
1

Zahra Al-Awadai, Anne Brüggemann-Klein, Michael Conrads,

Andreas Eichner, Marouane Sayih

Technical University of Munich

XML applications on the web: X stack
Implementation strategies for the Model component

in a Model-View-Controller architectural style

Because we can !

• XML technologies provide a full stack of modeling languages, implementation languages,
and tools for web applications: XML and CSS, XForms, SVG, XHTML(5), UML class
diagrams and XML Schema, UML state diagrams and SCXML, XQuery, XSLT, XPath, XLink,
XProc …

• End-to-end encoding of data in XML (optional: descriptive Markup)
 no impedence mismatch

• Same programming languages used across the stack

• Mature, stable, minimal platform dependencies

2XML applications on the web | Balisage 2017

Why web apps (games) with XML technology?

Because it adds spice to teaching document engineering !

• Opportunity to review and apply principles of software engineering
(cf Michael's impressive talk about parsing context-free grammars yesterday)

 separation of concerns

 model-driven development

 declarative approaches / configurations first

• Give context and background to students' experiences with XML
in praktica and database lectures

• Opportunity to create something impressive from scratch, no frameworks

 demo of recent student project blackjack (Li & Zhang)

Because it leverages XML competencies for end-user development !

3XML applications on the web | Balisage 2017

Why web apps (games) with XML technology?

Demo student project Blackjack (Li/Zhang)

Architecture of web applications and the X stack

• Tiers and Model-View-Controller architectural style

• Passive view (thin client, Model-View-View-Model)

• Focus on Model as a software component to be modelled and
implemented with XML technology: XQuery functions
operating on XML data, executed in XML database system (BaseX)

Three contributions

• Functional decomposition in XQuery in view of the XQuery update constraint

• Model-driven development of event-driven systems
with UML state diagrams and SCXML

• Server push for multi-player games

Concluding remarks: summary, evaluation, and further work

4XML applications on the web | Balisage 2017

Outline

Passive View, Model-View-View-Model (MVVM), a Model-View-Controller (MVC) variant,
mapped to three tiers on the Web

5

Architecture of web applications

Separation of concerns: keeping the View component independent of the rest of the system

Responsibility of Model: hold data, compute and provide access

Good practice to make code easier to understand, to maintain and to extend: structure data
into collaborating objects that provide access through methods
(encapsulation: be explicit about which data a method operates on)

Live instances of objects (heap) XML collection (BaseX) of objects' states

Object references unique id information on object creation

Methods XQuery functions with XQuery updates

Object methods object id as "self" or "this" parameter

 encapsulation

Execution of queries in server-side XML database: BaseX

6XML applications on the web | Balisage 2017

The Model component and the X stack

7

Functional decomposition for XQuery functions
in view of the XQuery update constraint

7XML applications on the web | Balisage 2017

Requirement: Methods must be able to change the state of objects in the database

Obvious solution: XQuery Update Facility

• extends XQuery by insert, delete, and change operations on nodes in the database

• used in return clauses of FLOWR expressions

• update constraint: XQuery expressions can either be updating or value-returning

Problem: a method will usually update the state of an object AND return a value

BaseX as a server-side XQuery processor offers some solutions

• HTTP boundary approach: limited but sufficient for simple problems

• EXPath solution: fully compositional

8XML applications on the web | Balisage 2017

The XQuery update constraint

BaseX supports RestXQ annotations for XQuery functions that map HTTP messages to
execution of functions

• execution of XQuery functions that carry RestXQ annotations, can be triggered
by HTTP requests (mapping of request information to function parameters)

• return value of such a RestXQ function call is automatically or explicitly wrapped
into an HTTP response

A RestXQ function call may mix updates and return values when it wraps them into a
db:output call (or when the BaseX option MIXUPDATES is set to true)

Limited solution (but sufficient for blackjack game of Li & Zhang)

• lifting of update constraint at the boundary level of functions that are called via RestXQ

• insufficient for API functions that are called, not triggered via HTTP/RestXQ

• insufficient for inner function calls that occur due to functional decomposition

9XML applications on the web | Balisage 2017

HTTP boundary approach

BaseX provides function http:send-request that

• accepts an XML-encoded HTTP request as argument

• makes the HTTP request

• returns an XML encoding of the HTTP response

Request and response are encoded as defined by the EXPath industry standard

Wrapping a call to an updating function into a http:send-request call and HTTP message
masks the updating nature of the called function function calls become fullly compositional

How to implement a method that updates the database and returns a value?

• split the method into two, one to update and one to return a value

• delegate calls to each of the new methods to HTTP requests that map to RestXQ
annotations of the functions to call
 demo: advance counter that is stored in a database and displays the new value

Why delegate the call to the non-updating method, too?
 to circumvent a database locking problem

10

EXPath solution: split and delegate

BaseX treats each query as a transaction

• ACID criteria are guaranteed, esp I for isolation: concurrent access, no dirty reads

Mechanics

• BaseX works with database locks (read locks and write locks)

• A transaction monitor schedules queries for execution so that isolation is guaranteed

• Queries that hold only read locks on databases can operate in parallel;
a read lock on a database can only be acquired when no write lock is in use.

• Queries can only aquire a write lock on some database when no read lock is in use

Deadlock scenario

• A query reads a database, thus holds a read lock on the database when starting to execute.

• The query issues an HTTP request via http:send-request() that triggers another query via
RestXQ; that other query updates the same database, hence needs a write lock. It is now
blocked, since the calling query still holds a read lock which it can only release after the
called query and then the remainder of its own code have been executed.

11XML applications on the web | Balisage 2017

How does split-and-delegate impact locking?

Recommended practice for queries that delegate database access to other functions via HTTP
and RestXQ: also delegate all other access to the same database via HTTP and RestXQ,
even if it is only a read access and even if the access occurs after the other delegation.

One pattern that avoids deadlocks:

• Read data from database in method that is called via HTTP / RestXQ.

• Compute new data internally.

• Update data in database in method that is called via HTTP / RestXQ.

• Return the internally computed value

12XML applications on the web | Balisage 2017

A strategy that avoids deadlocks

13

Model-driven development of event-driven
systems with UML state diagrams and SCXML

13XML applications on the web | Balisage 2017

Model component of a web application and ist sub-components as an event-driven system

• passive component that gets hit by events in the form of functions calls

Proven practice in software engineering: model behaviour of event-driven components with
UML state diagrams

• state describes to which events a system reacts

• transition describes to which state a system switches when a specific event occurs and
when specific conditions apply

• transition can also trigger function calls or raise internal event

Case study Blackjack: state diagram for each player and for the whole table

• states for player: betting, insuring, playing, waiting

• states for table: setup, playerPhase, dealerPhase, finished

14XML applications on the web | Balisage 2017

Modeling behaviour of event-driven systems

SCXML (State Chart XML): an XML application for encoding UML state diagrams in XML

An (imcomplete) SCXML processor written in XQuery by Christoph Schütz (scxml-xq)

• appears to handle complex states and transitions but no activities

• no documentation

An (incomplete) SCXML processor written in XQuery by Andreas Eichner, which has enough
functionality to drive a Blackjack application

• no clean separation between SCXML module and the game

• no adequate model of the behaviour of the game (local variables rather than use of API)

 demo of finite automaton processor

 finite automata encoded in SCXML and stored in BaseX

 configurations of current state / automaton stored in BaseX

 xml application that accepts input symbols encoded as URIs

for a configuration and that advances the state of the automaton

in the configuration

15XML applications on the web | Balisage 2017

State diagrams and the X stack

16

Server push for multi-payer games

16XML applications on the web | Balisage 2017

HTTP request-response cycle: a client requests a change in the model; the status update
is communicated back only to the client who requested the change

What is needed for multi-player games: a connection between client and server through which
the server can send messages without a previous client request; that is WebSockets

 one player requests a change, all players get notified (observer pattern)

Client-side Javascript implementations of WebSockets are part of HTML5, server-side
implementations are available in nearly all web servers in many languages, most notable in
Node.js.

Michael Conrads implemented two (low-level) solutions for the X stack

• a router component in Node.js

• a BaseX extension that understands a custom WebSockets RestXQ annotation

He also introduced and supported an HTML5 element as an endpoint for data that come
through a WebSocket connection; the endpoint can be configured with an XSLT program that
transformed incoming XML data (for example, into SVG). How declarative is that, Tommie?

17XML applications on the web | Balisage 2017

Outlook on multi-player games

18

Concluding remarks:
summary, evaluation and future work

18XML applications on the web | Balisage 2017

• Reference implementation of the game Mancala as a case study for future students

• Case study Blackjack with focus on state diagrams

 complete model of behaviour of components with UML State Diagrams

 system design for Blackjack that incorporates state diagrams and their interpretation

 requirements for features of state diagrams / functionality of processor that are

necessary to drive Blackjack

 implementation, based on SCXML processor in any programming language

• Case study Blackjack with focus on multi-player functionality

 architecture that involves proven patterns, for example observer pattern

 cooperation with BaseX about extension and further WebSocket supports,

possibly in the form of a WebSocket XQuery module

 guidelines for implementions

• Rich Internet Applications with XML technology

19XML applications on the web | Balisage 2017

Summary, evaluation, further student projects

