
Automatically Denormalizing
Document Relationships 

Will Thompson

O'Connor's

(2) if there are sufficient reserves in the Railroad
Retirement Account, whether—

(A) the rates of such taxes should be reduced, or
(B) any part of the tax imposed by section 3221(b)

of title 26 should be diverted to the Railroad Unemploy-
ment Insurance Account to aid in the repayment of its
debt to the Railroad Retirement Account.

History of 45 U.S.C. §231f-1: Aug. 12, 1983, P.L. 98-76, §502, 97 Stat. 440;
Oct. 22, 1986, P.L. 99-514, §2, 100 Stat. 2095; Dec. 21, 1995, P.L. 104-66, §2221(a),
109 Stat. 733.

§231g [§8]. COURT JURISDICTION
Decisions of the Board determining the rights or li-

abilities of any person under this subchapter shall be
subject to judicial review in the same manner, subject
to the same limitations, and all provisions of law shall
apply in the same manner as though the decision were
a determination of corresponding rights or liabilities
under the Railroad Unemployment Insurance Act (45
U.S.C. 351 et seq.) except that the time within which
proceedings for the review of a decision with respect to
an annuity, supplemental annuity, or lump-sum benefit
may be commenced shall be one year after the decision
will have been entered upon the records of the Board
and communicated to the claimant.

History of 45 U.S.C. §231g: Aug. 29, 1935, ch. 812, §8, as restated June 24,
1937, ch. 382, 50 Stat. 307, as restated Oct. 16, 1974, P.L. 93-445, §101, 88 Stat.
1343.

See also 20 C.F.R. pt. 260.

ANNOTATIONS

Rivera v. U.S. R.R. Ret. Bd., 262 F.3d 1005, 1008
(9th Cir.2001). “[T]o qualify for review in this court
[under §231g], [claimant] must show that the [Rail-
road Retirement] Board’s dismissal of his claim consti-
tutes a ‘final decision of the Board.’” See also 45 U.S.C.
§355(f) (judicial-review provision of Railroad Unem-
ployment Insurance Act, incorporated into §231g).
Compare Abbruzzese v. U.S. R.R. Ret. Bd., 63 F.3d 972,
974 (10th Cir.1995) (without constitutional question
raised by refusal to reopen, courts of appeals lack juris-
diction to review Board’s decision not to reopen case),
with Sones v. U.S. R.R. Ret. Bd., 933 F.2d 636, 638
(8th Cir.1991) (Board’s decision not to reopen case is
reviewable under abuse-of-discretion standard).

§231h [§9]. RETURNS OF
COMPENSATION; CONCLUSIVENESS

Employers shall file with the Board, in such manner
and form and at such times as the Board by rules and
regulations may prescribe, returns of compensation of
employees, and, if the Board shall so require, shall fur-

nish employees with statements of their compensation
as reported to the Board. The Board’s record of the com-
pensation so returned shall be conclusive as to the
amount of compensation paid to an employee during
each period covered by the return, and the fact that the
Board’s records show that no return was made of the
compensation claimed to have been paid to an em-
ployee during a particular period shall be taken as con-
clusive that no compensation was paid to such em-
ployee during that period, unless the error in the
amount of compensation returned in the one case, or
the failure to make return of the compensation in the
other case, is called to the attention of the Board within
four years after the day on which return of the compen-
sation was required to be made.

History of 45 U.S.C. §231h: Aug. 29, 1935, ch. 812, §9, as restated June 24,
1937, ch. 382, 50 Stat. 307, as restated Oct. 16, 1974, P.L. 93-445, §101, 88 Stat.
1343.

See also 20 C.F.R. pt. 209.

ANNOTATIONS

Pawelczak v. U.S., 931 F.2d 108, 109 (D.C.Cir.
1991). “[A]s a matter of law, RRA §9 [now 45 U.S.C.
§231h] imposes the equivalent of a statute of limita-
tions. If the employee does not challenge the accuracy
of compensation records ‘within four years after the
day on which return of the compensation was required
to be made,’ the employee loses the opportunity to chal-
lenge those records. [¶] To facilitate employees’ com-
pliance with this requirement, the [Railroad Retire-
ment] Board’s regulations require railroad employers
to file a yearly compensation report for each employee
with the Board by February of the following year. The
Board, in turn, notifies the employee of the amount of
compensation the employee has reported. Under RRA
§9, the employee then has four years within which to
challenge the accuracy of the report.” See also Gate-
wood v. U.S. R.R. Ret. Bd., 88 F.3d 886, 889 (10th Cir.
1996).

§231i [§10]. ERRONEOUS PAYMENTS
(a) Recovery.—If the Board finds that at any time

more than the correct amount of annuities or other
benefits has been paid to any individual under this sub-
chapter, or payment has been made to an individual not
entitled thereto, recovery by adjustment in subsequent
payments to which such individual, or any other indi-
vidual on the basis of the same compensation, wages,
or self-employment income, is entitled under this sub-
chapter, or the Railroad Unemployment Insurance Act

45 U.S.C. §§231f-1 - 231i
Chapter 9. Retirement of Railroad Employees

Railroad Retirement Act of 1974!

1260 O’Connor’s Federal Employment Codes

4
5

U
.S

.C
.§

2
3
1

f-
1

1. Deadline to file. A motion to transfer for improper venue is waived if it is made after any written mo-
tion (other than a special appearance) is filed. TRCP 86(1). The motion to transfer may be filed concurrently with
the answer. TRCP 86(2); see CPRC §15.063. See “Deadline to Answer,” ch. 3-E, §2, p. 255.

3-4. DEADLINES FOR MOTIONS TO TRANSFER VENUE

Grounds Deadlines Authority Cross-reference

1 Improper county and
convenience

Before or with filing of D’s
answer

CPRC §15.063(1); TRCP 86(1) §2.2.1, this page

2 Local prejudice None Common law §3.4, p. 237

3 Consent None CPRC §15.063(3); TRCP 86(1) §4.1, p. 238

2. Due order of pleading.

(1) Consent or improper county & convenience. The defendant must file a motion to transfer
venue based on consent or improper county and convenience before or along with all other pleadings or motions ex-
cept the special appearance, which must be filed first. TRCP 86(1). See “Due Order of Pleading,” ch. 3-A, §3, p. 207.
The defendant waives its objection to improper venue if it files a motion to transfer after it files an answer. See TRCP
86(1); Kshatrya v. Texas Workforce Comm’n, 97 S.W.3d 825, 832 (Tex.App.—Dallas 2003, no pet.).

NOTE
Although a motion to dismiss under TRCP 91a is not an exception to the due-order-of-pleading
rule, a defendant can file a motion to dismiss without waiving the motion to transfer venue.
TRCP 91a.8. See “No waiver of special appearance or motion to transfer venue,” ch. 3-H,
§2.7.1, p. 286.

(2) Local prejudice. The due-order-of-pleading rule does not apply to a motion to transfer based
on local prejudice under TRCP 257-259. See “Local Prejudice,” §3, p. 236.

3. Form. The motion to transfer venue must be in writing and may be made either as part of the defen-
dant’s first responsive pleading or as a separate document. TRCP 86(1), (2). See O’Connor’s Texas Forms, FORMS
3C:1-3.

4. No affidavits necessary. The defendant may, but is not required to, support the motion with affida-
vits when it is filed. TRCP 86(3) (last paragraph); GeoChem Tech v. Verseckes, 962 S.W.2d 541, 543 (Tex.1998).
The question of proper venue is raised by simply objecting to the plaintiff’s venue choice through a motion to trans-
fer venue. Billings v. Concordia Heritage Ass’n, 960 S.W.2d 688, 692 (Tex.App.—El Paso 1997, pet. denied). But
once the plaintiff responds to the motion and denies the defendant’s venue facts, the defendant must provide proof
as required by TRCP 87(3). See TRCP 87(2).

5. Request hearing. The defendant must request a hearing, give the plaintiff notice of the hearing, and
secure a setting for the hearing. See TRCP 87(1); see, e.g., Carlile v. RLS Legal Solutions, Inc., 138 S.W.3d 403, 408
(Tex.App.—Houston [14th Dist.] 2004, no pet.) (14-month delay between filing motion to transfer and securing hear-
ing showed lack of diligence); Bristol v. Placid Oil Co., 74 S.W.3d 156, 159 (Tex.App.—Amarillo 2002, no pet.)
(32-month delay between motion to transfer and ruling was not attributable to D because D’s motion asked court to
set hearing); Grozier v. L-B Sprinkler & Plumbing Repair, 744 S.W.2d 306, 311 (Tex.App.—Fort Worth 1988, writ
denied) (although D asked for hearing, he did not ask for setting). See “Procedure for hearing,” §2.11, p. 234.

6. No codefendant waiver. Although a defendant can waive its own venue rights, it cannot waive the
venue rights of a codefendant. No act or omission constituting waiver by one defendant impairs the right of any other
defendant to challenge venue. CPRC §15.0641; WTFO, Inc. v. Braithwaite, 899 S.W.2d 709, 718 (Tex.App.—Dallas

Commentaries
Chapter 3. Defendant’s Response & Pleadings

C. Motion to Transfer—Challenging Venue!

O’Connor’s Texas Rules 229

M
o
tio

n
to

T
r
a

n
sfe

r
V

e
n

u
e

O'Connor's
Print Books

O'Connor's
Web-based Service

Modeling relationships
One-to-one

Clients

ID FirstName LastName LogInEmail

112345 Tim Malone tim@xyz.com

223456 Sally Mott sally@abc.org

<client id="112345" firstName="Tim"

lastName="Malone"

loginEmail="tim@xyz.com" />

<client id="223456" firstName="Sally"

lastName="Mott"

loginEmail="sally@abc.org" />

Modeling relationships
One-to-many

Clients
ID FirstName LastName LoginEmail

112345 Tim Malone tim@xyz.com
223456 Sally Mott sally@abc.org

<client id="112345" firstName="Tim"

lastName="Malone"

loginEmail="tim@xyz.com">

<phone-number label="Home">202-555-1654</

phone-number>

<phone-number label="Mobile">202-555-1876</

phone-number>

</client>

<client id="223456" firstName="Sally"

lastName="Mott"

loginEmail="sally@abc.org">

<phone-number label="Work">408-555-2780</

phone-number>

</client>

Client-phones
Client_ID PhoneLabel PhoneNumber
112345 Home 202-555-1654
112345 Mobile 202-555-1876
223456 Work 408-555-2780

Modeling relationships
Many-to-many

Clients
ID FirstName LastName LoginEmail

112345 Tim Malone tim@xyz.com
223456 Sally Mott sally@abc.org

Attorneys
ID FirstName LastName

498456 Erin Baily
171239 Alan Davis

Client-Attorney
Client_ID Attorney_ID
239918 498456
191340 171239

Modeling relationships
Many-to-many

<xml>
?

Many-to-many relationships
Alternative : Discard relationship data

<client id="112345"

firstName="Tim" lastName="Malone">

...

</client>

 

<client id="223456"

firstName="Sally" lastName="Mott">

...

</client>

<attorney id="498456"

firstName="Erin" lastName="Baily">

...

</attorney>

<attorney id="171239"

firstName="Alan" lastName="Davis">

...

</attorney>

Many-to-many relationships

<attorney id="498456"

firstName="Bob" lastName="Shapiro">

<client id="538989"

firstName="O.J." lastName="Simpson">

...

</client>

<client id="185703"></client>

<client id="220540"></client>

</attorney>

Alternative : Degrade relationship

Many-to-many relationships

<attorney id="498456"

firstName="Johnnie" lastName="Cochran">

<client id="538989"

firstName="O.J." lastName="Simpson">

...

</client>

<client id="975412"></client>

<client id="880990"></client>

</attorney>

<attorney id="171239"

firstName="Bob" lastName="Shapiro">

<client id="538989"

firstName="O.J." lastName="Simpson">

...

</client>

<client id="185703"></client>

<client id="220540"></client>

</attorney>

Alternative : Degrade relationship

Many-to-many relationships

<attorney id="171239"

firstName="Bob" lastName="Shapiro">

<client id="538989"
firstName="O.J." lastName="Simpson">
...

</client>
<client id="185703"></client>

<client id="220540"></client>

</attorney>

<attorney id="498456"

firstName="Johnnie" lastName="Cochran">

<client id="538989"
firstName="O.J." lastName="Simpson">
...

</client>
<client id="975412"></client>

<client id="880990"></client>

</attorney>

Alternative : Degrade relationship

Many-to-many relationships

<attorney id="123">

 ...

 <attorney-client idref="abc"/>

 <attorney-client idref="xqy"/>

</attorney>

 <client id="abc">

 ...

 <client-attorney idref="123"/>

 </client>

 <client id="xyz">

 ...

 <client-attorney idref="123"/>

 </client>

Keys and Joins

Many-to-many relationships

<attorney id="123">

 ...

 <attorney-client idref="abc"/>

 <attorney-client idref="xqy"/>

</attorney>

 <client id="abc">

 ...

 <client-attorney idref="123"/>

 </client>

 <client id="xyz">

 ...

 <client-attorney idref="123"/>

 </client>

Keys and Joins

Many-to-many relationships

<attorney id="123">

 ...

 <attorney-client idref="abc"/>

 <attorney-client idref="xqy"/>

</attorney>

 <client id="abc">

 ...

 <client-attorney idref="123"/>

 </client>

 <client id="xyz">

 ...

 <client-attorney idref="123"/>

 </client>

Keys and Joins

Many-to-many relationships

• Join functions must be explicitly built
• Reads are multiplied

<attorney id="123">

 ...

 <attorney-client idref="abc"/>

 <attorney-client idref="xqy"/>

</attorney>

//client[@id="abc"]

//client[@id="xyz"]

...

<attorney id="012">

<attorney id="234">

...

Keys and Joins : Views

Many-to-many relationships
Keys and Joins : Joining on related data

<attorney id="123">

 <address>...<state>CA</state>...</address>

 <attorney-client idref="abc"/>

 <attorney-client idref="xqy"/>

</attorney>

 <client id="abc">

 <address>...<state>ME</state>...</address>

 <client-attorney idref="123"/>

 </client>

"West Coast attorneys representing East Coast clients"

Many-to-many relationships
Keys and Joins : Joining on related data

<attorney id="123">

 <address>...<state>CA</state>...</address>

 <attorney-client idref="abc"/>

 <attorney-client idref="xqy"/>

</attorney>

 <client id="abc">

 <address>...<state>ME</state>...</address>

 <client-attorney idref="123"/>

 </client>

"West Coast attorneys representing East Coast clients"

let $states-west := (‘CA’, ‘OR’, ‘WA’)

let $states-east := (‘ME’, ‘NH’, ‘RI’, ... , ‘FL’)

let $clients-east := //client[address/state = $states-east]

let $attorneys-west := //attorney[address/state = $states-west]

return $attorneys-west

[attorney-client/@idref = $clients-east/@id]

• Big join
• May read large portions of the  

database
• Hard to optimize reliably

Many-to-many relationships
Keys and Joins : Joining on related data

<attorney id="123">

 <address>...<state>CA</state>...</address>

 <attorney-client idref="abc"/>

 <attorney-client idref="xqy"/>

</attorney>

 <client id="abc">

 <address>...<state>ME</state>...</address>

 <client-attorney idref="123"/>

 </client>

let $states-west := (‘CA’, ‘OR’, ‘WA’)

let $states-east := (‘ME’, ‘NH’, ‘RI’, ... , ‘FL’)

let $clients-east := //client[address/state = $states-east]

let $attorneys-west := //attorney[address/state = $states-west]

return $attorneys-west

[attorney-client/@idref = $clients-east/@id]

"West Coast attorneys representing East Coast clients"

• Big join
• May read large portions of the  

database
• Hard to optimize reliably

Many-to-many relationships
Keys and Joins : Joining on related data

<attorney id="123">

 <address>...<state>CA</state>...</address>

 <attorney-client idref="abc"/>

 <attorney-client idref="xqy"/>

</attorney>

 <client id="abc">

 <address>...<state>ME</state>...</address>

 <client-attorney idref="123"/>

 </client>

let $states-west := (‘CA’, ‘OR’, ‘WA’)

let $states-east := (‘ME’, ‘NH’, ‘RI’, ... , ‘FL’)

let $clients-east := //client[address/state = $states-east]

let $attorneys-west := //attorney[address/state = $states-west]

return //attorney[address/state = $states-west]

[attorney-client/@idref = $clients-east/@id]

"West Coast attorneys representing East Coast clients"

• Big join
• May read large portions of the  

database
• Hard to optimize reliably

Many-to-many relationships
Keys and Joins : Joining on related data

<attorney id="123">

 <address>...<state>CA</state>...</address>

 <attorney-client idref="abc"/>

 <attorney-client idref="xqy"/>

</attorney>

 <client id="abc">

 <address>...<state>ME</state>...</address>

 <client-attorney idref="123"/>

 </client>

"West Coast attorneys representing East Coast clients"

let $states-west := (‘CA’, ‘OR’, ‘WA’)

let $states-east := (‘ME’, ‘NH’, ‘RI’, ... , ‘FL’)

let $clients-east-ids := //client[address/state = $states-east]/@id

let $attorneys-west := //attorney[address/state = $states-west]

return //attorney[address/state = $states-west]

[attorney-client/@idref = $clients-east-ids]

• Big join
• May read large portions of the  

database
• Hard to optimize reliably

Many-to-many relationships
Keys and Joins : Joining on related data

• Facets are calculated for entire result set
• Indexing facilitates fast facet calculations on

values in result documents
• Joins required for related document values
• Query cost scales with size of result set

Many-to-many relationships
Keys and Joins : Joining on related data

• Facets are calculated for entire result set
• Indexing facilitates fast facet calculations on

values in result documents
• Joins required for related document values
• Query cost scales with size of result set

let $client-results := db:implementation-defined(...)
let $client-attorney-refs := $client-results/client-attorney/@idref 
return subsequence(

 for $attorney in //attorney[@id = $client-attorney-refs] 
 let $count := count($client-results

 [client-attorney/@idref = $attorney/@id])
 order by $count descending 
 return <attorney-facet

value="{ $attorney/full-name }"
count="{ $count }" />,

1, 5)

Many-to-many relationships
Keys and Joins : Code maintenance

Organization

• Two commingled document
concepts

• Fractured codebase

Abstraction

• Join-based model harder to
generalize

• Dependencies

Many-to-many relationships
Keys and Joins : Code maintenance

Organization

• Two commingled document
concepts

• Fractured codebase

Abstraction

• Join-based model harder to
generalize

• Dependencies

Automatic denormalization
Overview

Precomputation

Shifts responsibility from run-time to write-time

Conceptually similar to SQL indexed/materialized views

Explicit trade-off
Run-time performance
Simplicity

Automatic denormalization
Overview

<client id="112345"

firstName="Tim" lastName="Malone">
...

<ref:copies>
<attorney-client idref="498456" />

firstName="Erin" lastName="Baily">

...

</attorney>

</ref:copies>
</client>

<attorney id="498456"

firstName="Erin" lastName="Baily">
...

<ref:copies>
<client-attorney idref="112345" />

firstName="Tim" lastName="Malone">

...

</client>

<client-attorney idref="223456" />

...

</ref:copies>
</attorney>

Automatic denormalization

<client id="112345"

firstName="Tim" lastName="Malone">
...

<ref:copies>
<attorney id="498456"

firstName="Erin" lastName="Baily">

...

</attorney>

</ref:copies>
</client>

<attorney id="498456"

firstName="Erin" lastName="Baily">
...

<ref:copies>
<client id="112345"

firstName="Tim" lastName="Malone">

...

</client>

<client id="223456">

...

</ref:copies>
</attorney>

Overview

Automatic denormalization

<client id="112345"

firstName="Tim" lastName="Malone">
...

<ref:copies>
<attorney id="498456"

firstName="Erin" lastName="Baily">

...

</attorney>

</ref:copies>
</client>

<attorney id="498456"

firstName="Erin" lastName="Baily">
...

<ref:copies>
<client id="112345"

firstName="Tim" lastName="Malone">

...

</client>

<client id="223456">

...

</ref:copies>
</attorney>

Relationship create

Automatic denormalization
Entity copy transformation

<client id="112345"

firstName="Tim" lastName="Malone">
...

<ref:copies>

<attorney id="498456"

firstName="Erin" lastName="Baily">

...

</attorney>

</ref:copies>

</client>

<client id="112345"

firstName="Tim" lastName="Malone">
...

</client>

<attorney id="498456"

firstName="Erin" lastName="Baily">

...

<ref:copies>
<client id="112345"

firstName="Tim" lastName="Malone">
...

</client>
</ref:copies>

</attorney>

Automatic denormalization
Update

<client id="112345"

firstName="Tim" lastName="Malone">
...

<ref:copies>

<attorney id="498456"

firstName="Erin" lastName="Baily">

...

</attorney>

</ref:copies>

</client>

Automatic denormalization
Update

<client id="112345"

firstName="Timothy" lastName="Malone">
...

<ref:copies>

<attorney id="498456"

firstName="Erin" lastName="Baily">

...

</attorney>

</ref:copies>

</client>

Automatic denormalization
Update

<client id="112345"

firstName="Timothy" lastName="Malone">
...

<ref:copies>

<attorney id="498456"

firstName="Erin" lastName="Baily">

...

</attorney>

</ref:copies>

</client>

<client id="112345"

firstName="Timothy" lastName="Malone">
...

</client>

Entity copy transformation

Automatic denormalization
Update

<client id="112345"

firstName="Timothy" lastName="Malone">
...

<ref:copies>

<attorney id="498456"

firstName="Erin" lastName="Baily">

...

</attorney>

</ref:copies>

</client>

<attorney id="498456"

firstName="Erin" lastName="Baily">

...

<ref:copies>

<client id="112345"

firstName="Tim" lastName="Malone">

...

</client>

</ref:copies>

</attorney>

Get referenced document

<client id="112345"

firstName="Timothy" lastName="Malone">
...

</client>

Automatic denormalization
Update

<client id="112345"

firstName="Timothy" lastName="Malone">
...

<ref:copies>

<attorney id="498456"

firstName="Erin" lastName="Baily">

...

</attorney>

</ref:copies>

</client>

<attorney id="498456"

firstName="Erin" lastName="Baily">

...

<ref:copies>

<client id="112345"

firstName="Timothy" lastName="Malone">

...

</client>

</ref:copies>

</attorney>

<client id="112345"

firstName="Timothy" lastName="Malone">
...

</client>

Update referenced document with copy

Automatic denormalization
Update

<client id="112345"

firstName="Timothy" lastName="Malone">
...

<ref:copies>

<attorney id="498456"

firstName="Erin" lastName="Baily">

...

</attorney>

</ref:copies>

</client>

<attorney id="498456"

firstName="Erin" lastName="Baily">

...

<ref:copies>

<client id="112345"

firstName="Timothy" lastName="Malone">

...

</client>

</ref:copies>

</attorney>

<client id="112345"

firstName="Timothy" lastName="Malone">
...

</client>

Automatic denormalization
Delete

<client id="112345"

firstName="Tim" lastName="Malone">
...

<ref:copies>

<attorney id="498456"

firstName="Erin" lastName="Baily">

...

</attorney>

</ref:copies>

</client>

Automatic denormalization
Delete

<client id="112345"

firstName="Tim" lastName="Malone">
...

<ref:copies>

<attorney id="498456"

firstName="Erin" lastName="Baily">

...

</attorney>

</ref:copies>

</client>

Automatic denormalization
Delete

<client id="112345"

firstName="Tim" lastName="Malone">
...

<ref:copies>

<attorney id="498456"

firstName="Erin" lastName="Baily">

...

</attorney>

</ref:copies>

</client>

<attorney id="498456"

firstName="Erin" lastName="Baily">

...

<ref:copies>

<client id="112345"

firstName="Tim" lastName="Malone">

...

</client>

</ref:copies>

</attorney>

Get referenced document

Automatic denormalization
Delete

<client id="112345"

firstName="Tim" lastName="Malone">
...

<ref:copies>

<attorney id="498456"

firstName="Erin" lastName="Baily">

...

</attorney>

</ref:copies>

</client>

<attorney id="498456"

firstName="Erin" lastName="Baily">

...

<ref:copies>

<client id="112345"

firstName="Tim" lastName="Malone">

...

</client>

</ref:copies>

</attorney>

Remove copy from referenced document

Automatic denormalization
Delete

<client id="112345"

firstName="Tim" lastName="Malone">
...

<ref:copies>

<attorney id="498456"

firstName="Erin" lastName="Baily">

...

</attorney>

</ref:copies>

</client>

<attorney id="498456"

firstName="Erin" lastName="Baily">

...

<ref:copies>

...

firstName="Tim" lastName="Malone">

...

</client>

</ref:copies>

</attorney>

Automatic denormalization
Read

<client id="112345"

firstName="Tim" lastName="Malone">

<address> ... <state>CA</state> ... </address>

<ref:copies>

<attorney id="498456"

firstName="Erin" lastName="Baily">

<address> ...

<state>NY</state> ...

</address>

...

</attorney>

</ref:copies>

...

</client>

<attorney id="498456"

firstName="Erin" lastName="Baily">

<address> ... <state>NY</state> ... </address>

<ref:copies>

<client id="112345"

firstName="Timothy" lastName="Malone">

<address> ...

<state>CA</state> ...

</address>

</client>

<client id="223456">

...

</ref:copies>

</attorney>

Automatic denormalization
Read

"West Coast attorneys representing East Coast clients"

let $states-west := (‘CA’, ‘OR’, ‘WA’)

let $states-east := (‘ME’, ‘NH’, ‘RI’, ... , ‘FL’)

let $clients-east := //client[state = $states-east]

return

//attorney

[address/state = $states-west]

[attorney-client/@idref = $clients-east/@id]

<attorney id="498456"

firstName="Erin" lastName="Baily">

<address> ... <state>NY</state> ... </address>

<ref:copies>

<client id="112345"

firstName="Timothy" lastName="Malone">

<address> ...

<state>CA</state> ...

</address>

</client>

<client id="223456">

...

</ref:copies>

</attorney>

Automatic denormalization
Read

let $states-west := (‘CA’, ‘OR’, ‘WA’)

let $states-east := (‘ME’, ‘NH’, ‘RI’, ... , ‘FL’)

let $clients-east := //client[state = $states-east]

return

//attorney

[address/state = $states-west]

[attorney-client/@idref = $clients-east/@id]

[ref:copies/client//state = $states-east)]

<attorney id="498456"

firstName="Erin" lastName="Baily">

<address> ... <state>NY</state> ... </address>

<ref:copies>

<client id="112345"

firstName="Timothy" lastName="Malone">

<address> ...

<state>CA</state> ...

</address>

</client>

<client id="223456">

...

</ref:copies>

</attorney>

"West Coast attorneys representing East Coast clients"

Automatic denormalization
Read

let $states-west := (‘CA’, ‘OR’, ‘WA’)

let $states-east := (‘ME’, ‘NH’, ‘RI’, ... , ‘FL’)

let $clients-east := //client[state = $states-east]

return

//attorney

[address/state = $states-west]

[attorney-client/@idref = $clients-east/@id]

[ref:copies/client//state = $states-east]

<attorney id="498456"

firstName="Erin" lastName="Baily">

<address> ... <state>NY</state> ... </address>

<ref:copies>

<client id="112345"

firstName="Timothy" lastName="Malone">

<address> ...

<state>CA</state> ...

</address>

</client>

<client id="223456">

...

</ref:copies>

</attorney>

"West Coast attorneys representing East Coast clients"

• Single document-scoped query
• Join eliminated

Automatic denormalization
Read

let $states-west := (‘CA’, ‘OR’, ‘WA’)

let $states-east := (‘ME’, ‘NH’, ‘RI’, ... , ‘FL’)

let $clients-east := //client[state = $states-east]

return

//attorney

[address/state = $states-west]

[attorney-client/@idref = $clients-east/@id]

[ref:copies/client//state = $states-east]

<attorney id="498456"

firstName="Erin" lastName="Baily">

<address> ... <state>NY</state> ... </address>

<ref:copies>

<client id="112345"

firstName="Timothy" lastName="Malone">

<address> ...

<state>CA</state> ...

</address>

</client>

<client id="223456">

...

</ref:copies>

</attorney>

• Single document-scoped query
• Join eliminated
• Indexable!

"West Coast attorneys representing East Coast clients"

Automatic denormalization
Read

let $client-results := db:implementation-defined(...)
let $client-attorney-refs := $client-results/client-attorney/@idref 
return subsequence(

 for $attorney in //attorney[@id = $client-attorney-refs]  
 let $count := count($client-results

 [client-attorney/@idref = $attorney/@id])
 order by $count descending 
 return <attorney-facet

value="{ $attorney/full-name }"
count="{ $count }" />,

1, 5)

Automatic denormalization
Read

let $client-results := db:implementation-defined(...)  
return subsequence(

for $attorney-id in distinct-values($client-results//attorney/@id)
let $count := count($client-results[//attorney/@id= $attorney-id])
order by $count descending 
return <attorney-facet

value="{ $attorney/full-name }"
count="{ $count }" />,

1, 5)

• Single document-scoped query
• Join eliminated
• Even more indexable....

Automatic denormalization
Read

• Single document-scoped query
• Join eliminated
• Even more indexable....

Get values directly from index!

let $client-results := db:implementation-defined(...)  
return subsequence(

for $attorney-id in distinct-values($client-results//attorney/@id)
let $count := count($client-results[//attorney/@id= $attorney-id])
order by $count descending 
return <attorney-facet

value="{ $attorney/full-name }"
count="{ $count }" />,

1, 5)

Automatic denormalization
Read

let $client-results := db:implementation-defined(...)
let $facets := cts:values(

cts:path-reference("/ref:copies/attorney/full-name",
(), "limit=5", $client-query)

for $f in $facets
let $count := cts:frequency($f)
order by $count descending 
return <attorney-facet value="{ $f }" count="{ $count }" />

• Single document-scoped query
• Join eliminated
• Even more indexable....

Get values directly from index!

MarkLogic

Automatic denormalization
Read

let $client-results := db:implementation-defined(...)  
let $facets := 
 util:index-keys($client-results/ref:attorney/full-name, (),  
 function($key, $count) {  
 <attorney-facet value="{$key}" count="{$count[2]}" /> 
 }, 5, "lucene-index") 
for $f in $facets  
order by $f/@count 
return $f

eXist-db

• Single document-scoped query
• Join eliminated
• Even more indexable....

Get values directly from index!

Automatic denormalization

YOU'RE GONNA HAVE A BAD TIME

Caveats : Relationship-heavy workloads
and/or update-heavy workloads

High frequency updates

High number of relationships per document

Overlapping relationships
Additional write lock contention

Automatic denormalization

YOU'RE GONNA HAVE A BAD TIME

Caveats : Relationship-heavy workloads
and/or update-heavy workloads

High frequency updates

High number of relationships per document

Overlapping relationships
Additional write lock contention

Automatic denormalization
Caveats : Only recommended for two-way joins

• Possible to support 3 (or more)-way joins
• Combinatorial explosions

Automatic denormalization
Caveats : Only recommended for two-way joins

• Possible to support 3 (or more)-way joins
• Combinatorial explosions

Automatic denormalization
Extensions and Optimizations :

Sparse entity copy transformation

• Extend transformation to exclude  
parts of copy

• Simple to follow rules based on:
containing entity
copied entity
combination

• Simplify documents
• Decrease update commit overhead

declare function ref:make-copy(
 $source as element(),
 $target as element()
) as element() 
{ 
 typeswitch($source) 
 (: Rules based on copied entity :) 
 case element(attorney) | element(client) return  
 From: Attorney or Client + To:Anything rules 
 case element(matter) return  
 (: Combination rules :) 
 typeswitch($target) 
 case element(client) return From:Matter + To:Client rules 
 default return From:Matter + To:Not-Client rules 
 default return 
 typeswitch($target) return  
 (: Rules based on containing entity :) 
}

Automatic denormalization
Extensions and Optimizations :

Entities and sub-entities

• More idiomatic
• More flexible
• Propagate ancestor/descendant data via  

entity copy transformation updates

Automatic denormalization
Extensions and Optimizations :

Overlapping documents

• One tree modeled as "base" document
• Overlapping documents modeled using many-to-many relationship
• After denormalization, all documents are completely coherent

Automatic denormalization
Extensions and Optimizations :

Nearline reference updates

Update queue
Commit canonical document update  
Queue denormalized copy update

Allows dirty reads "Eventually consistent"

Tunable queue More control over resource utilization

Automatic denormalization
Conclusions

XML databases are great if you need
XML (or JSON)

No database is a panacea

More complex models will require
trade-offs

Automatic denormalization patterns are a
good bet for many-to-many relationships

‣ Simple
‣ Eliminates runtime dependencies
‣ Faster to code, faster to query

Application relationship size and update
behavior can break it

Not in production...still testing No real-world data yet

