[image: Balisage logo]Balisage: The Markup Conference

Statecharts and State Chart XML as a Modeling Technique in Web
		Engineering
Anne Brüggemann-Klein
Technische Universität München

Marouane Sayih
Technische Universität München

Zlatina Keskivov
Technische Universität München

Balisage: The Markup Conference 2015
August 11 - 14, 2015

Copyright © 2015 by the authors. Used with permission.

How to cite this paper
Brüggemann-Klein, Anne, Marouane Sayih and Zlatina Keskivov. "Statecharts and State Chart XML as a Modeling Technique in Web
		Engineering." Presented at: Balisage: The Markup Conference 2015, Washington, DC, August 11 - 14, 2015. In Proceedings of Balisage: The Markup Conference 2015.
 Balisage Series on Markup Technologies vol. 15 (2015). https://doi.org/10.4242/BalisageVol15.Sayih01.

Abstract
Domain-driven design is a methodology that attempts to improve
				software development by focusing on domain terminology and
				functionality. It encourages collaboration between technical and domain
				experts by making an explicit technology-independent model that is
				iteratively refined. Many modeling languages exist. This paper examines
				the use of statecharts and their XML encoding, State Charts XML (SCXML),
				as a language for modeling the behavioral aspects of a reactive system.
				The use case presented in this paper is GameX, an interactive
				browser-based game where players operate on a map of towns and fields.
				We demonstrate that SCXML-encoded statecharts can be used to describe
				complex models during the software development process. Not only can
				these models be used to drive new development, but modeling already
				deployed systems in this way can provide a deeper understanding of their
				behavior.

Balisage: The Markup Conference

 Statecharts and State Chart XML as a Modeling Technique in Web
 		Engineering

 Table of Contents

 	Title Page

 	Introduction

 	Domain-driven design in the context of XML technologies

 	Statecharts and State Chart XML for modeling Web applications
 	Statecharts and State Chart XML (SCXML)

 	GameX as a case study

 	Gameplay overview of GameX

 	Step-by-step modeling using SCXML

 	The SCXML model of GameX
 	Step 1

 	Step 2

 	Step 3

 	Step 4

 	Step 5

 	Conclusion and future work

 	About the Authors

 Statecharts and State Chart XML as a Modeling Technique in Web
		Engineering

Introduction
The challenge of Web application development is to adapt and develop
			methodologies and tools that fulfill the requirement of high quality
			software and that are accessible to non-technical domain experts (end-user
			programmers). The computer science discipline of software engineering
			makes important contributions in advancing from programing to engineering
			based on solid foundations. These include agile and lean methodologies as
			well as approaches to place the model and particularly the domain model at
			the center of the development process and developer's view. There exist
			many modeling languages in the fields of the Web and software engineering.
			This paper examines the use of statecharts and their XML encoding, State
			Charts XML (SCXML), as a language for modeling the behavioral aspects of a
			reactive system.
The platform-independent and open suite of XML technologies is
			primarily considered for encoding and manipulating structured data and
			metadata. Additionally, the XML world offers several XML related
			technologies for software development and formal system specifications.
			Our research group Engineering Publishing Technology (EPT) at Technische
			Universität München leverages XML technology for Web applications. In
			recent years, we have focused on adapting software engineering modeling
			approaches to the XML context [BW04], [BST07], [BS08], [PB09],
				[BDPT10], [BRS12]. Based on our
			previous and current research, we believe that XML supports evolving
			trends in the areas of formal methods and modeling languages. Part of our
			agenda is to base not only the implementation of Web applications but also
			the development process itself on XML technology. Our rationale is that
			this approach makes modern software engineering methods more amenable to
			XML-savvy end-user programmers.
Statecharts were introduced by Harel [HP98] and
			later taken up by UML to model the behavior of reactive systems. The World
			Wide Web Consortium (W3C) is developing an encoding language for
			statecharts called State Chart XML (SCXML) [SCXML14]
			that is currently in last call. Implementations of SCXML provide generic
			state-machine based execution environments. In this paper we demonstrate
			how the behavior of Web applications can be modeled with statecharts at
			the domain level of abstraction. The SCXML-encoded model can then be used
			to drive the implementation. We use the principles of domain-driven design
				[E04] and domain-specific languages [F11] to empower domain experts to develop Web
			applications.
We illustrate our approach with a case study, a browser game named
			GameX, presented at Balisage 2014 [SKB14]. GameX belongs
			to the class of “serious” games and is intended to develop systemic
			thinking in players. GameX is almost exclusively implemented with XML
			technologies (XML, XForms, SVG, XSLT, XQuery and XProc). Now we extend the
			use of XML technologies to modeling behavioral aspects of GameX in a
			reverse engineering approach.
The remainder of the paper is organized as follows: In section “Domain-driven design in the context of XML technologies”, we
			introduce our modeling vision in terms of domain-driven design. In section “Statecharts and State Chart XML for modeling Web applications”, we introduce
			the basic concepts of statecharts and the syntax of State Chart XML. We
			present the event-driven gameplay of GameX as our use case and demonstrate
			how to model it with statecharts following the principles of domain-driven
			design. Specifically, we propose an approach that we call step-by-step
			modeling using statecharts. Finally, in section “Conclusion and future work”, we draw some conclusions,
			discuss limitations and raise ideas for future work.

Domain-driven design in the context of XML technologies
Domain-driven design (DDD) is a systematic approach proposed by Eric
			Evans in his book [E04] of the same name, which
			envisions a way to work with complex models during the software
			development lifecycle. The approach addresses complexity that arises from
			the sophisticated features or the domain. Evans argues the significance of
			domain modeling as the central focus of software development based on two
			observations:
First, the importance of the core domain and the domain logic is
			highlighted as the primary focus of a software project. Second, all system
			models and even the implementations are defined based on a domain
			model.
In terms of domain-driven design, our vision is to define models not
			only in their conventional/traditional sense as a diagram or a visual
			representation of the (individual) system modules and their
			intercommunication. We aim also to provide concepts built up in the heads
			of stakeholders, with terms and relationships that reflect domain insight:
			a domain model as shown in Figure 1. This
			figure shows that the domain model is a more abstract view of the system
			model towards the environment. Eventually, the architecture and the
			implementation of the final system will closely reflect the domain model.
			Working from the domain model provides clarity and precision on a high
			level that guide further steps of conventional modeling and
			implementation.
		
The domain model is not a particular diagram; it is the concept that
			the diagram is intended to deliver. It is not just the knowledge in a
			domain expert's head; it is an structured and selective abstraction of
			that knowledge. A diagram can represent and communicate a model [E04].
The transition from conventional models to domain models
			
			is beneficial in two ways. On the one hand, the domain model is
			technology-independent. On the other hand, the domain model uses domain
			terminology as a shared vocabulary between domain and system experts. This
			usage pervades the complete development process from modeling to
			implementation, which significantly increases the benefits of the model.
			These two aspects are discussed next in detail.
Figure 1: Domain model is more than a class diagram
[image:]

Technology-independent modeling: The term of technology-independent
			modeling refers to an approach that is not bound to the actual
			implementation. Many modeling languages such as ERD and XSD
			modeling target or depend on particular technologies. To define a truly
			universal standard model, there might be some initial solutions to handle
			this issue. For example, the conceptual model based on Unified
			Foundational Ontology (UFO) can be used, which has no suitable form for
			being physically implemented [G05], [GW08]. However, it seems to have a considerable
			shortcoming regarding domain specific modeling, because of its general
			nature.
Domain-specific modeling: As mentioned before, the approach of
			domain-driven design is interesting for software developers, especially
			when the business logic and its terminology are complex. Here,
			the domain-specific modeling plays a central role in terms of
			data-structuring. It describes the data and structure of the domain by
			bundling the element of the structure and their interactions, which are
			mapped in the respective domains. The domain models make these special
			constructors ready to be fitted to the domain. This approach
			of domain-specific modeling has several advantages, namely reduced
			complexity, easy comprehensibility and support for system design.
Domain-driven design is not bound to a specific technology or a
			"supporting framework". It is firmly focused on the process of developing
			good software with object-oriented modelling. Therefore, every language
			and environment that supports object-oriented-programming is suited for
			DDD.
		

Statecharts and State Chart XML for modeling Web applications
In this section we briefly introduce the concepts and semantics of
			statecharts and the syntax of their encoding language, State Chart XML
			(SCXML). We present the event-driven gameplay of GameX as our use case.
			Then, we show how to model this event-driven system using
			statecharts.
In previous work [BDPT10][BRS12],
			we have considered domain models in relation to classical data models,
			using reverse modeling and forward modeling techniques. Using GameX as a
			case study, we now expand our focus to behavioral aspects, for which
			statecharts are considered the appropriate modeling technique. We start
			with a pre-existing conceptual model, namely a UML class diagram that has
			also been translated into XML Schema, and some use case diagrams [SKB14][K14]. Then we extract from the
			conceptual model and from the system itself a domain model, as shown in
				Figure 2.
			The core part of the domain model is a statechart that uses domain
			vocabulary (events, conditions, actions) which is defined in a UML class
			diagram.
Figure 2: Extracting a domain model from an existing system and its
				conceptual model
[image:]

Originally, statecharts have been introduced by Harel for modeling the
			behavioral aspects of so-called reactive systems that need to respond to
			external signals or events that are generated independently of the system
			and that may have duration. Event-driven, interactive systems such as
			GameX can be considered as a special case of reactive systems in that they
			have a way of making the environment wait and consider new inputs at their
			own speed, thus giving rise to an event-response cycle. A completely
			different category of systems are the classical transformational systems
			that follow the much simpler input-computation-output paradigm.
Modeling the essential features of reactive systems, which are
			generally concurrent in nature and can be deterministic or
			nondeterministic, is commonly recognized in software and system
			engineering communities as difficult but important [BCG88][B89][H93]. A
			reactive system can be concurrent at three levels: to run in parallel with
			its environment, to be implemented on distributed hardware and to be
			described as a set of concurrent processes. When modeling a reactive
			system, Harel [HP98] recommends to organize the system
			specification into three views: functional, behavioral, and structural.
			The functional view focuses on the system functions and information flow.
			The structural view describes the decomposition of the system into
			subsystems, modules and objects. At the heart of the specification is the
			behavioral view, expressed in a statechart, that captures the system
			behavior over time: the activities, their control and timing and the
			states and modes of the system.
Statecharts and State Chart XML (SCXML)
As has been mentioned above, SCXML is an XML encoding of
				statecharts, also incorporating a formal definition of semantics. While
				SCXML semantics mostly follow Harel statecharts semantics, there are
				subtle differences [C14]. Since these differences in
				interpretation are not relevant at the abstract level of modeling the
				gameplay of GameX, we use Harel statechart diagrams to draw
				SCXML-encoded statecharts in this paper.
Harel statecharts add several extensions to the basic concepts of
				state machines. For example, statecharts may perform actions while
				executing transitions between states and while transitioning into or out
				of states. Furthermore, transitions may be guarded by conditions. Thus,
				transitions will be selected only if an event is raised whose name
				matches the 'event' attribute and if the
					'cond' condition on the transition is
				fulfilled.
The following figure shows example SCXML code and its corresponding
				statechart diagram.
Figure 3: A first statechart
[image:]

 <state id="s">
 <transition event="e" cond="x==1" target="s1"/>
 <transition event="e" target="s2"/>
 <transition event="*" target="s3"/>
 </state>
					

Here, the system will transition to s1 when both event
					e occurs and x is equal to 1, but it will
				transition to s2 if event e occurs and
					x is not equal to 1. Finally, it will transition to
					s3 if any other event occurs. [W3CSCXML14].
The most powerful concept in Harel statecharts is the notion of
				hierarchy where compound states may contain nested states. A compound
				state is a grouping of atomic or other compound states that represents
				shared behavior, thus avoiding redundancy and enabling overriding and
				specialization of transitions. Consider the following two equivalent
				statecharts: The second one has a compound state D consisting of two
				atomic states A and B. The transitions on event c in the first figure
				are abstracted into a single transition from the compound state D in the
				second figure. This clustering of two or more states in a new parent
				state seems trivial in this example but it is beneficial in large and
				complex systems. Compound states affect the way that transitions are
				selected. For example, assume that events d and c are the same in the
				second figure of the previous example. Here, the handling of Harel
				statechart differs from that of SCXML to avoid this no determinism. In
				Harel statecharts "the higher-level transition has priority over the
				internal transition" [HP98]. However, the SCXML
				prioritizes the lower-level transition since "the state machine first
				looks in the most deeply nested active state" [W3CSCXML14].
To illustrate this compound states concept, consider the following
				two semantically equivalent statecharts given in Examples 1 and 2. The
				second statechart has a compound state D consisting of two atomic states
				A and B.
Figure 4: Example 1
[image:]

 <state id="A">
 <transition event="c" target="C"/>
 <transition event="d" target="B"/>
 </state>
						
 <state id="B">
 <transition event="c" target="C"/>
 </state>
						
 <state id="C">
 <transition event="a" target="A"/>
 <transition event="b" target="B"/>
 </state>
					

Figure 5: Example 2
[image:]

 <state id="D">
 <state id="A">
 <transition event="d" target="B"/>
 </state>
 <state id="B"></state>
 <transition event="c" target="C"/>
 </state>
						
 <state id="C">
 <transition event="a" target="A"/>
 <transition event="b" target="B"/>
 </state>
					

A further powerful concept of Harel statecharts is parallelism. With
				parallel states a system's module can be decomposed into components.
				When this module becomes active, all of its components are activated and
				run simultaneously. Parallel states also describe orthogonality. They
				reduce the infamous state blowups of traditional state machines.
Graphically, parallel states are separated by dotted lines, als
				shown in Figure 6.
Figure 6: Example with parallel states
[image:]

 <scxml>
 <parallel id="Y">
 <state id="A" initial="B">
 <state id="B">
 <transition event="a" target="C"/>
 </state>	
 <state id="C">
 <transition event="b" target="B"/>
 </state>
 </state>
								
 <state id="D" initial="F">
 <state id="F">
 <transition event="a" target="E"/>
 <transition event="b" target="G"/>
 </state>	
 <state id="E">
 <transition event="a" target="G"/>
 </state>
 <state id="G">
 <transition event="b" target="F"/>
 </state>
 </state>
 </parallel>
 </scxml>
					

With this example, we conclude our introduction of the essential
				concepts of statecharts and SCXML.

GameX as a case study
As mentioned in the previous chapter, we demonstrate our approach to
				modeling the behavior of a complex reactive system with statecharts and
				SCXML by modeling the gameplay of GameX. Computer games provide a good
				case studies that involve interaction between the system and the
				environment.
The gameplay of GameX is driven by user events and a system clock
				for the rounds of the game. In this paper, we focus on modeling the
				behavior of one module of GameX with statecharts, namely the processing
				of user interface events. Our paper at Balisage 2014 [SKB14] describes how the user events are handled at an
				architectural and at a technical level. As a reminder, we give a short
				overview of GameX itself.

Gameplay overview of GameX
GameX provides players with a map of towns and fields. Players
				administrate their own towns and the surrounding fields to increase the
				growth rate of town population and the revenue that it generates.
				Players can construct different types of buildings in their towns such
				as industrial plants, schools, recreational buildings or environmental
				facilities. These buildings affect a number of parameters such as
				industrial value, satisfaction of the population and, ultimately, the
				revenue (gold) that a town generates. Players can communicate with and
				fight against each other, to form strategic coalitions or to conquer
				each other's towns, respectively. GameX challenges players to understand
				interdependencies and consequences of their actions, and thus developing
				their systemic thinking skills [SKB14].
At its core, the graphical user interface (GUI) of GameX consists of
				a two-dimensional partial view of the world that is divided into tiles.
				Users can select one of two views: The world map and the local map as
				shown in Figure 7 [SKB14].
Figure 7: World vs. local map
[image:]

When the player logs into the game after registration, the default
				settings are loaded. We call this state the initial state. In this
				state, a new player becomes the mayor of a new town, consequently
				administrating this town and the surrounding fields to increase the
				growth rate of the town's population and the revenue that it generates.
				Throughout the game the player can conquer other towns.
To better understand the concept of the game, it is useful to divide
				the parameters of the game into two categories. We distinguish between
				user related parameters and town specific parameters. The user related
				parameters are the amounts of gold, iron, wood and corn available. The
				town specific parameters are amount of troops, population and the set of
				parameters for measuring the progress, which are Industry, Environmental
				Impact, Knowledge, Satisfaction and Growth Rate.
An important town-specific constraint is that players can construct
				at most six buildings per town. While the number of buildings per town
				is limited, their sizes can be grown, though. There are twelve building
				types to choose from, each belonging to a category: industrial plants,
				schools, recreational buildings or environmental facilities. The
				numbers, sizes and types of these buildings determine parameters such as
				industrial value, satisfaction of population and, ultimately, revenue
				(gold) that a town will generate.
In addition to the above-mentioned properties of GameX, players have
				the possibility to communicate with and/or fight against each other, to
				form strategic coalitions or to conquer each other's towns. GameX
				challenges players to understand interdependencies and consequences of
				their actions, thus develops their systemic thinking skills.
The gameplay of GameX is organized into rounds. Rounds finish at
				discrete points in time, currently every two hours. At the end of each
				round, the values of the parameters for measuring progress are
				recalculated.
After this brief overview, we introduce a step-by-step modeling
				approach to create a statechart and SCXML-encoding for GameX.

Step-by-step modeling using SCXML
In the process of developing a SCXML model in terms of domain-driven
				design, we propose an approach that we call step-by-step modeling using
				statecharts.
			
Based on our experience of modeling GameX with SCXML, we have
				identified certain steps that one would follow to model any system with
				SCXML.
	Step 1
	Since software systems have many different views and aspects,
							it is vital to choose the aspect that should be modeled or in
							other words, to determine the focus of the model. Then, we need to
							decide which characteristics are important for the model and which
							ones can be left out (scope of the model).

	Step 2
	The next step is to document the system behavior in a clear
							way and keep this documentation updated until the model is
							completely done. In this step, we identify the system states and
							possible transitions and study the system until we get a detailed
							understanding of all states and transitions.

	Step 3
	It is highly recommended to create a Harel statechart for the
							system before developing the SCXML code. The state diagram
							provides a clear overview of the system states and transitions and
							the overall structure of the system. It may be complicated to
							create a statechart for complex systems which consider a lot of
							reactions and user inputs. Thus, it may be helpful to use
							hierarchical and parallel states, because compound states reduce
							the number of transitions and thus reduce the complexity of the
							model. The more compact the statechart diagram is, the less effort
							it will take to develop the SCXML code.

	Step 4
	After finalizing the statechart, it can be translated with
							SCXML.
Iteration:
We recommend to repeat steps 2 through 4 to add newly
							discovered states and/or transitions, or to document changes in
							the SCXML code.

	Step 5
	A final step would be to run the model with an SCXML engine.
						

The SCXML model of GameX
In this section, we discuss modeling the case study GameX using
				SCXML. We present our experience in each step of step-by-step modeling
				already explained in the previous section.
Step 1
We focus on the gameplay or the player's perspective of the GameX.
					Thus, the main characteristics we are concerned with, in terms of the
					model, are the ways the user interacts with the system. As result, we
					consider the GameX as a reactive system and thus all possible inputs
					and outputs must be identified. The inputs are typically player
					actions on the GUI. The outputs are pairs of the graphical changes and
					their corresponding changes in the system data. From an architectural
					perspective, we model the controller in a model-view-controller
					architecture.
Next, we determine the features that will be included in the model
					and those that will be left out. For example, we skip messaging module
					since it does not affect the gameplay or in other words, it is out of
					our focus. On the other hand, there are features that are included but
					considered as a black box such as map loading, tiles placing and
					assigning their coordinates, and game clock. They were not completely
					skipped since we will refer to them in the model. At the same time,
					they are not modeled in detail since its internal implementation is
					out of our scope. Finally, we model the parameter update process as a
					gray box. We model its inner structure, but without going into details
					and mathematical terms corresponding to each parameter update.
At the end of this stage, the developer has a good understanding
					about the aspects of the system that will be modeled and at which
					level of detail.

Step 2
After determining the model scope and focus, relevant parts of the
					system are fully documented. This documentation is based on all
					available resources of the system such as requirements, system design,
					user manual, implementation documents and the deployed system itself.
					Since GameX is already deployed and its documentation is not
					thoroughly descriptive, we build and write such documentation in
					detail based on the system's behavior. We run the game and tried many
					test cases so that we covered all actions and responses of the
					concerned features in the documentation.

Step 3
In this step, we build a statechart for the whole system. We
					reduce the system complexity by using parallel and compound states and
					exclude game features that cannot be modeled with SCXML. Here we will
					present modeling of a part of the GUI as an example. This module
					handles display of and navigation around the map and options of tile
					transformation. We call this module “screen”.
Figure 8: Naming buttons in the menu bars
[image:]

The UI of a player's town is shown in Figure 8. We name buttons in left
					and top menu bars by letters from A to I as shown in the figure.
					Clicking on these buttons correspond to transitions among system
					states.
Figure 9: The graphical user interface: local view
[image:]

The landscape view of GameX GUI is shown in Figure 9. We can
					summarize the following possible actions on this screen:
	Button B: displays a pop up window to choose between the
							parameter values, all buildings or the troops.
	Button C: navigates to the player's town center.
	Button D: changes to world map view.
	Button E: transforms the tile type to another type, if
							possible.
	Button F: no change of the state in this view.
	Button G: displays a pop up window to choose between the
							parameter values and the buildings sorted by type.
	Since they do actions out of the concerned scope, buttons A, H
							and I are not considered in our analysis.

Although there are two ways to navigate around the map using the
					compass or by clicking on tiles, we represent them as a single
					navigation event because it does not differ in the functionality.
					However, the player selects one of three types of tiles: either the
					town center of one of his towns, another players' town center, or a
					normal tile. We can model this by combining the event with a condition
					as follows:
	n.1 = navigate [normal tile]
	n.2 = navigate [tile is another towns‘ center]
	n.3 = navigate [tile is one of my towns‘ center]

In the world map view, the following actions are possible:
	Button B: displays a pop up window to choose between the
							parameter values, all buildings or the troops.
	Button C: no change of state in this view.
	Button D: no change of state in this view.
	Button E: leads us to manage build orders.
	Button F: switches back to landscape view and centers the screen
							on the tile that was last selected.
	Button G: displays a pop up window to choose between the
							parameter values and the buildings sorted by type.

GameX consists of various types of tiles. A tile can be the main
					building of a town or one of seven other types. The tile type
					determines the possible transformations which needs different amount
					of time and resources to be accomplished. Thus, we describe all
					options of the field transformation in the SCXML model. But to keep
					the general overview of the statechart diagram, we name the event of
					selecting an option from the tile transformation menu by transf_to_...
					and do not distinguish between them in the diagram.
The screen module of the GameX system is shown in Figure 10. It
					consists of the initial state, the state game_over, the state
					initialize, the landscape_map, the world_map, and the menu
					transform_field. We have modeled it according to Harel statechart
					notation.
Figure 10: Statechart representation of the "screen"
						module
[image:]

Step 4
Now, we transform the statechart into an SCXML model. First, we
					built the data model of the game based on the class diagram, as shown
					in Figure 11 [SKB14], and observations of the gameplay. The data model consists of
					three information blocks: player related, town related and map. The
					player related information includes the user name and the amount of
					gold, wood, iron and corn the player has. The town related information
					includes Id, their coordinates of main building, the number of troops
					and residents, a list of buildings and its level and parameter values
					(i.e., Industry, Entertainment, Knowledge, Pollution, and Growth). The
					map or tiles information includes the coordinates of each tile and its
					type of all tiles in the map. The map provides an overview of all
					contained objects, such as towns, tiles, armies and orders which can
					be divided into three classes: OrderTerraform converts a field to a
					different type. OrderSend sends troops from one place to another and
					OrderBuild gives an order to build with reference to a town not a
					player, so the building orders will persist after transfer [SKB14].
Figure 11: Class diagram for GameX
[image:]

The following code shows the SCXML data model of GameX where
					information blocks are nested in the <datamodel>
					tag and binding in initializes state. As a result, the transformation
					of statechart into the SCXML model is straightforward but we give an
					example of how to model conditions that refer to the data
					model.

<datamodel>
 <data id="towns"/>
 <data id="users"/>
 <data id="tiles"/>
</datamodel>

<state id="initialize">
 <onentry>

 <assign location="towns">
 <town tID="123456" mayor="me" coordinates="A5"
 current_town="yes">
 <troops number="0"/>
 <residents number="100"/>
 <parameter industry="0" pollution="0" amusement="2"
 knowledge="0" growth="0"/>
 <buildings number="0">
 <blacksmith level="0"/>
 <market level="0"/>
 <sawmill level="0"/>
 <inn level="0"/>
 <bathhouse level="0"/>
 <residence level="0"/>
 <park level="0"/>
 <sewerage level="0"/>
 <filter level="0"/>
 <library level="0"/>
 <townhall level="0"/>
 <laboratory level="0"/>
 </buildings>
 </town>
 <town tID="78910" mayor="notme" coordinates="B8"/>
 </assign>

 <assign location="users">
 <user name="me">
 <gold amount="100"/>
 <material amount="10"/>
 <iron amount="2"/>
 <corn amount="100"/>
 </user>
 <user name="others"/>
 </assign>

 <assign location="tiles">
 <tile name="mainBuilding" tileType="0" coordinates="B8"
 next_to_town="123456" locked="no"/>
 <tile name="grass" tileType="1" coordinates="C1"
 next_to_town="123456" locked="no"/>
 <tile name="mine" tileType="2" coordinates="C2"
 next_to_town="123456" locked="no"/>
 <tile name="cornfield" tileType="3" coordinates="C3"
 next_to_town="123456" locked="no"/>
 <tile name="woods" tileType="4" coordinates="C4"
 next_to_town="123456" locked="no"/>
 <tile name="woodcutter" tileType="5" coordinates="C5"
 next_to_town="123456" locked="no"/>
 <tile name="water" tileType="6" coordinates="C6"
 next_to_town="123456" locked="no"/>
 <tile name="fishery" tileType="7" coordinates="C7"
 next_to_town="123456" locked="no"/>
 <tile name="selected_Tile" tileType="0"
 coordinates="$towns/town[@mayor='me']/@coordinates"/>
 </assign>

 </onentry>
</state>

As an example, we concern the system module landscape_map of a
					town. In the
					beginning, the landscape map is displayed and centered in the main
					building of the player's town, The module starts with the state
						s0 and sends the information to the data element
					selected_tile. This occurs in the <onentry> tag and
					it assigns the coordinates and tile type. Also, there is no transition
					to other states, but rather they are the same for the sub-states of
					landscape_map and thus are denoted at the end of the state
					declaration. When the menu button E is clicked, the module moves to
					the state s_field and goes to
						transform_field. However, it moves to
						s_foreign but under the condition that the selected
					tile is the main building of the town and the player is not the mayor
					of this town and has troops.

<state id="landscape_map" initial="s0">
 <history type="shallow" id="history_landscape">
 <transition target="s0"/>
 </history>
 <state id="s0">
 <onentry>
 <assign location="$tiles/selected_tile/@coordinates"
 expr="$towns/town[@mayor='me']/@coordinates"/>
 <assign location="$tiles/selected_tile/@tileType"
 expr='0'/>
 </onentry>
 </state>
 <state id="s_field">
 <transition event="E" target="transform_field"/>
 </state>
 <state id="s_foreign">
 <transition event="E" cond="$tiles/selected_tile[@tileType] = '0'
 and $towns/town[@coordinates=
 '$tiles/selected_tile[@coordinates]']/@mayor !='me'
 and $towns/town[@current_town='yes']/troops/@number >= 1"
 target="Tab_Troops"/>
 </state>
 <transition event="navigate"
 cond="$tiles/selected_tile/@tileType >= '1'"
 target="s_field"/>
 <transition event="navigate"
 cond="$tiles/selected_tile/@tileType = '0'
 and $towns/town[@coordinates=
 '$tiles/selected_tile/@coordinates']/@mayor='me'"
 target="s0"/>
 <transition event="navigate"
 cond="$tiles/selected_tile/@tileType = '0'
 and $towns/town[@coordinates=
 '$tiles/selected_tile/@coordinates']/@mayor !='me'"
 target="s_foreign"/>
 <transition event="D" target="world_map"/>
</state>

In the navigation transitions, the player can navigate to another
					tile on the map (i.e., any of those states). This can be done through
					compass or clicking on the tile, which are indistinguishable in the
					system model. Since we focus on modeling how navigation changes the
					system states and behavior, assigning values to
						“tileType” and coordinates and centering the screen in
					the selected tile are considered as a block box. However, we
					distinguish between three target states for this state transition
					based on the type of target tile. The user can navigate to a normal
					tile, or a tile which hosts a town' main building, but the reaction is
					different if the user is the mayor of this town or not. We represent
					this conditional transitions as follows:
					
<transition event="navigate"
 cond="$tiles/selected_tile/@tileType >= '1'" target="s_field"/>
<transition event="navigate"
 cond="$tiles/selected_tile/@tileType = '0' and
 $towns/town[@coordinates=
 '$tiles/selected_tile/@coordinates']/@mayor='me'"
 target="s0"/>
<transition event="navigate"
 cond="$tiles/selected_tile/@tileType = '0' and
 $towns/town[@coordinates=
 '$tiles/selected_tile/@coordinates']/@mayor !='me'"
 target="s_foreign"/>
					

				
Next, we refer to the data model to check the tile type and if the
					user is the mayor of the town whose main building is currently
					selected. At the end, the player can navigate to the world_map view by
					clicking button D. To model actions triggered from transitions, we
					consider this event of building a black smith.
					
<state id="display_buildings">
 <transition event="build_blacksmith"
 cond="$towns/town[@current_town='yes']/buildings/@number <= 6
 and $tiles/tile/[@tileType = '2']/@next_to_town =
 '$towns/town[@current_town='yes']/@tID'
 and $users/user[@name='me']/gold >= '20'"
 target="display_buildings">

 <send event="start_clock_building"/>
 <assign location="$users/user[@name='me']/gold"
 expr="'$users/user[@name='me']/gold'-20" />
 </transition>
</state>

				
This transition is only executed if the condition holds (e.g.
					amount of gold is more than 20 and number of buildings are less or
					equal 6). If so, then the event start_clock_building is
					triggered and the amount of gold is reduced. In SCXML, this is modeled
					with the <send> and <assign>
					tags within the <transition> markup.
During this step, we iterated over steps 2 through 4 to add newly
					discovered states and/or transitions in the model.

Step 5
The final step in system modeling with SCXML is to run the model
					with an SCXML engine. Then a set of use cases is selected to verify
					that the system model depicts the observed system behavior. However,
					the SCXML is a fairly new technology and there are only few engines
					that allow us to run SCXML code.
Another indirect way to verify the SCXML model is to implement it
					in oXygen[1] and construct a statechart by considering only the SCXML
					code. A comparison between this statechart and the statechart
					constructed in Step 3 of this process will verify the model's
					correctness.

Recommendation
Since we model an already deployed system,
							we found that constructing statechart model will facilitate
							identifying parts that are designed inefficiently, such as
							duplicated data elements or states. Therefore, it is recommended
							that a statechart or SCXML model is developed during the design
							phase of the system. These models will help later in the
							verification phase by running use cases on the model and the
							implemented system and compare results.

Conclusion and future work
Using State Chart XML as a modeling technique in Web engineering is
			recommended to work with complex models during the software development
			process. Also, modeling already deployed systems provides deeper
			understanding about their behavior.
In this Paper, we proposed a step-by-step modeling approach to create
			a SCXML for GameX, as a case study.
The goal is that all stakeholders working within complex software
			projects would be involved in the development process. Indeed, they are
			involved in different degrees but with a common goal to have collaboration
			among all domain and software experts.
Based on our research, it's a good general practice to construct a
			statechart or, even better, a SCXML model of a system in the beginning
			phase of its development cycle, as well as after the system is deployed.
			Furthermore, the system behavior could be observed and used in the
			reification process to extend the model. Both approaches, modeling a
			system before and after, can be used for verification by running the
			current system and comparing the result.
However, the SCXML is a fairly new technology, which comes with some
			challenges when using it. For example, there is only few professional
			development environments that allow building and running such models.
			There is an extension for oXygen that supports editing SCXML documents
			with a processor that runs the model for completeness and consistency
			would facilitate the usage of SCXML models. We plan to investigate other
			SCXML tools in future work.

Bibliography
[B89] Gérard Berry. Real time
				programming: Special purpose or general purpose languages.
			[Research Report] RR-1065, 1989.
[BCG88] Gérard Berry; Philippe
			Couronné; Georges Gonthier. Synchronous programming of reactive
				systems: an introduction to ESTEREL. Proceedings of the first
			Franco-Japanese Symposium on Programming of future generation computers.
				Elsevier Science Publishers B. V. Amsterdam, The Netherlands,
				The Netherlands ©1988.
[BDPT10] Anne Brüggemann-Klein; Tamer
			Demirel; Dennis Pagano; Andreas Tai. Reverse Modeling for
				Domain-Driven Engineering of Publishing Technology. Balisage:
			The Markup Conference 2010. Available from 					http://www.balisage.net/Proceedings/vol5/html/Bruggemann-Klein01/BalisageVol5-Bruggemann-Klein01.html.
				doi:https://doi.org/10.4242/BalisageVol5.Bruggemann-Klein01.
[BRS12] Anne Brüggemann-Klein; Jose
			Tomas Robles Hahn; Marouane Sayih. Leveraging XML Technology for
				Web Applications. Balisage: The Markup Conference 2012.
				Available from 					http://www.balisage.net/Proceedings/vol8/html/Bruggemann-Klein01/BalisageVol8-Bruggemann-Klein01.html.
				doi:https://doi.org/10.4242/BalisageVol8.Bruggemann-Klein01.
[BS08] Anne Brüggemann-Klein; Lorenz
			Singer. Hypertext Links and Relationships in XML
				Databases. Balisage: The Markup Conference 2008.
				Available from 				http://www.balisage.net/Proceedings/vol1/html/Bruggemann-Klein01/BalisageVol1-Bruggemann-Klein01.html.
				doi:https://doi.org/10.4242/BalisageVol1.Bruggemann-Klein01.
[BST07] Anne Brüggemann-Klein; Thomas
			Schöpf; Karlheinz Toni. Principles, Patterns and Procedures of
				XML Schema Design — Reporting from the XBlog Project.
			Proceedings of Extreme Markup Languages (2007). Available from 					http://conferences.idealliance.org/extreme/html/2007/BruggemannKlein01/EML2007BruggemannKlein01.html.
[BW04] Anne Brüggemann-Klein, Derick
			Wood. Balanced Context-Free Grammars, Hedge Grammars and
				Pushdown Caterpillar Automata. Proceedings of Extreme Markup
			Languages (2004). Available from 					http://conferences.idealliance.org/extreme/html/2004/Bruggemann-klein01/EML2004Bruggemann-Klein01.xml.
[C14] Zlatina Cheva.
				Statecharts for Modeling XML-Applications. Master
			Thesis, TU München, 2014.
[D14] Lyuben Dimitrov.
				Exploring XML Technology for Model-based User
				Interfaces. Master Thesis, TU München, 2014.
[E04] Eric Evans.
				Domain-Driven Design: Tackling Complexity in the Heart of
				Software. Addison-Wesley, 2004.
[F11] Martin Fowler.
				Domain-Specific Languages. Addison-Wesley,
			2011.
[G05] Giancarlo Guizzardi.
				Ontological Foundations for Structural Conceptual
				Models. Dissertation University of Twente, 2005.
[GW08] Giancarlo Guizzardi; Gerd
			Wagner. What's in a Relationship: An Ontological
				Analysis. 27th International Conference on Conceptual
			Modeling Barcelona, Spain (2008). Available from 					http://www.inf.ufes.br/~gguizzardi/ER2008-CR-GuizzardiWagner.pdf. doi:https://doi.org/10.1007/978-3-540-87877-3_8.
[H93] Nicolas Halbwachs.
				Synchronous programming of reactive systems. Kluwer
			Academic Pub., 1993. doi:https://doi.org/10.1007/BFb0028726.
[HP98] David Harel; Michal Politi.
				Modeling Reactive Systems with Statecharts: The STATEMATE
				Approach. McGraw-Hill, 1998.
[K14] Martin Kuhn.
				Lerning Systemic Thinking: Design and Implementation of a
				Browser Game based on XML Technology. Master Thesis, TU
			München, 2014.
[MZD08] Christine Mayr; Uwe Zdun;
			Schahram Dustdar. Reusable Architectural Decision Model for
				Model and Metadata Repositories. 7th International Symposium,
			FMCO 2008, Sophia Antipolis, France, October 21-23, 2008, Revised Lectures
			2009, Springer Berlin, Heidelberg. doi:https://doi.org/10.1007/978-3-642-04167-9_1.
[PB09] Dennis Pagano; Anne
			Brüggemann-Klein. Engineering Document Applications — From UML
				Models to XML Schemas. Balisage: The Markup Conference 2009.
				Available from 					http://www.balisage.net/Proceedings/vol3/html/Bruggemann-Klein01/BalisageVol3-Bruggemann-Klein01.html.
				doi:https://doi.org/10.4242/BalisageVol3.Bruggemann-Klein01.
[RBBG06] Erkuden Rios; Teodora
			Bozheva; Aitor Bediaga; Nathalie Guilloreau. MDD Maturity Model:
				A Roadmap for Introducing Model-Driven Development.
			Proceeding: ECMDA-FA'06 Proceedings of the Second European conference on
			Model Driven Architecture: Foundations and Applications 2006,
			Springer-Verlag Berlin, Heidelberg. doi:https://doi.org/10.1007/11787044_7.
[SCXML14] Commons SCXML.
				Available from
					http://commons.apache.org/proper/commons-scxml/,
			 2014.
[SKB14] Marouane Sayih; Martin Kuhn;
			Anne Brüggemann-Klein. GameX — Event-Based Programming with XML
				Technology. Balisage: The Markup Conference 2014.
				Available from 					http://www.balisage.net/Proceedings/vol13/html/Bruggemann-Klein01/BalisageVol13-Bruggemann-Klein01.html.
				doi:https://doi.org/10.4242/BalisageVol13.Bruggemann-Klein01.
[W3CSCXML14] W3C - State Machine
			Notation for Control Abstraction. Available from
					http://www.w3.org/TR/scxml.

[1] oXygen is an XML editor available from
								http://www.oxygenxml.com

Balisage: The Markup Conference

Statecharts and State Chart XML as a Modeling Technique in Web
		Engineering
Anne Brüggemann-Klein
Technische Universität München

Marouane Sayih
Technische Universität München

Zlatina Keskivov
Technische Universität München

Balisage: The Markup Conference

content/images/Sayih01-001.png
(Domain Model |

Domain

Vocabulary = - = interact with the Environment

content/images/Sayih01-011.png
Gameserver

XMLGameData -servers |-description : String N -users
< ; -maps : Map
1 —user.s : User User 1
-settings
-name
1 1
-gold
-material
- ¥ -maps .
«enumeration» -landlord -iron
TileType -corn
+Forest Map
+Field -description : Single
+Industry -tiles : Tile
-pl *
+Mud -orders : Order payers
+Mine -players : User
+Water -towns : Town * -orders
Order
- tiles -readyln : Date
«enumeration» _totoalTime : Date
BuildingType Til
ile
+forge
+market -x : Integer A A
+sawmill -y : Integer
+pub -type : TileType
+bath . OrderTerraform
+h
N ::Jkse -landlord : User
+Eewer -tiles * M -tile : Tile
+filter Town -tileType : TileType
+library -x : Integer 1
+townhall -y : Integer 1
+lab -tiles : Tile 1
-buildings : Building
-troops OrderSend
-unit : Unit
’ . -landlord : User
1 1 -townl: Town
-town2 : Town
* -buildings * -troops
Building Unit * OrderBuild
E3
-level : Integer -count : Integer -town : Town
-type : BuildingType -type -building : BuildingType
-level : Integer

content/images/Sayih01-003.png

content/images/Sayih01-002.png
vocabulary

State Chart
XML

UML Class-
Diagram

functionality

content/images/Sayih01-010.png
screen

game_over

& |

new_user

initialize

old_user [doesn‘t have a town]

landscape_map

n.l
s_field
:I

transf_to

v

Dl F navigate

[world_map |<2—| transform_field

content/images/Sayih01-009.png

content/images/Sayih01-008.png

content/images/Sayih01-005.png

content/images/Sayih01-004.png

content/images/Sayih01-007.png
World Map Local Map

content/images/Sayih01-006.png

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

