
The Art of the Frameworkxxxxxxxxxxxxxxxxx

Framing the problem

Building customized editing environments

and workflows

Framing the Problem by Wendell Piez

Balisage 2016

North Bethesda, Maryland

Wednesday August 3, 2016



Problem statement #1

So ... what kind of critter
are these exactly?

Balisage Proceedings

Digital Humanities Quarterly
(open-access journal)

Publishing applications

Office Open XML (DOCX / XSLX) extraction

Metadata crosswalks

“Chunking” and content (re) allocation

Editorial Schematron

Data conversion pipelines

XML QA frameworks

“Semantic publishing”
(sometimes proprietary, shh!)

“Literate programming”

Editorial / publication pipelines and support applications

TIMESHEET: homemade time logging application

(drives my billing)

Expense accounting application

(coordinates my accounting)

My home-grown slide development thing ...
(makes old-fashioned PDFs via SVG, authored in XML)

The-thing-that-has-no-name-yet,
the “Un-CMS” task tracking / ticketing application ...



Problem statement #2

A business view
What is the unit of production?
The application artifact? the application?

or both together: the application in operation?

What is the unit of analysis?
A “solution” is a solution to what (sort of) problem?

What is the value offering?

Context
XML tools continue to improve and mature

XML-based systems have demonstrated strengths

Yet some problems just don't have generic solutions

“Tailoring” is still necessary to get the best results

Is there a market for tailors?

Antique sewing machine in a London shop window, 2010
(Photo by the author.)



A reproduction Gutenberg press in a museum display (Gutenberg Museum Mainz). Photo by the author.

This thing is only
what it is, when in use When it's not in use, it may be dismantled, or fall apart.

The outlines of the setup are in a process and procedure;
so the shape of the installation reflects the shape of the task.

“Installation”, “application”, “setup”, “system”
What they all have in common is they all work with actual and particular data sets.
And while they or their interfaces may be provided with formal descriptions,
these will never be complete (there is always “history”).
Typically, this thing exists at all only because it answers some actual need, serves a purpose.



Increase and evolution
Batch and shell scripts calling DSSSL or XSLT processor

GNU make

Shell utilities called from a text editor

XSLT+serializer writing shell scripts

Apache Ant calling XSLT etc.

Apache Cocoon + XSLT (+ shell utils)

XQuery + XSLT + XML database

XProc processor

XML IDE / environment

running CSS, XSLT, XProc etc.

(More to come)

Developments in

Scale / speed / throughput

General capability (scope of applicability)

Front end / back end

Ease of use / accessibility

Portability

Sophistication / complexity



2002
2016

Structured XML editing environments
are already mature and successfully deployed.
(Here: XMetaL showing a 2002 demo.)
Out of reach for many (due to up front costs).

Or: you build a homemade pipeline
Stitching together calls to the system
With ad-hoc patched-together code including

build utilities (e.g. Apache Ant)
XSLT + extensions
shell utilities

(This lineage leads eventually to xmlsh, XProc etc.)
Cheap and agile, but has its down sides

including long-term maintenance risks -
(these systems are stable until the day they are not)

An XML IDE like oXygen XML Editor combines
the functionalities of the structured editor with
an open-toolkit approach to extensibility.
More functionality for significantly lower cost.
(BTW, yes, oXygen “cheats” by wiring in
a commodity toolkit.)

Also: noteworthy “free” advances in speed,
size, power, back end technology ...

Continuities and convergences
Two distinct streams of development

have converged into one



Commonalities across generations

XSLT entered very early

and is still central

(I do not believe this is entirely an accident of perspective.
Working systems that do not have XSLT, have something like it.)

Components have proven to be long-lived

because specifications have been published

(standardized more or less formally)

and industry-leading implementations

have tended to be rigorous.

The web is a critical enabler of this work

HTML and CSS (including CSS as applied to XML) are invaluable

Even when we aren't “publishing”

source

transformation

result



Transformations, pipelines,
and ...?
Is there such a thing as a working collection
of pipelines and transformations?

Partly designed, partly configured out of available components.
Working together with ends in view, in a workflow of some kind.
(What we are looking at when we look at our flowcharts.)

I liked this idea in part because of its fractal quality:

the logic of the whole applies also to its parts.

And because it corresponds to what I see in the real world.

“frame“framewwork”ork”

“rig”“rig”
“assemb“assemblly”y”

source transformation

result

source
pipeline

result

source
source

source
A EG

schema

result
result

result



Cost of transformation
A transformation should tend to pay for itself over more runs ...
(Leveraging the application of the logic of the type, to the instance)
... but external as well as intrinsic factors determine when and how soon this happens ...
Formula also applies to pipelines and higher-level assemblies.

D = development cost
S = (first time) setup cost
count = piece count (runs, discrete results, or other)
ave = (average) operations and “materials” per piece

(i.e. total operations / count)

(average) cost / count:
((D + S) / count) + ave

Note: D can sometimes be applied (to an executing pipeline) to bring ave down.
(Composability of transformations.)

Transformation is more cost effective when piece count is high
and “materials + operations” (per piece) is low (if not near zero).

Or, when development and setup are inexpensive or already paid for,
and the results are worth the per-piece (operations) costs.



Exploring this model

D = development cost
S = (first time) setup cost
count = piece count (runs, discrete results, or other)
ave = (average) operations and “materials” per piece

cost / count:
((D + S) / count) + ave

Hidden costs
Cost of development includes cost of specifications

i.e. defining mappings from source(s) to target(s)
or risks when they are unstated or incorrect.
Plus: costs of developing your developers!

Operations costs (per piece or aggregate) may include the cost of checking results
of any transformations that you do not trust (and all that may follow)

Also these costs say nothing about the quality of the results,
only about what it takes to produce them.

Secrets of Success
Lower D by relying on standards and standards-conformant toolkits
Lower S by investing (however modestly) in an environment catering to users
Lower operations and “task overhead” (ave) to zero whenever possible

This may imply improvements in quality of inputs
Distinguish automatable from non-automatable and do not burden operators with the former

This may require refactoring a problem
First, get the scope and requirements right
Then focus on quality and operations, not count



What is not a rig
Standards

Libraries

Schemas and validation regimes (including “frameworks”)

Applications, tools and toolkits (including “frameworks”)

“One size fits all” 80% solutions
(such as several of my projects on github)

APIs, markup languages or other interfaces

... what is not a boat ...?

A design for a boat

Sailing, boat building or naval science

Boat parts, components or fittings

Its cargo, passengers, sailors or shipping line

Rather, these constitute components and (when generally shared)

the intellectual and technological commons:

A shared resource enriched by the contributions of everyone

and lowering Development, Setup and Operations for everyone.

Interestingly, these effects are felt the most when count is low

(“the little guy”?) even as they benefit everyone.



How to recognize a XXXXX when you see one

Embarrassing glue code
Sits on some embarrassing external dependency
Two or more languages
Little (or big) parts not implemented yet
(yet the whole thing still works)

Sometimes, Rube Goldberg complexity
(this is not a goal but it is sometimes tolerated)

Somehow the job gets done
Users view it with mixture of admiration
and skepticism, pride and fear

Sometimes, elegance in surprising places

Update - this is no longer always true!
“Framework” in the sense of “patchwork of routines”
has merged with framework as structured editing environment.
So, oXygen and similar applications combine what was done 15 years ago
in both XMetaL and Emacs together, for a fraction of the cost.

Entire, well-integrated environments can be designed,
assembled, and packaged for tasks both specific and general.
Plus, bells and whistles!



Paradoxes of working systems
We can focus attention on actual

not just hypothetical problems

and data sets.

We achieve success when we get the job done

– and we actually know when that is.

Since focus will not be on the system as such,

but on the work it supports,

a successful solution disappears into the background.

(Like typography, it is working best when not noticed.)

It is always easy to ask your users

when they are right there!

In designing and building such workflows and environments, what considerations

regarding user needs, end products, interim work states, validation needs, and

constraints on the system need to be taken into account?
Architecture

How can we best take advantage of existing libraries, tools, specifications, and platforms?

Environment
And how can we achieve and communicate a clear understanding

of the framework we are constructing, as distinct from the tools, tool libraries,

platforms and specifications which support it and help realize it?
Outlook

(Planning)



Contrary Impulses
The perennial question

Devil
We do what we must.

We can learn as we go!

Tomorrow is another day.

Describe any formal and informal (implicit) specifications of inputs

Same for outputs

Input side: what is the data acquisition model for all sources

Output side: Is there a publication model?

Who are the consumers or clients and how is data presented to them?

For each processing pipeline, describe:

Interfaces (in and out)

Resources (static and dynamic)

Mapping requirements

Any preliminary analysis

Workflow model

Identification of failure points

How are bugs / failures detected?

What is the process/sequence when failures are detected?

Would early detection help?

Are there any points where detection/remediation

costs more than it is worth?

Angel
Let's not get into trouble.

Figure out the right way, then do it!

Doing it wrong is worse than not doing it at all.



In designing and building such workflows and environments, what considerations

regarding user needs, end products, interim work states, validation needs, and

constraints on the system need to be taken into account?
Architecture

How can we best take advantage of existing libraries, tools, specifications, and platforms?

Environment

And how can we achieve and communicate a clear understanding

of the framework we are constructing, as distinct from the tools, tool libraries,

platforms and specifications which support it and help realize it?
Outlook

(Planning)

Frame, wrap up and take away

Cultivate a tolerance for “organic” solutions.

Know the difference between “up” and “down” and why it matters.

Look for opportunities at the edges of the system (design matters).

Consider impacts of environment on Setup, Development and Operations.

Support standards by using them, in public if possible.

Cultivate local technical knowhow esp “commons”-based.

If you pick your escalator correctly you can get off on any floor.

Look to the goal! Love your data.

The framework you need is the framework that

takes good care of it.

Help to frame your solution by giving it a name.

Framing the Problem by Wendell Piez

Balisage 2016

North Bethesda, Maryland

Friday August 5, 2016


