Graph models for text and markup have been proposed before (GODDAG [see, e.g., Sperberg-McQueen and Huitfeldt 2000], GrAF [see, e.g., Ide and Suderman 2007]), but
 the model advanced in this paper differs from those because it incorporates a hypergraph [Hypergraph: Wikipedia]. Hypergraphs are
 especially valuable for text modeling because they can be implemented using sets, and
 methods for reasoning over and operating on sets are proven and well known [Set: Wikipedia]. Hypergraphs differ from traditional graphs, the edges of which can
 connect only two nodes with each other, because the edges in a hypergraph can connect more
 than two nodes with one another, and for that reason they are called hyperedges. Hypergraphs can have directed and undirected hyperedges, and TAG
 uses only directed hyperedges, which assert a directed relationship between two non-empty
 sets of nodes, one for the source (called the head) and one
 for the target (called the tail). As we explain below, in
 the TAG model, the directionality of a hyperedge may be used for purposes other than
 modeling an order or a hierarchy of the nodes.
Like LMNL and GODDAG, both of which are discussed in more detail below, and unlike XML,
 TAG is defined as a data model, rather than by its syntax. At present TAG does not have its
 own syntactic representation.

TAG example
Figure 1: William Shakespeare, Sonnet 71
[image:]
The Document node is beige, the Text nodes are pink, and the Markup nodes are green
 (those with the name property value of quatrain or
 couplet) and cyan (those with the name property value of
 line). A chain of regular (one-to-one) edges, represented by solid
 black arrowheads, begins at the Document node and connects the Text nodes in order. Text
 nodes in this case are entire lines of text, but they could also be smaller units; see
 the discussion of Overlap, below. There are additional whitespace-only Text nodes
 between the lines, but these have been omitted here to reduce the complexity of the
 diagram.

The illustration of a TAG hypergraph of William Shakespearea’s Sonnet 71 (Appendix A), above, includes a Document node, fourteen Text nodes (as
 noted above, there are also white-space-only Text nodes between the lines, but these have
 been omitted here to reduce the complexity of the diagram), and eighteen Markup nodes
 (fourteen with their name property value equal to line, three to
 quatrain, and one to couplet). Regular (one-to-one) edges
 start at the Document node and chain all Text nodes in textual order. Hyperedges point from
 the Markup nodes into sets of Text nodes. In this case, hyperedges that start in Markup
 nodes with the name property of line happen to point to a set
 that consists of a single Text node, and those with name property values of
 quatrain and couplet happen to point to sets of four and two
 Text nodes, respectively. Note that in TAG, in contrast to XML, a Markup node corresponding
 to the XML root element, although permitted, is not required, and we’ve omitted it here.
 Also in contrast to XML, the quatrain and couplet Markup nodes
 point directly to the Text nodes, and not to line Markup nodes (although
 that, too, is possible; see the discussion of hierarchy below).

How TAG represents selected structural properties of text
This section describes in an introductory way how TAG represents order, textual content,
 markup, overlap, and discontinuity. Some of these issues are taken up in more detail later,
 after we introduce the types of nodes, edges, and hyperedges that make up the TAG model of
 text.
Order
A distinctive feature of the TAG model is that textual content is an ordered set of
 Text nodes, but Markup and Annotation nodes are not ordered. Because Markup nodes all
 point directly or through intermediaries to Text nodes, to the extent that Markup nodes
 might be said to have order, their order is only a derived property of the order of the
 Text nodes to which the markup applies.[9] This bottom-up perspective on order within a document distinguishes TAG from
 the top-down, ordered-tree perspective of XML and GODDAG, where, contrary to TAG, the
 order of nodes (including Text nodes) is derived, through depth-first traversal, from the
 order of their parent nodes.[10] In this respect TAG is closer to LMNL, where order in the document also
 inheres at the lowest level, which in LMNL is start position of a range in the sequence of
 atoms that make up the content.[11]

Textual content
Textual content in TAG is expressed by nodes with a type value of text, each of which represents a segment of
 textual content (Text nodes may also be empty). The order of the text is stored as
 directed regular (one-to-one) edges between pairs of Text nodes; this chain begins at the
 Document node, which points to the first Text node, and a single, unbroken chain connects
 all Text nodes in the document except those in annotations.[12] Annotations (see below), which typically encode metadata, can be understood as
 ancillary documents, and their textual content is modeled as separate chains that begin at
 the Annotation node.

Markup
Markup in XML serves four purposes simultaneously: containment, dominance (hierarchy), datatyping, and
 order. In XML, an ancestor element both contains (starts before and ends after) its descendants and
 dominates them (is connected to them by a path that
 travels only downward in the tree). An XML element specifies a type (through the generic identifier), and it instantiates order because XML is defined as an ordered tree of nodes,
 including element nodes.
TAG separates these four functions. As described above, order in TAG is a property only of Text nodes. Containment is modeled by subset relations that are independent of any
 hierarchy; it is axiomatic that a superset (of Text nodes) contains all of its proper subsets. Datatyping is implemented through Markup-to-Text hyperedges that point from
 a Markup node to a set of Text nodes, where the Markup node has a name
 property, the value of which is comparable to the generic identifier (name) of an XML
 element. Unlike in XML, however, Markup-to-Text hyperedges do not model hierarchy; their
 only function is datatyping (and, through subset relations of their tails, containment).
 Because Text nodes can have multiple incoming hyperedges on them, textual content can have
 multiple markup on it, and because Markup-to-Text hyperedges do not form a tree, that
 situation does not engender overlap concerns. Annotations on Markup nodes provide
 supplementary information (metadata) about the node, similarly to attributes in XML,
 except that in TAG, as in LMNL, annotations can have rich content, and are not limited to
 just a name and an atomic value. As in XML and unlike in LMNL, annotations on a Markup or
 Annotation node in TAG are unordered.
In TAG, as in LMNL, a document is not required to express a hierarchy. Where dominance
 relations must be modeled, TAG uses Markup-to-Markup hyperedges to implement a hierarchy.
 The fact that hierarchy is optional is an important distinction from XML (single
 hierarchy) and GODDAG (one or more hierarchies).
Markup nodes do not contain other Markup nodes; Markup nodes identify (point to) sets
 of Text nodes, and the Text nodes may participate in subset relationships with one
 another. This means that in TAG it is not meaningful to ask whether a single set of Text
 nodes identified with one Markup node as a paragraph and with a different Markup node as a
 quotation represents a paragraph that consists of a quotation or a quotation that consists
 of a paragraph. Where the hierarchy of coextensive paragraphs and quotations matters, the
 relationship may be modeled, but as one of dominance (hierarchy), rather than of
 containment.
The separation of these four functions means that a Markup node provides datatyping
 through its name property, although this property is optional (see the
 discussion of Scope of reference, below). Because the tail of a Markup-to-Text hyperedge
 is a non-empty set of Text nodes, and Text nodes are ordered and have intrinsic subset and
 other interrelationships, markup may also specify order and containment, but only
 indirectly. The specification of dominance is optional, and is entirely a property of
 Markup nodes.

Overlap and self-overlap
Overlap between the Text node tails of two or more Markup-to-Text hyperedges does not
 require a special construction in TAG. Each Markup-to-Text hyperedge points to a set of
 Text nodes, and those Text node tails may or may not overlap with one another. In the
 set-based terminology of TAG, overlap describes a relationship between sets where there is
 a non-empty intersection and neither set is a subset of the other. In this respect,
 overlap of sets of Text nodes in TAG is similar to the LMNL overlap of ranges of atoms
 (but see immediately below about discontinuity). Self-overlap (in XML terms, overlap that
 involves two elements with the same generic identifier) is not a special case in TAG
 because two Markup nodes with the same name property (datatype) each is the
 head of its own hyperedge. Overlap in TAG, as in LMNL, is a matter of containment, rather
 than of dominance. The GODDAG developers have identified the importance of the difference
 between containment and dominance [Sperberg-McQueen and Huitfeldt 2000, Sperberg-McQueen and Huitfeldt 2008a, Sperberg-McQueen and Huitfeldt 2008b], while
 in XML the two are not distinct.

Discontinuity
In XML, GODDAG, and LMNL, discontinuity is expressed with more than one element
 (XML/GODDAG) or more than one range (LMNL), and the fact that the discontinuous parts
 (with respect to hierarchical or linear structure) form a whole must be encoded
 separately. That would then require subsequent reunification, higher in the hierarchy in
 GODDAG, and in the limen and with coindexed annotation values in LMNL.[13] In TAG, discontinuity in the Text nodes that constitute the tail of a
 Markup-to-Text hyperedge is modeled exactly the same way as continuity because the Text
 nodes are not required to be continuous. This means there is only one Markup node for all
 the Text nodes in an instance of discontinuous markup, and no obligatory partitioning into
 segments is needed. TexMECS syntax is capable of modeling discontinuity directly with
 suspend-tags and resume-tags [Huitfeldt and Sperberg-McQueen 2003 §2.2.4], but if a TexMECS
 document is to be parsed into GODDAG, the fragments are modeled as separate structural
 components, and the difference between GODDAG and XML in this respect is that because
 GODDAG permits multiple parentage, it is possible to create an additional parent node for
 the fragments. TAG, then, views fragmentation that must be reunited as an undesirable
 side-effect of the XML, GODDAG, and LMNL models, and regards linearly discontinuous
 content as a single item that may be separated when necessary, such as for serialization
 in LMNL sawtooth syntax, rather than as two objects that may be united when necessary.[14]

TAG components
Nodes
The following types of nodes are supported by TAG:	Document nodes. Each Document node represents a
 single document.[15] It is connected by a regular edge to the first Text node in the
 document. Document nodes have no properties other than the type
 property value of document.

	Text nodes. The textual content of a TAG
 document is stored in one or more Text nodes, roughly comparable to XML Text nodes.
 The order of the Text nodes is represented by directed edges that connect them in
 textual order.[16] The first Text node can be recognized because there is a link to it from
 the Document node. The value of a Text node is the text it represents,
 comparable to the string value of an XML Text node. Text nodes in TAG may be empty;
 pointing from a Markup node to an empty Text node provides functionality comparable
 to that of empty elements in XML.[17]
The simplest TAG document has only a Document node and a single Text node. The
 text of the document is subdivided into Text nodes to support their association with
 different Markup nodes. As in the XML tree, TAG Text nodes are made up of
 characters, but the characters are not types in the TAG data model, and TAG has no
 counterpart to LMNL atoms.[18]

	Markup nodes. Markup nodes correspond roughly
 to element nodes in XML, and each instance of markup is represented by its own node.
 The only property of a Markup node is a name, which is analogous to the
 XML generic identifier, but TAG also permits anonymous Markup nodes, much as LMNL
 permits anonymous annotations (see below, under Scope of reference, for an example
 of how these might be used). Markup nodes are connected to one or more Text nodes by
 a hyperedge, where the Markup node is the head and a set of Text nodes is the tail.
 There is no requirement that the Text nodes in the tail of a Markup-to-Text
 hyperedge be contiguous.

	Annotation nodes. Annotation nodes represent
 metadata about the targets of Markup nodes, and are thus similar to the way
 attributes represent properties of elements in XML. The name property
 of an Annotation node is analogous to the name of an XML attribute. As with LMNL
 annotations and unlike XML attributes, Annotation nodes may have content that
 includes markup, there may be annotations on annotations, and there may be multiple
 annotations with the same name on a single Markup or Annotation node. Unlike LMNL
 but like XML attributes, annotations are unordered (but if they contain Text nodes,
 those are connected by regular, one-to-one edges that form them into a chain,
 beginning at the Annotation node). The Shakespearean sonnet example above does not
 contain any Annotation nodes.

Edges and hyperedges
Overview
The following edge relationships are supported by the model. All edges are directed;
 some are regular (one-to-one) edges and others are hyperedges. By definition, a directed
 hyperedge points from one non-empty set of nodes (the head) to another non-empty set of
 nodes (the tail). In TAG, all hyperedges have exactly one node in the head and one or
 more nodes in the tail except for Annotation-to-Markup hyperedges, which have one or
 more nodes in the head and exactly one node in the tail. Edges and hyperedges in a
 hypergraph may have properties, although TAG does not at present make use of them.[19]

Edges that express order
Text nodes are ordered with the following regular (one-to-one) edge relationships,
 and constitute the only ordered sets in TAG:	Text-to-Text directed edges. Text nodes are
 connected with directed edges, which chain and therefore order them, so that the
 linear order of the text is preserved. In the Shakespearean sonnet example above,
 Text-to-Text directed edges point from the first Text node to the second, from the
 second and third, etc., until the end of the text.

	Document-to-Text directed edges. A
 Document-to-Text directed edge points from the Document node to the first Text
 node contained in that document. In the Shakespearean sonnet example above, a
 single Document-to-Text directed edge points from the Document node to the first
 Text node, which in this case represents the first line of the poem.

	Annotation-to-Text directed edges.
 Annotations can be conceptualized as ancillary documents, and, like documents,
 they may contain text, which is represented as a chain of Text nodes. Analogously
 to the use of a Document-to-Text directed edge to point to the first Text node in
 the main document, an Annotation-to-Text directed edge points from an Annotation
 node to the first Text node contained in that annotation. This Text node is part
 of the Text of the annotation, and not of the Text being annotated. Separating the
 Text nodes in the document from those in the annotations is comparable to the fact
 that the values of attributes in XML are not part of the string value of the
 document. Text in an annotation, like the main document text, may be marked up
 with Markup nodes, which is to say that the Text nodes of an annotation may serve
 as the tail of the Markup-to-Text hyperedges described below.

Hyperedges that specify and type sets of Text nodes

 	Markup-to-Text directed hyperedges.
 Markup-to-Text hyperedges connect a single Markup node (head) to a set of Text
 nodes (tail). In the Shakespearean sonnet example above, fourteen Markup-to-Text
 hyperedges each point from a single Markup node with a name property
 value of line to a set of one Text node, three Markup-to-Text
 hyperedges with a name property value of quatrain each
 point to a set of four Text nodes, and one Markup-to-Text hyperedge with a
 name property value of couplet points to a set of
 two Text nodes. Note that the quatrain and couplet
 Markup nodes point to Text nodes, and not to the line Markup nodes
 (although Markup-to-Markup hyperedges can be added if that is needed). This is an
 important difference from the XML tree structure, where Text nodes would be the
 children of <line> elements, but not of the
 <quatrain> and <couplet> elements.

Hyperedges that express targets of annotation
	Annotation-to-Markup directed hyperedges.
 Annotation-to-Markup directed hyperedges point from a set of Annotation nodes to
 the Markup node that they are annotating.

	Annotation-to-Annotation directed hyperedges.
 These make it possible to add annotations to annotations, that is, to represent
 metadata about annotations. This feature is borrowed from LMNL. As with
 Annotation-to-Markup hyperedges, the head is the set of annotations being added,
 and in this case the tail is the Annotation node (rather than Markup node) to
 which they are being added.

Hyperedges that express dominance
	Markup-to-Markup directed hyperedges.
 Markup-to-Markup hyperedges connect a single Markup node (head) to a set of Markup
 nodes (tail). The Shakespearean sonnet example above does not include any
 Markup-to-Markup hyperedges, but if we wished to encode, for example, that a
 quatrain dominates its lines hierarchically, and does not merely contain their
 Text nodes, we could express that with a Markup-to-Markup hyperedge between a
 quatrain Markup node (head) and its four line
 Markup nodes (tail).

Constraints
Only the following types of edges are permitted:
Table I
		Head
	Document	Text	Markup	Annotation
	Tail	Document	-	-	-	-
	Text	edge	edge	hyperedge	edge
	Markup	-	-	hyperedge	hyperedge
	Annotation	-	-	-	hyperedge

An implementation must raise an error if:	a document contains any type of node, regular (one-to-one) edge, or hyperedge
 not included in the preceding table

	a document does not have a single Document node, which points to a single Text
 node

	a document does not have at least one Text node

	a Document node points to anything other than a single Text node

	a Text node points to anything other than another single Text node

	there is not exactly one Text node in the main text and in the text of every
 annotation that does not point to another Text node, except that an Annotation is
 not required to have text.

	two contiguous Text nodes are in the tail of all of the same Markup-to-Text hyperedges[20]

	a regular (one-to-one) edge from an Annotation node points to anything other
 than a single Text node

	a Text node is not part of a continuous chain that begins at a Document node or
 Annotation node

	a Markup node is the head of more than one Markup-to-Text hyperedge or more than
 one Markup-to-Markup hyperedge[21]

	a Markup-to-Text hyperedge has anything other than a single Markup node in its
 head and anything other than a non-empty set of Text nodes that are in the same
 chain (but not necessarily contiguously) in its tail

	a Markup-to-Markup hyperedge has anything other than a single Markup node in its
 head and anything other than a non-empty set of Markup nodes in its tail

	the head of a hyperedge contains anything other than a single Markup node
 (Markup-to-Text or Markup-to-Markup hyperedge) or a non-empty set of Annotation
 nodes (Annotation-to-Markup hyperedge)

	the tail of a hyperedge contains anything except a non-empty set of Text nodes
 (Markup-to-Text hyperedge), a non-empty set of Markup nodes (Markup-to-Markup
 hyperedge), or a single Markup or Annotation node (Annotation-to-Markup and
 Annotation-to-Annotation hyperedge)

	the head of a regular edge is anything other than a Document node, Annotation
 node, or Text node

	the tail of a regular edge is anything other than a Text node

	the head or tail of a hyperedge is empty or contains nodes that are not all of
 the same type

	any two edges or hyperedges have the same type, the same head, and the same
 tail

	an Annotation node does not have a name

Challenges for text modeling
In this section we illustrate several types of textual structures that have proven awkward
 for XML because they contradict or otherwise are not part of the OHCO tree model. For each we
 provide an abstract description of the problem, of one or more XML workarounds, and their
 GODDAG, TexMECS, and LMNL counterparts (as appropriate), illustrated with examples drawn from
 use cases in Digital Humanities research projects.
Overlap
The challenge to text modeling in XML that has attracted the most attention is overlap.
 For example, notice in the image below how the phrase Two vast and trunkless legs of
 stone Stand in the desart begins in the middle of line 2 and ends in the middle of
 line 3, an absence of synchronicity between verse lines and sentences that is called
 enjambment.[22] :
Figure 2: Percy Bysshe Shelley, Ozymandias
[image:]
[Image from
 http://piez.org/wendell/papers/dh2010/clix-sonnets/ozymandias-map.svg,
 which is part of Piez 2010. The overlap is easier to see in the
 original SVG, which is animated, and highlights portions of the document in response to
 mouse events.]

Piez’s illustration is actually of LMNL ranges, rather than of XML element trees. The
 same structure might be visualized as independent overlapping trees as follows, where cyan
 represents the tree of metrical lines and green represents the tree of linguistic
 phrases:
Figure 3: Percy Bysshe Shelley, Ozymandias
[image:]
Projecting two independent trees over a common set of words. In XML the individual
 words would not be children of <line> and <phrase>
 elements, and would instead be grouped inside Text node children of those
 elements.

Because it is not possible to represent the preceding structure in XML markup, the
 following pseudo-XML is not well-formed:
<line><phrase>Who said —</phrase> <phrase>“Two vast and trunkless legs of stone</line>
<line>Stand in the desart….</phrase> <phrase>Near them,</phrase> <phrase>on the sand</phrase></line>
New XML users often misunderstand the prohibition against overlap as a prohibition
 against overlapping tags, but if that were the entire
 issue, it could be remedied by simply removing the syntactic prohibition. But the rule about
 tags exists because tags must represent a tree, hierarchy in a tree prohibits multiple
 parentage, and overlap would permit a node to have more than one parent. Overlap is possible
 in GODDAG only incidentally because TexMECS permits overlapping tags; at a higher level it
 is because GODDAG permits Text nodes to have multiple parents and TexMECS serializes the
 GODDAG model. LMNL sawtooth syntax may look like XML syntax with the prohibition against
 overlapping tags removed, but the real difference is at the level of the data model: LMNL
 ranges can overlap and XML elements cannot because the content between XML start and end tags is a
 sequence of descendant nodes in a tree, and not a range of textual atoms.
TAG represents overlap naturally because the TAG counterpart to an XML element is a
 directed hyperedge that associates a head Markup node with a set of tail Text nodes. To tag
 a line of poetry in the example above, TAG would create a hyperedge from a Markup node with
 the name property value of line (comparable to a
 <line> element in XML) to a set of Text nodes (comparable to Text nodes
 in XML). Sets are unordered, but because the TAG model requires sequence
 edges between Text nodes, which record the continuous order of the text stream (comparable
 to the sequence of atoms in the LMNL model), the textual content of the line is fully
 specified by (= can be retrieved by examining) the membership of the set of tail Text nodes
 and the sequence edges between them. In the illustration below, the black arrows represent
 regular edges that connect Text nodes in order, the irregular colored bounding lines
 demarcate the sets of tail Text nodes, and a similarly colored arrow points into them from
 their Markup node heads:
Figure 4: Percy Bysshe Shelley, Ozymandias
[image:]
A hypergraph representing overlap of phrases and metrical lines.

Additional use cases involving overlap challenges in XML include pages vs paragraphs in
 publications of novels, folios vs texts in medieval manuscripts, and speeches vs metrical
 lines in drama. Overlap in poetic structures has been explored in detail in Piez 2014, which also discusses an unusual structural paradox involving
 Chapter 24 of Mary Shelley’s Frankenstein. Overlap
 involving word and metrical foot boundaries in poetry is discussed below.

Discontinuity
Sperberg-McQueen and Huitfeldt 2008b offer the following paragraph from Lewis
 Carroll’s Alice in Wonderland as an example of
 discontinuity:
Alice was beginning to get very tired of sitting by her sister on the bank, and of
 having nothing to do: once or twice she had peeped into the book her sister was reading,
 but it had no pictures or conversations in it, and what is the use of a
 book, thought Alice without pictures or conversation?

There is no way to mark up this passage in XML without fragmenting the quotation into
 two elements (and relying on semantics to stitch together the pieces in the application
 layer), yet our human intuition is that there is a single quotation, and that the model,
 therefore, should represent it as a single object.[23] As Sperberg-McQueen and Huitfeldt 2008b also observe, there is a sense in
 which book and without are adjacent and a different sense in
 which book and thought are adjacent. XML syntax and the XML
 tree cannot represent both of these realities simultaneously, which means that at least one
 of them must be handed off to the application layer.

 Sperberg-McQueen and Huitfeldt 2008b situate this type of structure in a GODDAG
 context, where it intersects with the distinction between containment and dominance. Concerning LMNL,
 they write that
[With respect to] the unity of discontinuous elements: such a unity may be asserted by
 the application layer (that is, by the definition of a LMNL vocabulary), but it is not
 visible on the LMNL level, and thus need not be accounted for at the level of LMNL
 itself.
The design of LMNL thus seems to require that any account of dominance (as distinct
 from containment), and any account of discontinuous elements, be handled in the
 application layer. LMNL itself achieves a degree of simplicity and regularity as a result,
 at the expense of complexity in the application.

Piez 2008 describes discontinuity in LMNL as modeled by the limen, where the example provided
 (http://piez.org/wendell/LMNL/Amsterdam2008/presentation-slides.html#page23)
 records it through coindexed annotations. That dependency seems to locate discontinuity in
 an application layer, since whether coindexed annotations represent discontinuity is not an
 inherent property of the coindexing. As was noted earlier, TexMECS is capable of modeling
 discontinuity directly with suspend-tags and resume-tags, but if a TexMECS document is to be
 parsed into GODDAG, the fragments are then modeled as separate structural components
TAG prioritizes the representation of text structures, including discontinuity, in the
 model, without dependency on application-layer semantics. The example from Alice in Wonderland described above would have the following form
 in TAG:
Figure 5: Lewis Carroll, Alice in Wonderland
[image:]
Each hyperedge points from a Markup node head (identifying the type of text
 structure) to a tail set of Text nodes. Normal edges connect the Text nodes in order. In
 the TAG model, then, a discontinuous textual object is represented the same way as a
 continuous one, as an ordered set of Text nodes that form the tail of a Markup-to-Text hyperedge.[24]

Other examples of discontinuity involve stage directions in dramatic text, such as the
 following example from George Bernard Shaw’s Mrs. Warren’s
 profession:
VIVIE. Sit down: I’m not ready to go back to work yet. [Praed sits]. You both think I
 have an attack of nerves. Not a bit of it. But there are two subjects I want dropped, if
 you don’t mind.
One of them [to Frank] is love’s young dream in any shape or form: the other [to
 Praed] is the romance and beauty of life, especially Ostend and the gaiety of Brussels.
 You are welcome to any illusions you may have left on these subjects: I have none. If we
 three are to remain friends, I must be treated as a woman of business, permanently single
 [to Frank] and permanently unromantic [to Praed].

Here the last four stage directions interrupt not just the speech, but the sentences in
 which they occur.

Hierarchy, containment and dominance
The challenges that have emerged from our experience of XML as a model of text involve
 not only the limitations of OHCO, but also its tyranny. If text is understood as an Ordered Hierarchy of Content
 Objects, are there aspects of text that are not ordered (O), are there aspects that are not
 hierarchical (H, by which we mean not just that they are not mono-hierarchical, but that
 they are not hierarchical at all), and does the model create content objects artifactually,
 that is, where they are not perceived as inherent properties of the text being modeled (CO)?
 XML requires us to model all content as both ordered and hierarchical, and it represents
 content objects as elements (at least as content objects are described in DeRose et al. 1990). GODDAG and LMNL both grew out of a recognition that not all
 properties of text can be modeled effectively as a single hierarchy, and their focus is not
 limited to that issue, but they differ in the extent to which they interrogate features of
 text that may not be hierarchical at all, that may not be ordered, and that may not involve
 what a human would consider a content object.
As was mentioned earlier, the XML data model does not distinguish containment from
 dominance, which Tennison explains and illustrates in LMNL terms as follows: Containment is a happenstance relationship between ranges while dominance is one
 that has a meaningful semantic. A page may happen to contain a stanza, but a poem dominates
 the stanzas that it contains.[25][Tennison 2008]

In XML, an ancestor element both contains (starts
 before and ends after in the serialization) its descendants and dominates them (is connected to them by a path that travels only downward in
 the tree). In the XML view below of the Shakespearean sonnet the we used as a TAG example
 above, the <poem> element both contains and dominates three
 <quatrain> elements and one <couplet> element, and
 the <quatrain> and <couplet> elements both contain and
 dominate <line> elements:
<poem>
 <quatrain>
 <line>No longer mourn for me when I am dead</line>
 <line>Than you shall hear the surly sullen bell</line>
 <line>Give warning to the world that I am fled</line>
 <line>From this vile world with vilest worms to dwell:</line>
 </quatrain>
 <quatrain>
 <line>Nay, if you read this line, remember not</line>
 <line>The hand that writ it, for I love you so,</line>
 <line>That I in your sweet thoughts would be forgot,</line>
 <line>If thinking on me then should make you woe.</line>
 </quatrain>
 <quatrain>
 <line>O! if,—I say you look upon this verse,</line>
 <line>When I perhaps compounded am with clay,</line>
 <line>Do not so much as my poor name rehearse;</line>
 <line>But let your love even with my life decay;</line>
 </quatrain>
 <couplet>
 <line>Lest the wise world should look into your moan,</line>
 <line>And mock you with me after I am gone.</line>
 </couplet>
</poem>
Figure 6: William Shakespeare, Sonnet 71
[image:]
The XML tree encodes containment and dominance in the same way.

In the earlier TAG example of this sonnet, a Markup-to-Text hyperedge defines the tail
 as a set of Text nodes and labels (datatypes) it. In the TAG version of this example, all
 quatrain, couplet, and line Markup-to-Text hyperedges point to sets of Text nodes, and
 containment is modeled by subset relations among the Text-node tails of those hyperedges.
 Where the Text nodes that constitute the tail of a Markup-to-Text hyperedge with the
 name property (on the Markup node) of line form a proper
 subset of the Text nodes that constitute the tail of a Markup-to-Text hyperedge with the
 name property (on the Markup node) of quatrain, the quatrain
 contains the line, and the same is true of the relationship between couplets and lines.[26] In this emphasis on containment, rather than dominance, TAG is similar to flat
 LMNL, except that LMNL ranges must be continuous (LMNL handles discontinuity separately),
 while contiguity is not relevant in defining the set of Text nodes that may serve as the
 tail of a hyperedge in TAG (see the discussion of Discontinuity, above). In the TAG version
 we have chosen not to make the three quatrains and the couplet what in XML terms would be
 children of a root <poem> element, but we could, should we wish, create a
 Markup-to-Text hyperedge with a name property value (on the Markup node) of
 poem. This could point, through a hyperedge, to the set of all Text nodes
 in the poem, which would let us model containment. It could also serve as the head of a
 Markup-to-Markup hyperedge from it to the Markup nodes with quatrain and
 couplet
 name property values, which would let us model dominance.[27] In other words, Markup-to-Text nodes model containment, rather than dominance
 (indirectly, through subset properties of the Text nodes to which they point), and where it
 is important to distinguish dominance from containment, the TAG model supports this through
 Markup-to-Markup hyperedges.
One final consequence of the XML conflation of containment and dominance is that when
 exactly the same text must be tagged in two ways simultaneously, XML requires one of the
 elements to contain the other. But, as was noted above, if a Markup node with the
 name property value of paragraph and a Markup node with the
 name property value of quotation both point to exactly the
 same set of Text nodes, in TAG it does not make sense to ask whether the paragraph contains
 the quotation or the quotation contains the paragraph because containment in TAG is defined
 as a proper subset relationship among sets of Text nodes. Whether a paragraph consists of a
 quotation or a quotation consists of a paragraph is a reasonable question, but in TAG it is
 a question of dominance, expressed through Markup-to-Markup hyperedges, and not of
 containment, expressed (indirectly) through Markup-to-Text hyperedges.

Artifactual hierarchy
As we described above, markup in XML is (among other things) a form of datatyping, and
 the XML spec uses the word type explicitly in this meaning:Each element has a type, identified by name, sometimes called its generic
 identifier (GI) [W3C XML §3]

This means that when XML assigns a type to part of a document by making it an
 element, it simultaneously creates an element node, which pushes the textual content down a
 level in the document hierarchy. Consider the following XML structure, represented here in
 markup and as hierarchy:
<title><name>Romeo</name> and <name>Juliet</name></title>
Figure 7: Romeo and Juliet (XML)
[image:]
In XML, the three words of the title are spread over two levels of the hierarchy.
 Cyan ellipses are element nodes and pink rectangles are Text nodes.

If we wish to specify in XML that the first and third words of the title are of type
 name, we can tag them as elements of that type, with the result that the
 Text nodes they contain wind up on a different level of the hierarchy than the conjunction
 between them.[28] This contradicts our intuition that the title contains three words, two of which
 have the type name, replacing it with a model in which the title contains two
 objects of type name with a word between them, and it is the
 name objects that contain the first and third words.
Because TAG separates the use of markup in hierarchy and its use for datatyping, it is
 possible to assign a type to text without distorting the hierarchy. Here is the TAG
 representation of the same content:
Figure 8: Romeo and Juliet (TAG)
[image:]
In this TAG example, the markup on names specifies their type and content without
 imposing a hierarchy. The title contains three text nodes, represented by pink ellipses.
 Markup nodes are green (for names) and cyan (for titles), and the document node is
 beige.

As illustrated in the example above, markup of Text nodes in the TAG model, unlike in
 XML, does not create a hierarchical layer as a side effect of datatyping. As we have seen
 earlier, it is possible to represent hierarchy in TAG, but it is not an inescapable
 consequence of all markup, as it is in XML.

White space as crypto-overlap
In natural language processing, tokenization is the process of breaking up a string of
 plain text characters into substrings (typically words and punctuation, which may be
 adjacent or separated by white space), often while removing token separators in the process.
 Tokenization of plain text when processing XML is commonly performed using regular
 expressions and the tokenize() function, but tokenize() atomizes
 its first argument, which means that it cannot be used on tagged text without losing the
 markup in the process. Even tokenization that would not create overlap-based well-formedness
 violations, such as splitting and tagging the words of a line of poetry in which the
 stressed vowels are tagged as <stress> (see the illustration below),
 requires intermediary temporary manipulations, such as converting the markup to text,
 tokenizing with tokenize(), and then converting the temporary text back into
 markup, or adding additional markup, tokenizing with
 <xsl:for-each-group>, and then removing the temporary markup.
The reason tokenizing tagged text is awkward in XML even where overlap is not a risk has
 one explanation in terms of the syntax and another in terms of the data model. In terms of
 the syntax, the markup and text are intertwined in a way that makes it impossible to ignore
 markup during tokenization while retaining access to it after the process is complete. In
 terms of the data model, as noted above, tagging the stressed vowels in a line of verse
 pushes their textual content down a level in the hierarchy, so the line no longer forms a
 string. Furthermore, although it is not usually described this way, the use of white space
 to separate words may be understood as pseudo-markup, which means that the words in tagged
 text potentially represent overlapping hierarchies in plain-text disguise.[29]
In TAG, however, Markup nodes on one layer point to Text nodes on another layer, one
 that contains nothing but Text nodes, which makes it possible to tokenize the text without
 interference from the markup. The tokenization splits larger Text nodes into smaller ones,
 but they remain in the tail of their old Markup-to-Text hyperedges, while new Markup-to-Text
 hyperedges are added to tag the new individual words. In the simplified illustrations below,
 we have created a poem that consists entirely of a single three-word line
 (No longer mourn). In the first of these illustrations, the stressed vowels
 are tagged but the words are not:
Figure 9: A simplified poem without word tokenization
[image:]
Without word tokenization, there are five Text nodes, three of which are not marked
 up individually and two of which form the tails of Markup-to-Text hyperedges with a
 name property of stress on the Markup node, indicating
 that these are stressed vowels.

Because stress is marked on a single vowel sound, XML would be capable of tagging the
 individual words while retaining the stress markup, since no overlap would result. For that
 reason, the following XML representation, which tags both words and stressed vowels, is well
 formed:
<line>
 <word>No</word>
 <word>l<stress>o</stress>nger</word>
 <word>m<stress>ou</stress>rn</word>
</line>
Yet if we try to use tokenize() in a transformation to add the
 <word> markup to a line that already contains the
 <stress> markup, the <stress> markup will be lost
 during atomization.
This situation is not a challenge for TAG. In the example below, we have added
 Markup-to-Text nodes to tag the words, which can be determined by tokenizing the text on
 white space. Tokenization is possible because the Text nodes are not interrupted by the
 markup, which points to them without being inserted between them (syntactically) and without
 pushing them to different levels of the hierarchy (in the tree structure):
Figure 10: A simplified poem with word tokenization
[image:]
With word tokenization, there are now seven Text nodes. Two of them still form the
 tails of Markup-to-Text hyperedges with a name property of
 stress on the Markup node, indicating that these are stressed vowels.
 There are now also three Markup-to-Text hyperedges with a name property of
 word on the Markup node (in orange); the first points to a single Text
 node, and the others each point to three Text nodes.

The additional markup requires additional division of Text nodes, but all modifications
 are local, and the only part of the graph that has to be updated is the part to which the
 markup is being added.[30]
The preceding example does not create overlap because the Text nodes that are marked up
 for stress are subsets of those that are marked up as words. But if we also want to tag
 poetic feet, which are needed to identify caesura (a regular coincidence of word and foot
 boundaries in the lines of a poem), overlap would become an issue in XML. One work-around in
 an XML environment has turned out to involve, surprisingly, tagging neither the feet nor the
 words (see Birnbaum and Thorsen 2015), deriving both from other properties of the line
 during processing, but the fact that we can use white-space pseudo-markup to escape the
 consequences of syntactic overlap doesn’t mean that the the overlap isn’t there. A data
 model that can represent both feet and words explicitly, and that could identify caesura as
 a relationship between those two types of structural components, would represent explicitly
 the human understanding of caesura, and the explicit representation of structure is much of
 what markup is all about. In the illustration below, we have added foot markup to the
 previous example:
Figure 11: A simplified poem with word and foot markup
[image:]
When we tag the feet by adding Markup-to-Text hyperedges with a name
 property value of foot on the Markup node (in violet), we create overlap
 between feet and words, since the word longer is split between the ictic
 second syllable of the first iamb and the non-ictic first syllable of the second.

A corresponding XML-like structure that tags words and feet would not be well formed
 because the <foot> elements would overlap with the
 <word> elements:
<line><foot><word>no</word><word>lon</foot><foot>ger</word><word>mourn</word></foot></line>
In XML, [t]he identification of caesura requires the identification of both feet
 and words, which are not coextensive and which frequently overlap. The challenge, then, is
 to locate where foot and line boundaries coincide without employing markup in a way that
 would violate well-formedness overlap constraints. [Birnbaum and Thorsen 2015] In TAG, where overlap is not an issue, caesura is possible when two adjacent Text nodes
 are in the tails of different Markup-to-Text word hyperedges and different
 Markup-to-Text foot hyperedges. Caesura is typically 1) at or near the middle
 of the line, and 2) implemented consistently, so not every coincidence of word and foot
 boundaries proclaims a caesura; that coincidence is necessary, but not sufficient.

Scope of reference
Footnotes can be understood as annotations on text, but in XML they are typically
 represented by elements at the location where the note reference should occur in a reading
 text, as with the <footnote> element in DocBook or the
 <note> element in TEI. Anchoring a footnote at a point in the text
 stream, instead of as an annotation on a string of (possibly tagged) text with a beginning
 and an end, is problematic because it does not mark explicitly the scope of the note, such
 as whether a footnote reference at the end of a paragraph points to the preceding sentence
 or the preceding two sentences or more, or to the entire paragraph. The TEI
 <note> element avoids this limitation because it can point to an
 arbitrary target with XPointer, but this stand-off strategy is an indirect way of specifying
 what might have been represented more immediately as an attribute if XML attributes were
 able 1) to model rich content, and 2) to annotate something without being forced to give it
 a generic identifier that specifies its type.[31]
TAG avoids the XML prohibition against markup in attribute values because in TAG the
 Text nodes of an annotation can be a target of markup, just like those of the main text. TAG
 avoids the scope of reference problem because the annotation can point to a Markup node with
 a name if an appropriate one exists (such as paragraph in a document that marks up
 paragraphs). In the example below, because TAG permits anonymous Markup nodes (that is,
 because the name property of Markup nodes is optional), we annotate arbitrary
 text without giving it the equivalent of an XML generic identifier, although in a revision
 currently under development, we are exploring pointing directly from the annotation to the
 Text nodes, which would obviate the need for the anonymous Markup node. With either of these
 approaches, footnote-like relationships can be modeled in TAG as what they are: rich-text
 annotations on text regardless of whether the target of the annotation corresponds to a
 Content Object with an identifiable type. TAG is similar to LMNL in this respect, except
 that in TAG text being footnoted that is discontinuous is no different from continuous text;
 it is a set of Text nodes that constitute the tail of a Markup-to-Text hyperedge.
In the simplified example below, we add a footnote to the second and third lines of a
 poem by using an Annotation node (orange) to point to a Markup node (violet) that is the
 head of an anonymous Markup-to-Text hyperedge, and the text of the annotation also has
 markup (a sky blue Markup node with a name property of emphasis
 points to a single Text node). Neither of these features is available with attribute markup
 in XML because elements must have generic identifiers (= cannot be anonymous) and attribute
 values cannot contain markup. And if the footnote target happens to be something that would
 create overlap in XML (e.g., if it runs from the middle of one line to the middle of another
 and the lines have been tagged explicitly), XML is further encumbered by the prohibition
 against overlap.
Figure 12: A poem with an annotation (footnote) on lines 2 and 3
[image:]
The violet ellipse is an anonymous Markup node that serves as the head of a
 Markup-to-Text hyperedge and points to the Text nodes for lines 2 and 3 of the poem. The
 orange ellipse is an annotation on the anonymous Markup node. Annotations have their own
 textual content, which is represented by a chain of Text nodes that begins with the
 Annotation node, much as the main text is represented by a chain of Text nodes that
 begins with the Document node. The text of an annotation may be the target of markup,
 and in this example a Markup-to-Text hyperedge with a name property of
 emphasis on the Markup node points to a single Text node.

Insofar as a footnote can be considered metadata about text, the structure illustrated
 above represents it as an annotation, but it does not require us to assign a type to the
 target of the annotation as a side effect of referring to it, and it allows us to add markup
 to the footnote text itself.

Data model versus syntax
Syntax is not necessarily the same as a data model. A data model could, at least in
 principle, be serialized in multiple ways, and syntax developed to represent one data model
 could be coopted to represent a different one. TAG does not at present have its own
 serialization syntax, and the Alexandria Markup implementation described below can read and
 write LMNL sawtooth syntax and TexMECS (parsing the results as a representation of the TAG
 data model, rather than of LMNL or GODDAG), and it is intended to be able to do the same
 with XML syntax.
One challenge of comparing TAG to XML, LMNL, GODDAG, and TexMECS is that TAG, like LMNL
 and GODDAG, is a data model, while XML and TexMECS are defined by their syntax. Perhaps a
 bit surprisingly in the context of Balisage, which describes itself as the markup conference, our focus here is not on markup (that
 is, on syntax and serialization), but on the data models that may be expressed through
 markup, which means that for comparative purposes we may sometimes need to infer a data
 model from a syntactic specification.
The situation is especially complicated in the case of XML because although it does not
 have a data model, it also has three almost-data-models: XML DOM [W3C DOM], which is an object model and API; the XML InfoSet [W3C XML InfoSet],
 which is an information model; and XDM [W3C XDM], which is a data model
 for processing XML. Our inferred data model for XML for comparative purposes here includes
 the seven node types specified in XDM (not the twelve of XML DOM or the eleven types of
 information items of the XML InfoSet), along with the structural properties of the ordered
 tree that are relevant for understanding (but not necessarily adequate for processing)
 well-formed XML (e.g., attribute nodes on an element are unordered). Our aim is not to
 create a data model for XML, which lies far outside the scope of this paper, but to identify
 features of the way XML models text that can be used comparatively to help elucidate
 features of TAG.
The fact that some of our objects of comparison are serializations and others are data
 models matters because, as the etymology of the term implies, serialization is an ordered
 linear expression, which is not a requirement of data models. If, for example, a paragraph
 is exactly coextensive with a quotation, in XML syntax, LMNL sawtooth syntax, and TexMECS
 syntax, the start tag of either the paragraph or the quotation must come first in linear
 order. But in LMNL the relative order of the ranges defined by the tags is not an obligatory
 part of the model, which permits two ranges to begin at the same location in the text, and
 the same is true of TAG. In XML, however, one element must be the parent of the other, and
 the order of the start tags reflects both containment and hierarchy. TexMECS negotiates this
 issue by using different start- and end-tag delimiters to distinguish when the relative
 order of the tags is informational and when it is not.[32]

Semantics versus application level
Another challenge for text modeling involves distinguishing properties that inhere in
 the structure of the text being modeled from those that depend on semantics that must be
 interpreted at a higher (application) level. A failure to make this distinction may have two
 types of consequences (which are really aspects of the same thing, the delegation of
 information that should be part of the model to the application layer): either the
 application must know that some properties of the model are not informational and are to be
 ignored, or the application must know that there is information that is not represented
 entirely by the model and must therefore be added during processing. If, however, the model
 explicitly represents the structural properties of the text and nothing else, the
 application level is freed from having to supplement the model, and can concentrate on
 features that are truly application-specific.
Moving structural information out of the application layer and into the model is a
 priority in the design of TAG, and here are two illustrations of the issue:	The pairing of start and end tags in XML markup is inherent in the markup itself,
 and is available during parsing with no reference to semantics. In contrast, the
 pairing of XML milestones that are used to simulate container tags as a work-around
 for overlap (see the discussion of Trojan markup in DeRose 2004)
 depends on semantics. XML applications do not need to know that regular start and end
 tags delimit an element because that information is an inalienable feature of all XML
 documents that is fully specified by the syntax, but they do need to know when empty
 tags are being used to simulate the beginning and end of a content object and when
 they are not, or which pseudo-start-tags are to be associated with which
 pseudo-end-tags. A robust and efficient strategy would represent all structural
 features as parts of the model itself, instead of requiring that some of them be
 handled through semantic information that is available only at the application
 level.

	Because XML models an ordered hierarchy, elements always have order, which
 requires the application layer to distinguish situations where order is semantically
 meaningful from situations where it isn’t. For example, the TEI
 <choice> element has the semantics of associating content objects
 that do not have a natural order with respect to one another, such as an abbreviation
 and its expansion or an error and its correction. How those should be rendered is the
 proper business of the application layer, but the XML model requires that one option
 proceed or follow the other even when the order does not represent an inherent,
 informational property of the text being modeled. This has the undesirable consequence
 that, incorrectly (from the perspective of what the marked-up text means), an XML
 processor will regard two TEI documents as different if they differ only in the order
 of the children of their <choice> elements unless the processor is
 given access to TEI markup semantics. Imposing an arbitrary order as a schema
 enhancement (for example, requiring that an abbreviation always precede its expansion
 inside a TEI <choice> element) will avoid the problem of
 distinguishing when two documents should be considered the same or different, but at
 the cost of making order informational in some situations and arbitrary in others,
 that is, of imposing order on something that is not inherently ordered. A more robust
 and efficient model would not specify order when it must then be ignored, so that a
 processor will know when order is informational and when it is not from the model,
 without recourse to semantics.

Concerning the first of these issues, matching up pseudo-start-tags with pseudo-end-tags
 during processing does not arise in TAG not only because TAG does not at present have its
 own syntactic expression (although we can represent some features of TAG by borrowing LMNL
 sawtooth syntax or TexMECS), but also because the fact that TAG permits overlap makes such
 workarounds unnecessary. The second issue is more challenging, and because TAG currently
 models text as a single chain of Text nodes, it does not yet distinguish situations where
 order is not informational. But because that is a feature of what text is (that is, because
 the first O of OHCO is as much an issue as the H that follows it), it is a design
 requirement that we intend to address as development continues (see Appendix B).

TAG in the Alexandria Markup text repository
The Alexandria Markup text repository system is an open-source read/write implementation
 of the TAG model currently under development by the Huygens Institute for the History of the
 Netherlands at https://github.com/HuygensING/alexandria-markup. As was
 noted above, at present TAG does not have its own syntax, although strategies for import and
 export are under active development. Alexandria Markup is able to parse and import flat LMNL
 sawtooth syntax, but it treats the syntax as an expression of TAG properties, rather than LMNL
 ones. This means, for example, that although annotations on the same object in LMNL are
 ordered, because those in TAG are not, this order is not treated as informational during
 import or export, or internally. It also means that TAG structures that are not naturally
 represented in flat LMNL syntax, such as the Document node or discontinuous sets of Text
 nodes, require special handling. Alexandria Markup is not intended to be an implementation of
 LMNL, and the use of LMNL sawtooth syntax in TAG should not be misunderstood as representing
 the LMNL data model. Alexandria Markup is also able to import and parse TexMECS syntax, which
 it also interprets as a representation of the TAG data model, rather than of GODDAG. The
 implementation in the current system loads the TAG model into memory, but persistence of the
 nodes and hyperedges in a key-value store on disk is under development.
Importing documents into Alexandria
Importing plain text into Alexandria Markup
As an example of importing into Alexandria Markup, consider a document that consists
 of just the plain text Hello, World. When we import this plain-text
 document into Alexandria Markup, a very simple graph is created, consisting of two nodes
 and one regular edge. One node is the TAG Document node; the other is a TAG Text node that
 contains all of the text. A regular edge is created from the Document node to the Text
 node, which associates the text with the document.

Importing LMNL into Alexandria Markup
The lexer uses a grammar to tokenize the LMNL text, setting the type of the token
 according to the current context (e.g., annotations inside annotations, inside range start
 or end tags, etc.). The stream of tokens is then parsed in the importer, which is also
 sensitive to the context.
At the start of the import, we create a new Document node, which serves as the head of
 the chain of Text nodes for the main text layer. We deal with parser events in the
 following ways:
	For each range start tag we create a new Markup node, which we add to a list of
 open Markup contexts.

	For each string of text we create a new Text node, which we add to the tail of the
 Markup-to-Text hyperedges for all open Markup contexts. We also add the Text node to
 the chain of Text nodes.

	After each range end tag we remove the corresponding Markup node from the list of
 open Markup contexts.

	For each annotation start tag we create a new Annotation node, which we add to an
 annotation list for the current Markup node. Unless the annotation is empty, we now
 set this Annotation as the current text layer, which means that until we come to the
 annotation close tag for this annotation, all new Text nodes and Markup nodes will be
 added to this annotation. When we encounter the corresponding annotation end tag, we
 close this Annotation and return to the previous text layer.

Importing TexMECS into Alexandria Markup
We use a lexer and parser to interpret TexMECS syntax. At the start of the import, we
 create a new Document node. We deal with parser events in the following ways:
	After each start tag, we create a new Markup node and add it to the list of open
 Markup nodes, and to the Document.

	For each string of text we create a new Text node, which we add to the tail of the
 Markup-to-Text hyperedges for all open Markup contexts. We also add the Text node to
 the chain of Text nodes.

	After each end tag we remove the corresponding Markup node from the list of open
 Markup contextss.

	After each suspend tag we remove the corresponding Markup node from the list of
 open Markup contexts, and add it to the list of suspended Markup contexts.

	After each resume tag we remove the corresponding Markup node from the list of
 suspended Markup contexts, and add it to the list of open Markup contexts.

Exporting from Alexandria Markup in sawtooth syntax
As an example of exporting a simple document from Alexandria Markup, a serialization of
 the TAG data model into LMNL sawtooth syntax involves traversal over an instance. The
 traversal begins with the Document node, which must have a single directed regular edge that
 points to the first Text node. We then follow the Markup-to-Text hyperedges that are
 connected to this Text node.[33] There can be zero or more Markup-to-Text hyperedges on a Text node, each of
 which is headed by one Markup node. The traversal collects all the Markup nodes that point
 to the Text node, and for each of them it writes a start tag, where the order of multiple
 start tags is not part of the TAG model, and is therefore at the discretion of the
 implementation. We then proceed to the next Text node by following the outgoing regular
 Text-to-Text edge, which connects all Text nodes (except those on annotations) in a single
 chain. As before, we collect all Markup nodes connected to the new Text node, and we then
 calculate the differences between the sets of Markup nodes that point to the two Text nodes
 under consideration. For the intersection we do nothing; for the set of Markup nodes that
 are only on the previous Text node we write end tags; and for the set of Markup nodes that
 are only on the new Text node we write start tags. At the conclusion of the traversal (which
 can be recognized because only the final Text node does not have an outgoing regular edge),
 we write end tags for all associated Markup-to-Text hyperedges.

TAGQL: A query language for TAG in Alexandria Markup
The Alexandria Markup query language for TAG, which is currently in an early stage of
 design and implementation, uses an SQL-like syntax. For example:
	select text from markup where name='a'
returns the content of the Text nodes marked up with a.

	select annotationText('encoding:resp') from markup where name='sonneteer'
return the values of all Annotation nodes with a name property value of
 resp where the annotation is on another Annotation node, which has a
 name property value of encoding, and the
 encoding annotation is on a Markup node with the name
 property value of sonneteer.

The query language operates on sets of nodes and edges. Below are some concise examples
 of how such queries might operate in terms of the model, which at that level involves a
 traversal of the Text nodes, since those are the only ordered part of the model. This naïve
 approach would not be performative and would not be implemented directly; a TAG application,
 like any database of any type, would employ indices, alternative data structures, caching,
 and other features that are not part of the model, but that can be used to maximalize performance.[34]
Sample query: Find all lines in the second quatrain of a sonnet
Quatrains are stanzas that consist of four poetic lines, and an Elizabethan sonnet
 consists of three quatrains followed by a couplet, for a total of fourteen lines. Assume a
 document where lines and quatrains are Markup nodes that point to sets of Text nodes.
 Start at the Document node and navigate to the first Text node, which is part of the first
 quatrain. Follow that Text node up to its associated Markup node that has a
 name property value of quatrain; it points to the set of all
 of the Text nodes in the quatrain. Follow the chain of Text nodes until the first one not
 in that set, which will be at the beginning of the second quatrain. Follow its hyperedge
 up to the associated quatrain Markup node, which points to the set of all
 of the Text nodes in its tail, that is, all of the text of the second quatrain. If you
 need the line markup, and not just the text of the lines, return the Text nodes with their
 associated Markup-to-Text hyperedges that originate in Markup nodes with a
 name property value of line, that is, with their line
 markup.

Sample query: Find enjambment
Enjambment is a poetic phenomenon where a sentence (or sometimes a phrase) crosses a
 line boundary. Assume a document where lines and sentences are Markup nodes that point to
 sets of Text nodes. Traverse the Text nodes starting at the Document node. Any adjacent
 Text nodes in the tail of the same Markup-to-Text hyperedge with a Markup node
 name property value of sentence, but in the tails of
 different Markup-to-Text hyperedges with a Markup node name property value of
 line, represents an enjambment.

The Alexandria Markup server API
The Alexandria Markup server has a REST API, which includes the following:
Table II
	Method	I/O format	Response
	GET /documents	out: json	return a list of the urls of the stored documents
	POST /documents/lmnl	in: lmnl text	add a document using a lmnl text, return the id of the document in the Location header

	POST /documents/texmecs	in: texmecs text	add a document using a TexMECS text, return the id of the document in the Location
 header
	GET /documents/{uuid}	out: json	return information about the document
	GET /documents/{uuid}/lmnl	out: text	return a representation of the document in sawtooth syntax
	POST /documents/{uuid}/query	in: text, out: json	execute a query on the document, return results as json

Java/Python clients
There are clients in Java and Python that, given the URL of an Alexandria Markup server,
 can connect to it in a way that hides the details of the REST protocol. The client code
 handles the setting of the required HTTP headers, the formatting of the input and the
 interpreting of the results.

Conclusions
TAG is a graph-based model that consists of a set of nodes and edges (both regular,
 one-to-one edges and hyperedges). Only Text nodes are ordered, and the order of Markup nodes
 is derived from the order of the Text nodes to which they point. TAG models containment
 through subset relations, and overlap through intersection where neither set is a subset of
 the other, and it deals naturally with discontinuity because there is no requirement that sets
 of nodes be contiguous. TAG is capable of modeling hierarchy, but it is not required to do so,
 and it is possible to have multiple hierarchies. TAG separates the datatyping role of tagging
 from issues of hierarchy, so it is possible to label a set of Text nodes with a Markup-to-Text
 hyperedge without affecting hierarchical relations, and it also possible to annotate a set of
 Text nodes with naming them, that is, without the equivalent of an XML generic identifier. A
 root node is optional. At the moment there is a single text order, but TAG recognizes the need
 for greater nuance in this area, about which see Appendix B, which also
 identifies other issues that TAG does not (yet) address.

Appendix A. William Shakespeare, Sonnet 71
No longer mourn for me when I am dead
Than you shall hear the surly sullen bell
Give warning to the world that I am fled
From this vile world with vilest worms to dwell:

Nay, if you read this line, remember not
The hand that writ it, for I love you so,
That I in your sweet thoughts would be forgot,
If thinking on me then should make you woe.

O! if,—I say you look upon this verse,
When I perhaps compounded am with clay,
Do not so much as my poor name rehearse;
But let your love even with my life decay;

Lest the wise world should look into your moan,
And mock you with me after I am gone.

Appendix B. Features of text not currently represented in TAG or in Alexandria Markup
The following features are not currently part of the TAG model, but they are recognized as
 necessary components of a textual data model, and under development.
Order
TAG, like XML, is currently fully ordered, but some textual meaning is either unordered
 (simultaneity) or multiordered (transposition). The fully ordered set of Text nodes in the
 current TAG model and its implementation in Alexandria Markup is easily traversed, but
 simultaneity and transposition present challenges to traversal that we are still evaluating.
 TAG intends to support the representation of both simultaneity and transposition in the
 model, in distinction from XML, where the model is an ordered tree and deviations from a
 single order must be handled at the application layer.
Simultaneity
All Text nodes in TAG are ordered, but modeling text as a partially ordered set,
 rather than as an ordered set, would reflect the nature of text more correctly. For
 example, the TEI XML <choice> element wraps child elements that do not
 have a logical mutual order, such as an abbreviation and its expansion or an error and its
 correction. In XML, artifactual order of this sort cannot be excluded from the model, and
 must therefore be ignored at the application level, and TAG, as described above, currently
 has the same limitation. Ideally, sets of Text nodes that are not mutually ordered
 logically would not be represented as ordered in the model.
Not only does XML order the children of <choice> even though they
 have no logical order,[35] but the <choice> element itself is an artifactual Content
 Object, as it represents as an element in the hierarchy a property that is fundamentally
 an issue of traversal. The same is true of the TEI <app> element in the
 parallel segmentation representation of textual variation. Both the artifactual order and
 the artifactual wrapper must be interpreted at the application layer, and the information
 they add is not about the document content as much as it is about the markup, viz., that
 although XML is an ordered tree, the order of the children of these particular elements is
 not informational.
One possible way to an alternative model is suggested by the Variant Graph that is
 used to represent textual variation in the open-source CollateX collation tool [CollateX]. The variant graph represents alternative readings (from different
 manuscript witnesses) without wrapper constructions, and could be used to model
 simultaneous alternatives in TAG without either artifactual order or artifactual wrappers.
 For example, an abbreviation and its expansion might be represented through a directed
 acyclic multigraph as:
Figure 13: Abbreviation and expansion
[image:]
From What would Michelle do?, New York Times,
 2016-11-02. There is no artifactual wrapper element, like TEI
 <choice>.

Because currently Text nodes in TAG are fully ordered, it is not now possible to model
 simultaneity through multiple, differently labeled ordering edges between Text nodes. We
 are exploring strategies for remedying this limitation.

Transposition
Representing alternative orders of the same content, as may be needed in critical
 editions in which the textual witnesses may contain some of the same words, but with
 reordering, poses a challenge for data models based on a single linear textual order,
 including, at the moment, TAG. Insofar as a critical text may be instantiated as a single
 document, and two witnesses may differ through transposition, the representation of
 transposition is a requirement for a satisfactory text model. The representation of
 transposition is also part of the Variant Graph structure used to model textual variation
 in the open-source CollateX collation tool [CollateX], and suggests a
 way to incorporate transposition into TAG, but because currently Text nodes in TAG are
 fully ordered, it is not now possible to model transpositions in TAG as alternative
 orders. In the following hypothetical transposition scenario, each set of labeled edges
 forms a single complete order with no cycles:
Figure 14: Transposition
[image:]
Witness A (black and blue edges) reads It was a dark and stormy
 night and witness B (black and red edges) reads It was a stormy and
 dark night. The edges for witness A (labeled either only A or
 A,B) describe an acyclic directed graph, as do those for witness B
 (labeled only B or A,B).

The multigraph above uses labeled edges to permit traversal without cycles over edges
 that share a label, and suggests a possibility for supporting transpositions, which is a
 necessary part of modeling multi-witness critical texts.

Intradocumentary variation
Intradocumentary variation (see TEI Genetic editions), such as additions, deletions,
 and rearrangements, pose a special challenge for at least two reasons:
	An edition may include multiple witnesses, each of which may have intradocumentary
 variation. For example, the same or different persons may have created additions and
 deletions and then layered additions and deletions onto those additions and deletions
 in each of the witnesses to a tradition. This is challenging not only from a modeling
 perspective, but also from a philological one. A intuitive and widely-used strategy
 involves selecting one revision layer per witness for the purpose of comparison with
 other witnesses, with the undesirable result that the other layers are ignored,
 perhaps without clear philological justification. Another approach is to create
 pseudo-witnesses, such as an Additions witness and a
 Deletions witness. However, the pseudo-witness approach falls short
 because intradocumentary variation is local: an addition in one place is likely to be
 independent of an addition in another.

	Intradocumentary variation may affect not only the Text nodes, but also the markup
 hierarchy. For example, one paragraph may be divided into two, or a section may be
 demoted to a subsection, without any change to the values of the Text nodes
 themselves. The same may apply to interdocumentary
 variation: when one paragraph in witness A becomes two paragraphs in witness B. For an
 experimental investigation of these issues in an XML context see Bleeker 2017.

Constraint language
Constraints in this paper are expressed in prose. They should be expressed formally in a
 more complete specification.

Markup language
TAG does not define a markup language, that is, a syntactic form that can be used to tag
 text and for import and export serialization. As was noted above, Alexandria Markup can
 parse LMNL syntax (into the TAG data model, not the LMNL one, so it is not so much parsing
 LMNL as borrowing LMNL syntax to express TAG relationships), the same is true of TexMECS,
 and similar support is planned for XML syntax. None of these three grammars is capable of
 representing all of the features of TAG. We leave open the question of how to provide a
 character-string serialization of a TAG document.

Appendix C. Hypergraph visualizations
The image below visualizes hypergraph properties of part of Lewis Carroll’s Hunting
 of the Snark.
Figure 15: Lewis Carroll, The hunting of the Snark (excerpt)
[image:]
This hypergraph models the containment and order of the text, with no statement of
 hierarchy (dominance).

 Text nodes are black hexagons with white text, and they are connected in a single chain
 (which starts at the Document node) by black bars. Markup nodes of type Line,
 Voice, Stanza, Sentence, Page,
 and Excerpt are represented by irregular backgrounds of white, chartreuse
 yellow, magenta, blue, orange, and green, respectively. Annotation nodes on
 Excerpt, Page, and Voice Markup nodes have
 names and properties. The image models containment with no statement of dominance, although
 dominance could be asserted by adding Markup-to-Markup hyperedges.
The following images emphasize different aspects of the model:
Figure 16: Lewis Carroll, The hunting of the Snark (excerpt)
[image:]
The image shows how discontinuous parts of the same unit are combined and annotated in
 the model.

Figure 17: Lewis Carroll, The hunting of the Snark (excerpt)
[image:]
The image shows the layering of different types of Markup on the same Text
 nodes.

Figure 18: Lewis Carroll, The hunting of the Snark (excerpt)
[image:]
The image provides a closer look at the layering. The higher voice levels contain text
 spoken by the Baker but reported by the narrator, which is why they are the targets of
 more than one Markup node of with a name property value of
 voice.

Figure 19: Lewis Carroll, The hunting of the Snark (excerpt)
[image:]
The image illustrates how annotations may have their own Text nodes.

Appendix D. Requirements
An improved text model should have the following properties. In all instances where we
 write that the model should be able to X, we mean that it should be able to X
 without requiring access to semantic information at the application level. In other words, the
 components of the model should fully represent the properties of the text being modeled, with
 no extraneous artifactual properties that an application must then know to ignore. XML uses
 the term markup to identify both elements and attributes, while in the list
 below we use the TAG terminology, where the term markup refers to the
 counterpart of XML elements and annotation to the counterpart of XML
 attributes.
The following are characteristics we might ask of an improved text model:	It should support both textual (character data) content and markup and annotations
 (of the sort expressed in XML through element and attribute markup).

	It should support multiple layers of markup and annotation.

	It should be able to represent overlapping markup.

	It should be able to represent discontinuous markup.

	It should be able to represent components that are not logically ordered without
 imposing an arbitrary order that must then be ignored.

	It should be able to represent transpositions, or reorderings, e.g., in a critical
 text with variants that differ only in order.

	It should support annotations on annotations, that is, metadata about
 metadata.

	It should support but not require the representation of hierarchy, including
 multiple, partial, or overlapping hierarchies.

	With respect to reading, it should support queries for text, markup, annotations, or
 a combination of those components.

	With respect to writing, it should support creating, inserting, deleting, or
 otherwise modifying both textual content and markup and annotations.

	With respect to workflow, it should be possible to defer decisions about relations
 among layers. For example, it should be possible to create markup and annotations
 without hierarchy and apply a hierarchy only later. This deferral might be compared to
 the way XML documents may be validated against schemas that may be created and
 associated only after a fully functional well-formed document has been created.

	With respect to scalability, it should enable, in a computationally efficient way,
 the types of documents and processing likely to be required by the digital text
 community.

	With respect to I/O, a system that implements the model should support serialization
 as plain text on export and the parsing of such serializations on import. TAG does not
 currently have its own syntax. Our Alexandria Markup implementation can read and write
 LMNL sawtooth syntax and can read TexMECS, and it is intended to be able to read and
 write XML.[36]

	With respect to user interaction, a system that implements the model should provide
 a legible interface that enables reading and writing by human users.[37]

Works cited
[Birnbaum and Thorsen 2015] Birnbaum, David J.,
 and Elise Thorsen. Markup and meter: Using XML tools to teach a computer to think about
 versification. Presented at Balisage: The Markup Conference 2015, Washington, DC,
 August 11–14, 2015. In Proceedings of Balisage: The Markup Conference
 2015. Balisage Series on Markup Technologies, vol. 15 (2015). doi:https://doi.org/10.4242/BalisageVol15.Birnbaum01. https://www.balisage.net/Proceedings/vol15/html/Birnbaum01/BalisageVol15-Birnbaum01.html
[Bleeker 2017] Bleeker, Elli. Mapping
 invention in writing: digital infrastructure and the role of the genetic editor. PhD
 dissertation, University of Antwerp, 2017.
[CollateX] CollateX.
 https://pypi.python.org/pypi/collatex
[Coombs et al. 1987] Coombs, James H., Allen H.
 Renear, and Steven J. DeRose. Markup systems and the future of scholarly text
 processing.
 Communications of the association for computing machinery,
 30.11 (Nov. 1987): 933–47. doi:https://doi.org/10.1145/32206.32209.
[DeRose 2004] DeRose, Steven J. Markup
 overlap: a review and a horse. Extreme Markup Languages 2004.
 http://xml.coverpages.org/DeRoseEML2004.pdf
[DeRose et al. 1990] DeRose, Steven J., David G.
 Durand, Elli Mylonas, and Allen H. Renear. What is text, really?, Journal of computing in higher education, 1.2 (1990): 3–26.
 doi:https://doi.org/10.1007/BF02941632.
 http://www.cip.ifi.lmu.de/~langeh/test/1990%20-%20DeRose%20-%20What%20is%20Text,%20really%3F.pdf
[Hilbert, Schonefeld, and Witt 2005] Hilbert,
 Mirco, Oliver Schonefeld, and Andreas Witt. Making CONCUR work.
 Proceedings of Extreme Markup Languages 2005.
 http://conferences.idealliance.org/extreme/html/2005/Witt01/EML2005Witt01.xml#Horse
[Huitfeldt and Sperberg-McQueen 2003] Huitfeldt,
 Claus and C. Michael Sperberg-McQueen. TexMECS. An experimental markup meta-language
 for complex documents. Revision of 5 October 2003.
 http://mlcd.blackmesatech.com/mlcd/2003/Papers/texmecs.html
[Hypergraph: Wikipedia] Wikipedia contributors,
 "Hypergraph," Wikipedia, The Free Encyclopedia,
 https://en.wikipedia.org/w/index.php?title=Hypergraph (accessed September 16,
 2017).
[Ide and Suderman 2007] Ide, Nancy and Keith Suderman.
 GrAF: a graph-based format for linguistic annotations. Proceedings of the
 Linguistic Annotation Workshop, held in conjunction with ACL 2007, Prague, June 28–29, 1–8.
 https://www.cs.vassar.edu/~ide/papers/LAW.pdf
[LMNL data model] LMNLWiki. LMNL data
 model. From the Lost Archives of LMNL. http://lmnl-markup.org/specs/archive/LMNL_data_model.xhtml
[LMNL range relations] LMNLWiki Range
 relationships. From the Lost Archives of LMNL.
 http://lmnl-markup.org/specs/archive/Range_relationships.xhtml
[Peroni et al. 2014] Peroni, Silvio, Francesco Poggi
 and Fabio Vitali. Overlapproaches in documents: a definitive classification (in OWL,
 2!). Presented at Balisage: The Markup Conference 2014, Washington, DC, August 5 -
 8, 2014. In Proceedings of Balisage: The Markup Conference 2014.
 Balisage Series on Markup Technologies, 13 (2014). doi:https://doi.org/10.4242/BalisageVol13.Peroni01.
 https://www.balisage.net/Proceedings/vol13/html/Peroni01/BalisageVol13-Peroni01.html
[Piez 2008] Piez, Wendell. LMNL in miniature.
 An introduction. Amsterdam Goddag Workshop, 1–5 December 2008.
 http://piez.org/wendell/LMNL/Amsterdam2008/presentation-slides.html
[Piez 2010] Piez, Wendell. Towards hermeneutic
 markup. An architectural outline. Presentation at Digital Humanities 2010, King’s
 College, London. http://piez.org/wendell/papers/dh2010/ The screen shot in this
 paper is taken from
 http://piez.org/wendell/papers/dh2010/clix-sonnets/ozymandias-map.svg.
[Piez 2014] Piez, Wendell. Hierarchies within
 range space: From LMNL to OHCO. Presented at Balisage: The
 Markup Conference 2014, Washington, DC, August 5 - 8, 2014. In Proceedings of Balisage: The Markup Conference 2014. Balisage Series on Markup
 Technologies, vol. 13 (2014). doi:https://doi.org/10.4242/BalisageVol13.Piez01.
 http://www.balisage.net/Proceedings/vol13/html/Piez01/BalisageVol13-Piez01.html
[Renear, Mylonas, and Durand 1996] Renear, Allen H.,
 Elli Mylonas, and David G. Durand. Refining our notion of what text really is: the
 problem of overlapping hierarchies.
 Research in humanities computing, ed. Nancy Ide and Susan
 Hockey. Oxford: Oxford University Press. 1996.
 http://cds.library.brown.edu/resources/stg/monographs/ohco.html
[Set: Wikipedia] Wikipedia contributors, "Set
 (mathematics)," Wikipedia, The Free Encyclopedia,
 https://en.wikipedia.org/w/index.php?title=Set_(mathematics) (accessed
 September 16, 2017).
[Sperberg-McQueen and Huitfeldt 2000] Sperberg-McQueen, C. M. and Claus Huitfeldt. GODDAG: a data structure for overlapping
 hierarchies.
 Digital documents: systems and principles: 8th international conference
 on digital documents and electronic publishing, DDEP 2000, 5th international workshop on the
 principles of digital document processing, PODDP 2000, Munich, Germany, September 13–15,
 2000, revised papers, ed. Peter King and Ethan V. Munson. NY: Springer, 2004,
 139–60. doi:https://doi.org/10.1007/978-3-540-39916-2_12. A revised version is available at
 http://cmsmcq.com/2000/poddp2000.html
[Sperberg-McQueen and Huitfeldt 2008a] Sperberg-McQueen, C. M., and Claus Huitfeldt. Containment and dominance in Goddag
 structures Presented at Processing text-technological resources, Bielefeld, March
 13-15, 2008, organized by the Zentrum für interdisziplinäre Forschung der Universität
 Bielefeld. Slides (but not full text) available on the Web at
 http://www.w3.org/People/cmsmcq/2008/bielefeld/slides.html
[Sperberg-McQueen and Huitfeldt 2008b] Sperberg-McQueen, C. M. and Claus Huitfeldt. Markup Discontinued: Discontinuity in
 TexMecs, Goddag structures, and rabbit/duck grammars.
 Presented at Balisage: The Markup Conference 2008, Montréal, Canada,
 August 12 - 15, 2008. In Proceedings of Balisage: The
 Markup Conference 2008. Balisage Series on Markup Technologies, vol. 1 (2008).
 doi:https://doi.org/10.4242/BalisageVol1.Sperberg-McQueen01.
 http://www.balisage.net/Proceedings/vol1/html/Sperberg-McQueen01/BalisageVol1-Sperberg-McQueen01.html
[Tennison 2008] Tennison, Jeni. Overlap,
 containment and dominance. Jeni’s musings,
 2008-12-06.
 http://www.jenitennison.com/2008/12/06/overlap-containment-and-dominance.html
[TEI Genetic editions] TEI WG-GE. An encoding model
 for genetic editions.
 http://www.tei-c.org/Activities/Council/Working/tcw19.html
[W3C DOM] W3C. What is the Document Object
 Model?
 Document Object Model (DOM). Level 2 Core Specification. Version
 1.0
 https://www.w3.org/TR/DOM-Level-2-Core/introduction.html
[W3C XML] W3C. Extensible Markup
 Language (XML) 1.0 (fifth edition).
 http://www.w3.org/TR/xml/
[W3C XML InfoSet] W3C. XML
 Information Set (second edition).
 https://www.w3.org/TR/xml-infoset/
[W3C XDM] W3C. XQuery and XPath
 Data Model 3.1.
 https://www.w3.org/TR/xpath-datamodel-3/#Node

[1] The authors are grateful to Elisa Beshero-Bondar, Elli Bleeker, Gijsjan Brouwer, Bram
 Buitendijk, and Astrid Kulsdom for their valuable contributions and support.
[2] Others properties, often more lexical than structural, may depend on contextual
 information that is not always expressed explicitly. For example, a capitalized reference
 to London is formally marked as a proper noun by capitalization, but
 whether it is a placename in England (or Ohio or Ontario or elsewhere) or the personal
 surname of a US writer is not represented formally.
[3] The OHCO literature is already familiar to the Balisage audience, and it is not our
 goal to provide an exhaustive bibliography. The seminal papers that advocated for OHCO as
 a document model are Coombs et al. 1987 and DeRose et al. 1990; the
 seminal examination of the limitations of OHCO, by some of the same authors, is Renear, Mylonas, and Durand 1996 (first introduced as a conference presentation in 1992). Wendell
 Piez discusses issues pertaining to overlap and OHCO, and the alternative range model
 implemented in LMNL, in Piez 2014.
[4] Within the Balisage community, at present
 http://www.balisage.net/Proceedings/topics/Concurrent_Markup~Overlap.html
 lists twenty-five presentations from 2008 through 2016
[5] See, e.g., Hilbert, Schonefeld, and Witt 2005.
[6] See especially Piez 2014.
[7] The desiderata TAG seeks to satisfy are described in a requirements document in Appendix D.
[8] We have created https://github.com/HuygensING/TAG as a portal where we
 intend to maintain links to all of our work on TAG as a model and on the Alexandria Markup
 implementation that we discuss below.
[9] The same applies to Annotation nodes, which are not ordered, but which are
 attached to either Markup or other Annotation nodes. Two Markup nodes that point to
 the same Text nodes are not ordered with respect to each other, since the inferred
 order of a Markup node is a derived property of the set of Text nodes to which it is
 attached, and in this example the markup is attached to the same Text nodes. The order
 of Markup nodes that point to overlapping or discontinuous sets of Text nodes is
 similarly undefined, since the relative order of the sets of Text nodes in the tails
 is not strictly defined. See also below about markup dominance.
[10] The XML InfoSet specification defines a children property on element
 information items, the value of which is [a]n ordered list of child information
 items, in document order. [W3C XML InfoSet, §2.2] This
 means that parents know the order of their children, but children do not know their
 place in that order. The restricted version of GODDAG, like TAG, has a single order
 for all Text nodes, while generalized GODDAG allows different orders in the case of
 multiple parentage. As far as we know, there is currently no implementation of
 generalized GODDAG other than the stand-off version implemented in EARMARK, which does
 not store the Text nodes in memory. [Peroni et al. 2014]
[11] LMNL ranges may be said to have relative start
 order, but not relative order. Unlike the tails of TAG Markup nodes, LMNL
 ranges cannot be discontinuous, which simplifies the inventory of positional
 relationships that can obtain between ranges.[LMNL range relations]
[12] See also the discussion of unordered content and transpositions in Appendix B.
[13] LMNL ranges must be continuous because they have single start and
 end properties [LMNL data model], and a value
 comprising a single string (a sequence of contiguous characters). [Piez 2014] This means that a continuous set of atoms may serve as the
 content of a single range, but discontinuous components must be stitched together
 through coindexing, as illustrated in An example limen: relating discontinuous
 ranges in Piez 2008.
[14] This is not meant to imply that fragmented speech must always be regarded as
 unitary. The decision is a philological one, and TAG can point to the parts of a
 divided quotation from separate Markup nodes when the developer considers that
 appropriate. In the following excerpt from Virginia Woolf’s Kew
 gardens, editors might reach different conclusions about whether this is one
 utterance or two:He talked almost incessantly; he smiled to himself and again began to talk, as
 if the smile had been an answer. He was talking about spirits–the spirits of the
 dead, who, according to him, were even now telling him all sorts of odd things
 about their experiences in Heaven.
Heaven was known to the ancients as Thessaly, William, and now, with
 this war, the spirit matter is rolling between the hills like thunder.
 He paused, seemed to listen, smiled, jerked his head and continued:–
You have a small electric battery and a piece of rubber to insulate the
 wire–isolate?–insulate?–well, we’ll skip the details, no good going into details
 that wouldn’t be understood–and in short the little machine stands in any
 convenient position by the head of the bed, we will say, on a neat mahogany
 stand. All arrangements being properly fixed by workmen under my direction, the
 widow applies her ear and summons the spirit by sign as agreed. Women! Widows!
 Women in black–

[15] What constitutes a document is a hermeneutic question that TAG does not seek
 to answer.
[16] All main text in the document forms a single chain of Text nodes, and the
 same is true of the Text in an annotation. See also Appendix B for
 a discussion of simultaneous text and contradictory order.
[17] Empty elements play a smaller role in TAG than in XML because TAG does not
 problematize overlap. This means that it does not need to create empty elements
 to simulate the start and end tags of a subordinate hierarchy, as is the case in
 some XML markup strategies.
[18] The XML DOM and XDM include Text nodes in the model. The XML InfoSet has no
 Text nodes, but regards the individual character as an information item:
 Each character is a logically separate information item, but XML
 applications are free to chunk characters into larger groups as necessary or
 desirable.
 W3C XML InfoSet
[19] Annotation hyperedges point from the Annotations to the thing being annotated
 because we think of adding annotations to markup similarly to adding markup to
 text.
[20] In this case, they should be merged into a single Text node. This is
 comparable to the XML prohibition against Text nodes that are nearest siblings
 of other Text nodes. One difference is that in TAG, nearest-sibling Text nodes
 are permitted in the tail of a Markup-to-Text hyperedge as long as they are not
 all in the tail of all of the same Markup-to-Text hyperedges.
[21] A Markup node may be the head of both a single Markup-to-Text hyperedge and
 a single Markup-to-Markup hyperedge. For example, in the Shakespeaerean sonnet
 example above, we could add a Markup node with a name value of
 poem that is the head of two hyperedges. One is a
 Markup-to-Text hyperedge that points to all Text nodes in the poem. The other is
 a Markup-to-Markup hyperedge that points to the three quatrain Markup nodes and
 the single couplet one. TAG permits us to assert either or both of these
 hyperedges.
[22] In this example we have tagged phrases, rather than sentences, but since phrases are
 constituents of sentences, a phrase break that crosses a metrical line boundary normally
 also entails a sentence break, and therefore an enjambment.
[23] It is possible to interpret the content of the <quotation>
 element as three child nodes: a Text node, an intervening element that holds the
 narrative interjection, and then another Text node, and in that sense the quotation is
 one object, although that object incorporates something that is not part of what a human
 understands as the quotation. Sperberg-McQueen and Huitfeldt 2008b explains why
 this is unsatisfactory (see especially their footnote 2).
[24] The comma in the second Text node might more properly be regarded as part of the
 narrative interpolation, and not of Alice’s quoted speech.
[25] This wording (dominates the stanzas it contains) means that
 dominance presupposes containment, but the reverse is not the case.
[26] The quatrain Markup node does not contain or have any other direct relationship to
 the line Markup node. It is the set of Text nodes of the quatrain that contains the set
 of Text nodes of the line.
[27] Because, as the Tennison quote above illustrates, dominance presupposes containment,
 it is not strictly necessary to create a Markup-to-Text hyperedge for the
 <poem> element if it is the head of a Markup-to-Markup hyperedge.

[28] It is possible to tag the conjunction, as well, so as to push the word
 and down to the same hierarchical level as the names, but we have not
 observed that in practice. If the markup process involves tagging what the user
 considers informational, it should be possible to say that some text in this title is of
 a particular type that we care about sufficiently to specify it in
 our markup, and other text is not, and to tag the former, but not the
 latter.
[29] See Mixed content as a type of overlap in Birnbaum and Thorsen 2015.
[30] What tokenization on white space should do with the white space is a processing
 issue, and not part of the model. The white space could form its own Text nodes, which
 would be members of the tails of the line Markup-to-Text hyperedges, but
 not of the tails of any of the word Markup-to-Text hyperedges. Or
 trailing white space could be regarded as part of the word it follows, and therefore
 included inside the Tails of the word Markup-to-Text hyperedges. In this
 example, the white space would not form separate Text nodes; e.g., the first Text node
 would consist of three characters, No followed by a space.
[31] Concerning this last point, when a footnote applies to a paragraph, the paragraph is
 already a structural unit independently of the footnote reference. But when a footnote
 applies to the last two sentences of a longer paragraph, the two sentences become a unit
 only because they are the target of the footnote. That does make them a structural
 component, but assigning a generic identifier like <footnote_target>
 to them is a concession to the XML prohibition against anonymous elements, that is, to
 the fact that XML elements always require a generic identifier that provides explicit
 datatyping. The generic identifier is redundant because it repeats, in a different way,
 information that is already present by virtue of pointing at or referring to the
 sentences from a footnote.
[32] STAGO vs STAGSO and ETAGO vs ETAGSO [Huitfeldt and Sperberg-McQueen 2003, §2.3.]
[33] Although Markup-to-Text hyperedges are directed from the Markup node to the Text
 nodes, graph traversal may follow incoming edges back to their heads as easily as it
 follows outgoing edges to their tails.
[34] Indices achieve their optimization during querying partially at the expense of
 increasing the cost of updating, since parts of the index must be rebuilt when the
 content is edited. However, not only can index updates be deferred, but, more
 importantly, modifications to a TAG document are local because, among other things, they
 do not depend on character offsets, and therefore are not propagated across the entire
 document. This obviates much of the expense of updating in a character-offset-based
 standoff model.
[35] As was noted above, this is problematic because it means that two TEI documents
 that differ only in the order of the children of their <choice>
 elements are not deep-equal. This means that the XML data model imposes a property
 that not only is not present in the meaning of the document, but also leads to an
 erroneous representation of that meaning that can be corrected only through special
 handling at the application layer.
[36] This list item refers to syntactic representations that were developed for data
 models other than TAG: XML syntax and the XML data model, LMNL sawtooth syntax and
 the LMNL data model, and TexMECS and GODDAG data model. When we speak about parsing
 XML or LMNL or TexMECS syntax into Alexandria
 Markup, we mean that it is parsed into the TAG data model, and not into XML or LMNL
 or GODDAG data models.XML angle-bracketed markup, LMNL sawtooth markup, and TexMECS all are capable of
 representing some but not all features of TAG. For example, LMNL supports
 annotations on annotations, while TexMECS doesn’t. More subtly, because annotations
 on the same object are ordered in LMNL but not in TAG, when Alexandria Markup parses
 LMNL syntax, it is not parsing it into the LMNL data model because, among other
 things, it creates unordered annotations. TexMECS supports hierarchy, while LMNL
 sawtooth syntax does not. LMNL can represent hierarchy through the limen, but the limen currently has no defined
 representation in the syntax. [Piez 2008] We leave unresolved for
 now the question of how to serialize fully all information in a TAG document.

[37] We leave unresolved for now the design and implementation of such an interface,
 except to say that it might not require a specialized, TAG-aware editor. One
 approach might involve the selective export of TAG information for manipulation in a
 third-party editor, followed by its reimport and reintegration into the TAG
 document.

Balisage: The Markup Conference

It’s more than just overlap: Text As GraphThe authors are grateful to Elisa Beshero-Bondar, Elli Bleeker, Gijsjan Brouwer, Bram
 Buitendijk, and Astrid Kulsdom for their valuable contributions and support.

Refining our notion of what text really is—this time for sure!
Ronald Haentjens Dekker
Head of Research and Development and Software Architect
Huygens ING

<ronald.dekker@huygens.knaw.nl>
Ronald Haentjens Dekker is a software architect and consultant at the Huygens
 Institute for the History of the Netherlands. As a software architect, he is responsible
 for translating research questions into technology or algorithms and explaining to
 researchers and management how specific technologies will influence their research. He has
 worked on transcription and annotation software, collation software, and repository
 software, and he is the lead developer of the CollateX collation tool. He also conducts
 workshops to teach researchers how to use scripting languages in combination with digital
 editions to enhance their research.

David Birnbaum
Professor and Chair
Department of Slavic Languages and Literatures, University of Pittsburgh

<djbpitt@gmail.com>
David J. Birnbaum is Professor and Chair of the Department of Slavic Languages and
 Literatures at the University of Pittsburgh. He has been involved in the study of
 electronic text technology since the mid-1980s, has delivered presentations at a variety
 of electronic text technology conferences, and has served on the board of the Association
 for Computers and the Humanities, the editorial board of Markup
 languages: Theory and practice, and the Text Encoding Initiative Council.
 Much of his electronic text work intersects with his research in medieval Slavic
 manuscript studies, but he also often writes about issues in the philosophy of
 markup.

Balisage: The Markup Conference

content/images/Dekker01-016.png

content/images/Dekker01-015.png

content/images/Dekker01-018.png

content/images/Dekker01-017.png

content/images/Dekker01-019.png

content/images/Dekker01-001.png

content/images/Dekker01-003.png
Feedasuupessasspeasre

content/images/Dekker01-002.png
octave sestet () Percy Bysshe Shelley

quatrain tercet couplet . Ozyman dias

I met a traveller from an antique land,

Who said — “Two vast and trunkless legs of stone
Stand in the desart....Near them, on the sand,

Half sunk a shattered visage lies, whose frown,
And wrinkled lip, and sneer of cold command,

Tell that its sculptor well those passions read
Which yet survive, stamped on these lifeless things,
The hand that mocked them, and the heart that fed;
And on the pedestal, these words appear:

My name is Ozymandias, King of Kings,

Look on my Works, ye Mighty, and despair!
Nothing beside remains. Round the decay

Of that colossal Wreck, boundless and bare

The lone and level sands stretch far away.”

content/images/Dekker01-005.png

content/images/Dekker01-004.png
“Two vast and trunkless legs of stone « Stand in the desat .. : @

——

content/images/Dekker01-007.png
and

Romeo

Juliet

content/images/Dekker01-006.png
I I G ICHICICHIGIOICBICHICHICHICD

content/images/Dekker01-009.png

content/images/Dekker01-008.png
©o®

content/images/Dekker01-010.png

content/images/Dekker01-012.png

content/images/Dekker01-011.png

content/images/Dekker01-014.png

content/images/Dekker01-013.png
abbrev

cxpansion expansion

First Lady of The United States

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

