
1

Zahra Al-Awadai, Anne Brüggemann-Klein, Michael Conrads,

Andreas Eichner, Marouane Sayih

Technical University of Munich

XML applications on the web: X stack
Implementation strategies for the Model component

in a Model-View-Controller architectural style

Because we can !

• XML technologies provide a full stack of modeling languages, implementation languages,
and tools for web applications: XML and CSS, XForms, SVG, XHTML(5), UML class
diagrams and XML Schema, UML state diagrams and SCXML, XQuery, XSLT, XPath, XLink,
XProc …

• End-to-end encoding of data in XML (optional: descriptive Markup)
 no impedence mismatch

• Same programming languages used across the stack

• Mature, stable, minimal platform dependencies

2XML applications on the web | Balisage 2017

Why web apps (games) with XML technology?

Because it adds spice to teaching document engineering !

• Opportunity to review and apply principles of software engineering
(cf Michael's impressive talk about parsing context-free grammars yesterday)

 separation of concerns

 model-driven development

 declarative approaches / configurations first

• Give context and background to students' experiences with XML
in praktica and database lectures

• Opportunity to create something impressive from scratch, no frameworks

 demo of recent student project blackjack (Li & Zhang)

Because it leverages XML competencies for end-user development !

3XML applications on the web | Balisage 2017

Why web apps (games) with XML technology?

Demo student project Blackjack (Li/Zhang)

Architecture of web applications and the X stack

• Tiers and Model-View-Controller architectural style

• Passive view (thin client, Model-View-View-Model)

• Focus on Model as a software component to be modelled and
implemented with XML technology: XQuery functions
operating on XML data, executed in XML database system (BaseX)

Three contributions

• Functional decomposition in XQuery in view of the XQuery update constraint

• Model-driven development of event-driven systems
with UML state diagrams and SCXML

• Server push for multi-player games

Concluding remarks: summary, evaluation, and further work

4XML applications on the web | Balisage 2017

Outline

Passive View, Model-View-View-Model (MVVM), a Model-View-Controller (MVC) variant,
mapped to three tiers on the Web

5

Architecture of web applications

Separation of concerns: keeping the View component independent of the rest of the system

Responsibility of Model: hold data, compute and provide access

Good practice to make code easier to understand, to maintain and to extend: structure data
into collaborating objects that provide access through methods
(encapsulation: be explicit about which data a method operates on)

Live instances of objects (heap)  XML collection (BaseX) of objects' states

Object references  unique id information on object creation

Methods  XQuery functions with XQuery updates

Object methods  object id as "self" or "this" parameter

 encapsulation

Execution of queries in server-side XML database: BaseX

6XML applications on the web | Balisage 2017

The Model component and the X stack

7

Functional decomposition for XQuery functions
in view of the XQuery update constraint

7XML applications on the web | Balisage 2017

Requirement: Methods must be able to change the state of objects in the database

Obvious solution: XQuery Update Facility

• extends XQuery by insert, delete, and change operations on nodes in the database

• used in return clauses of FLOWR expressions

• update constraint: XQuery expressions can either be updating or value-returning

Problem: a method will usually update the state of an object AND return a value

BaseX as a server-side XQuery processor offers some solutions

• HTTP boundary approach: limited but sufficient for simple problems

• EXPath solution: fully compositional

8XML applications on the web | Balisage 2017

The XQuery update constraint

BaseX supports RestXQ annotations for XQuery functions that map HTTP messages to
execution of functions

• execution of XQuery functions that carry RestXQ annotations, can be triggered
by HTTP requests (mapping of request information to function parameters)

• return value of such a RestXQ function call is automatically or explicitly wrapped
into an HTTP response

A RestXQ function call may mix updates and return values when it wraps them into a
db:output call (or when the BaseX option MIXUPDATES is set to true)

Limited solution (but sufficient for blackjack game of Li & Zhang)

• lifting of update constraint at the boundary level of functions that are called via RestXQ

• insufficient for API functions that are called, not triggered via HTTP/RestXQ

• insufficient for inner function calls that occur due to functional decomposition

9XML applications on the web | Balisage 2017

HTTP boundary approach

BaseX provides function http:send-request that

• accepts an XML-encoded HTTP request as argument

• makes the HTTP request

• returns an XML encoding of the HTTP response

Request and response are encoded as defined by the EXPath industry standard

Wrapping a call to an updating function into a http:send-request call and HTTP message
masks the updating nature of the called function  function calls become fullly compositional

How to implement a method that updates the database and returns a value?

• split the method into two, one to update and one to return a value

• delegate calls to each of the new methods to HTTP requests that map to RestXQ
annotations of the functions to call
 demo: advance counter that is stored in a database and displays the new value

Why delegate the call to the non-updating method, too?
 to circumvent a database locking problem

10

EXPath solution: split and delegate

BaseX treats each query as a transaction

• ACID criteria are guaranteed, esp I for isolation: concurrent access, no dirty reads

Mechanics

• BaseX works with database locks (read locks and write locks)

• A transaction monitor schedules queries for execution so that isolation is guaranteed

• Queries that hold only read locks on databases can operate in parallel;
a read lock on a database can only be acquired when no write lock is in use.

• Queries can only aquire a write lock on some database when no read lock is in use

Deadlock scenario

• A query reads a database, thus holds a read lock on the database when starting to execute.

• The query issues an HTTP request via http:send-request() that triggers another query via
RestXQ; that other query updates the same database, hence needs a write lock. It is now
blocked, since the calling query still holds a read lock which it can only release after the
called query and then the remainder of its own code have been executed.

11XML applications on the web | Balisage 2017

How does split-and-delegate impact locking?

Recommended practice for queries that delegate database access to other functions via HTTP
and RestXQ: also delegate all other access to the same database via HTTP and RestXQ,
even if it is only a read access and even if the access occurs after the other delegation.

One pattern that avoids deadlocks:

• Read data from database in method that is called via HTTP / RestXQ.

• Compute new data internally.

• Update data in database in method that is called via HTTP / RestXQ.

• Return the internally computed value

12XML applications on the web | Balisage 2017

A strategy that avoids deadlocks

13

Model-driven development of event-driven
systems with UML state diagrams and SCXML

13XML applications on the web | Balisage 2017

Model component of a web application and ist sub-components as an event-driven system

• passive component that gets hit by events in the form of functions calls

Proven practice in software engineering: model behaviour of event-driven components with
UML state diagrams

• state describes to which events a system reacts

• transition describes to which state a system switches when a specific event occurs and
when specific conditions apply

• transition can also trigger function calls or raise internal event

Case study Blackjack: state diagram for each player and for the whole table

• states for player: betting, insuring, playing, waiting

• states for table: setup, playerPhase, dealerPhase, finished

14XML applications on the web | Balisage 2017

Modeling behaviour of event-driven systems

SCXML (State Chart XML): an XML application for encoding UML state diagrams in XML

An (imcomplete) SCXML processor written in XQuery by Christoph Schütz (scxml-xq)

• appears to handle complex states and transitions but no activities

• no documentation 

An (incomplete) SCXML processor written in XQuery by Andreas Eichner, which has enough
functionality to drive a Blackjack application

• no clean separation between SCXML module and the game

• no adequate model of the behaviour of the game (local variables rather than use of API)

 demo of finite automaton processor

 finite automata encoded in SCXML and stored in BaseX

 configurations of current state / automaton stored in BaseX

 xml application that accepts input symbols encoded as URIs

for a configuration and that advances the state of the automaton

in the configuration

15XML applications on the web | Balisage 2017

State diagrams and the X stack

16

Server push for multi-payer games

16XML applications on the web | Balisage 2017

HTTP request-response cycle: a client requests a change in the model; the status update
is communicated back only to the client who requested the change

What is needed for multi-player games: a connection between client and server through which
the server can send messages without a previous client request; that is WebSockets

 one player requests a change, all players get notified (observer pattern)

Client-side Javascript implementations of WebSockets are part of HTML5, server-side
implementations are available in nearly all web servers in many languages, most notable in
Node.js.

Michael Conrads implemented two (low-level) solutions for the X stack

• a router component in Node.js

• a BaseX extension that understands a custom WebSockets RestXQ annotation

He also introduced and supported an HTML5 element as an endpoint for data that come
through a WebSocket connection; the endpoint can be configured with an XSLT program that
transformed incoming XML data (for example, into SVG). How declarative is that, Tommie?

17XML applications on the web | Balisage 2017

Outlook on multi-player games

18

Concluding remarks:
summary, evaluation and future work

18XML applications on the web | Balisage 2017

• Reference implementation of the game Mancala as a case study for future students

• Case study Blackjack with focus on state diagrams

 complete model of behaviour of components with UML State Diagrams

 system design for Blackjack that incorporates state diagrams and their interpretation

 requirements for features of state diagrams / functionality of processor that are

necessary to drive Blackjack

 implementation, based on SCXML processor in any programming language

• Case study Blackjack with focus on multi-player functionality

 architecture that involves proven patterns, for example observer pattern

 cooperation with BaseX about extension and further WebSocket supports,

possibly in the form of a WebSocket XQuery module

 guidelines for implementions

• Rich Internet Applications with XML technology

19XML applications on the web | Balisage 2017

Summary, evaluation, further student projects

