[image: Balisage logo]Balisage: The Markup Conference

XSDGuide – Automated Generation of Web Interfaces from XML Schemas: A Case Study for
 Suspicious Activity Reporting
Fabrizio Gotti
Researcher
RALI, Université de
 Montréal

<gottif@iro.umontreal.ca>

Kevin Heffner
CEO
Pegasus Research &
 Technologies

Guy Lapalme
Professor
RALI, Université de
 Montréal

<lapalme@iro.umontreal.ca>

Balisage: The Markup Conference 2015
August 11 - 14, 2015

Copyright © 2015 by the authors. Used with permission.

How to cite this paper
Gotti, Fabrizio, Kevin Heffner and Guy Lapalme. "XSDGuide – Automated Generation of Web Interfaces from XML Schemas: A Case Study for
 Suspicious Activity Reporting." Presented at: Balisage: The Markup Conference 2015, Washington, DC, August 11 - 14, 2015. In Proceedings of Balisage: The Markup Conference 2015.
 Balisage Series on Markup Technologies vol. 15 (2015). https://doi.org/10.4242/BalisageVol15.Gotti01.

Abstract
This article presents XSDGuide, a
 software prototype aimed at facilitating the creation of user interfaces consistent
 with a data model expressed as a set of XML schemas. XSDGuide was developed while
 researching intelligent user interfaces for data entry associated with the
 production of Suspicious Activity Reports (SARs) conforming to NIEM-SAR, an
 XML-based information-dissemination framework. These SARs communicate potentially
 suspicious or unlawful incidents to the appropriate authorities. The XSD schemas
 defining a specific SAR are fed to XSDGuide, which then automatically creates user
 interface guides, rendered on a web page. The user can interact with this
 application to populate the report’s fields, validate the SAR being created and save
 the report as a valid XML instance. Validation is a two-step process, where a
 JavaScript ruleset created from the schema pre-validates the document in the browser
 before it is sent for full validation to the back end, which relies on a traditional
 full-fledged validator. Despite the prototype’s limitations, the HTML interfaces
 that are generated allow users to inspect and become familiar with complex schemas
 and also to produce validated XML instance documents for the purposes of
 experimentation and testing.

Balisage: The Markup Conference

 XSDGuide – Automated Generation of Web Interfaces from XML Schemas: A Case Study for
 Suspicious Activity Reporting

 Table of Contents

 	Title Page

 	Introduction and Context

 	NIEM-SAR and Suspicious Activity Reporting
 	Information Exchange Package Documentation and XML Schemas

 	The Case for an Enhanced User Interface

 	XSDGuide’s General Architecture

 	HTML Rendering and Data Entry
 	Application Architecture

 	Implementation Details

 	Interface Guides
 	General Principle

 	Element Nesting

 	Element Documentation

 	Number of Occurrences

 	Enumerations

 	Data Entry Widgets

 	xs:choice and Substitution Groups

 	XML Validation
 	Validation Carried out by the Front End, in the User’s Browser

 	Validation Carried out by the Back End, XSDGuide’s Java Engine

 	Saving the Suspicious Activity Report

 	Schema Management

 	Current Limits and Perspectives
 	XSD Rules to Implement

 	Additional Features
 	SAR Loading

 	Validation Feedback

 	Other Schemas

 	Conclusion

 	About the Authors

 XSDGuide – Automated Generation of Web Interfaces from XML Schemas: A Case Study for
 Suspicious Activity Reporting

Introduction and Context
Suspicious activity reporting refers to the process by which
 members of the law enforcement and public safety communities as well as members of the
 general population communicate potentially suspicious or unlawful incidents to the
 appropriate authorities. This reporting has been identified as one part of a broader
 Information Sharing Environment (ISE) as defined by [1]. The ISE
 establishes a framework to support reporting, tracking, processing, storage and
 retrieval of terrorism-related suspicious activity reports (SARs). The ISE initiative
 builds upon the foundational work by the US Departments of Justice and Homeland Security
 that have collaborated to create the National Information Exchange Model (NIEM), which
 has received approval from the governments of the US [2] and of
 Canada [5].
SAR is one of a set of messages that is supported by the NIEM. In particular, the NIEM
 has developed a specific model for suspicious activity reporting, the NIEM-SAR [3]. Preliminary NIEM-SAR prototypes have shown great promise for
 information sharing for a broad range of activities, but several areas requiring
 improvement were noted in December 2011[1]. In particular, faster response times are needed to get information into the
 system, to process the information and to make it available to users. It is noteworthy
 that SAR capabilities already are functional in an operational capacity in the US in
 some local jurisdictions. However these systems lack the ability to process information
 automatically and therefore require significant manual intervention in data centers. The
 current work proposes the use of adaptive user interfaces as a potential means for
 reducing the workload related to producing and processing SAR data.
The main functionality of the XSDGuide prototype presented in this paper is to assist
 the user in the creation of valid suspicious activity reports (SARs) compliant with the
 NIEM-SAR framework. In so doing, it allows the user to become familiar with the business
 rules in a manner that is more efficient than browsing the XSD documents.
The design and implementation presented here do not make any assumptions about who the
 user is, although they fall into two broad categories. The first category includes users
 registered with an agency and who have known skills, proficiency and expertise. They
 have specific access and privileges according to the role that they play in their
 organization, e.g. a police officer, an airport security agent. The second category
 consists of users not registered with an agency and who may or may not have Public
 Safety and Security domain-specific knowledge or skills. It is assumed that the
 generalized case for an unauthorized user is that it is someone from the general
 public.
In the following sections, first the NIEM-SAR framework is described, including the
 implementation constraints faced by a SAR authoring tool. Then the general architecture
 of the prototype is presented as well as the various interface guides that are created
 based on the input XSD schemas. Afterward, the XML validation and file saving steps are
 described. Finally, the last section describes XSDGuide’s limitations and suggests
 perspectives for future work.

NIEM-SAR and Suspicious Activity Reporting
Information Exchange Package Documentation and XML Schemas
Using the NIEM-SAR framework involves creating and using an IEPD (Information
 Exchange Package Documentation). An IEPD is designed to transmit informational needs
 for a given domain, and is typically created by experts of this field. Their task is
 to build a data model describing the environment in which suspicious activity
 reporting occurs. Dedicated software tools are used to create IEPDs, for instance
 Cameo Enterprise Architecture with the NIEM plugin[2].
The IEPD is a zip archive containing XSD schemas capturing the data model, as well
 as extensive documentation. Instances of these schemas are the actual suspicious
 activity reports (SARs).
Only a few NIEM-SARs are freely available on the web. Here are some
 examples:
	“Suspicious Activity Reporting (SAR) for Local and State Entities IEPD
 v1.1.1” from the Bureau of Justice Assistance (BJA).[3]

	“ISE-FS-200-version-1.5 Suspicious Activity Reporting (SAR)” [4]

	“Suspicious Activity Report” from the “Texas Department of Public Safety,
 Crime Records Service” [5]

They are quite complex, both because of the large number of types they define and
 because the SARs they propose are quite intricate. To give an idea of the
 elaborateness of this architecture, the IEPD “ISE-FS-200-version-1.5 Suspicious
 Activity Reporting (SAR)” mentioned above contains 74 XSD files defining 196 simple
 types and 658 complex types. IEPDs make heavy use of inheritance (with abstract
 classes) and substitution groups. The package is organized so as to include numerous
 libraries from the NIEM core types, from which these customized classes are derived
 or augmented.
Reconciling the need to comply to such a standard with the need for timely
 creation of SARs is quite delicate.

The Case for an Enhanced User Interface
The creation of XML instances meeting the constraints expressed in XML schemas is
 not a new problem. Existing solutions go from the very simple text editor to the
 dedicated IDE.
Over the last few years, the Eclipse IDE[6] has developed extensive tools to manipulate XML, including the creation
 of XML instances validated by schemas. XML editors like Oxygen[7] are extremely helpful in guiding the creation of XML instances (like
 SARs). Oxygen notably offers context-dependent autocomplete suggestions,
 documentation and live validation of the document. The latter is an excellent
 solution for IT specialists, but becomes quite difficult for the average person.
 Oxygen does offer an MS-Word-like author mode that works very well for a set of
 recognized schemas (such as Docbook), but reverts to tag-based editing when a
 document associated with an arbitrary schema is created.

XSDGuide’s General Architecture
The general principle behind the prototype XSDGuide is shown in Figure 1.
Figure 1: XSDGuide’s general architecture. The back end is XSDGuide’s Java server
 and the front end (HTML rendering) appears in the user’s browser.
[image:]

An XML schema (XSD format) is first selected by the user who wants to create a
 suspicious activity report conforming to that schema[8]. As mentioned in the introduction, these schemas are rarely standalone and,
 for instance, in the NIEM ecosystem they usually come packaged as IEPDs. These IEPDs are
 zip archives that contain, among other documents, the SAR schema as well as any
 necessary XSD schemas imported through import or include
 statements. These imported documents are the required libraries on which the SAR schemas
 are built, and act somewhat as an SDK. As long as the XSD imported schemas can be found
 using the specified absolute or relative URLs, XSDGuide can readily manage such an
 archive.
Once the schemas are read, two additional inputs are needed: The user is prompted to
 specify which one of the schemas contain the root element, and what this element is
 within the file. XSDGuide uses the schemas provided to build three components (middle of
 Figure 1).
User interface guides are created for elements defined in the
 schemas. These guides are at the heart of the prototype. Each one holds all the
 information required to create a user-friendly UI element. They mostly correspond to
 information for a given element (XML schema base type, cardinality, etc.) but not
 always. For instance, an <xsd:choice> corresponds to a UI guide
 allowing the user to pick one of the elements proposed by the choice. Importantly, the
 guides maintain information about their child guides too. This hierarchical organization
 mirrors that of the XML schema. It is noteworthy that these guides are independent of
 the rendering medium. They are abstract in their nature, and could be rendered in, say,
 a standalone application or a web page. Their HTML rendering is described in Section
 section “HTML Rendering and Data Entry”.
An XML document can be created on demand whenever the user needs
 the prototype to create an actual instance document (a SAR in our case), driven by the
 schema provided earlier. Each element of the document is tied to the specific user
 interface guide (see previous paragraph) that facilitated its creation. Ultimately, the
 user interacts with the rendered UI guide in order to inject values into the
 corresponding XML element.
A validator built on Java’s XML validation library is also
 constructed from the schema(s) provided. This is the most straightforward use of such a
 schema, and it allows the prototype to validate the SAR being built by the user.
 Validation messages are presented to the user, in order to elicit an appropriate
 response.

HTML Rendering and Data Entry
XSDGuide strives to facilitate the creation of suspicious activity reports (SARs). To
 achieve this, the various UI guides created from the underlying XML schema(s) must be
 rendered in a user-friendly way, while at the same time
 enforcing the various constraints expressed in the schema.
It is important to note that our library is not tied to any specific rendering of the
 interface guides. Indeed, one of XSDGuide’s design principles was to create a Java
 library that would handle most of the processing associated with the tasks at hand. The
 user-visible part could then either be materialized as a standalone, Swing-like
 application or, as we did here, as a web application.
We opted for the latter solution, because we felt that an HTML rendering lent itself
 naturally to the representation of nested elements (the XML nodes). Since there were
 also time constraints to the coding of the application, HTML provided a way to
 fast-track the development of an aesthetically pleasing GUI. A web application has other
 advantages, including portability, across all operating systems and most hardware,
 including smart phones. This portability is typically difficult to achieve using the
 usual GUI SDKs, including Swing. Moreover, the majority of users are already familiar
 with web applications (e.g. Gmail, Facebook, etc.).
The main drawback of this approach is the necessary separation of the implementation
 logic between server-side and client-slide elements, as well as the additional
 networking component between the two.
Figure 2 shows the complete web interface created by
 XSDGuide from a single XML schema file (SAR-RALI.xsd, see code below for an
 excerpt). We created this schema for illustration purposes in this article. It is a
 simplified schema allowing the creation of basic SARs, while preserving the general
 philosophy and terminology of the SAR schemas found in IEPDs. It is worth noting that
 XSDGuide can fully process the latter IEPDs.
The same interface adapts itself to smartphone screens, as seen Figure 3.
Its navigation bar features the following menus.

 	New report: Creates a new SAR based on the XSD schema selected (as well as
 on the specified root element).

	Schema manager: Allows the user to upload new XSD schema or XSD schema
 archive (.zip) to the application. See Section section “Schema Management”.

	Switch to simple view: Toggles between simple and advanced views.

	Validate XML: Servers to validate the SAR being created. See Section section “XML Validation”.

	Save to XML: Saves the SAR as an XML file. See Section section “Saving the Suspicious Activity Report”.

 More rendering examples are available on our website[9].

 <!-- Excerpt of schema SAR-RALI.xsd used as the running example here. Two complex elements are listed. -->

 <xs:element name="SuspiciousActivityReport">
 <xs:annotation>
 <xs:documentation>A structure that describes a SAR Report </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sarrali:Metadata" />
 <xs:element ref="sarrali:Data"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:element name="Metadata">
 <xs:annotation>
 <xs:documentation>A structure that describes Metadata about a related SAR</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="sarrali:UniqueId"/>
 <xs:element ref="sarrali:Title"/>
 <xs:element ref="sarrali:SubmissionSystem"/>
 <xs:element ref="sarrali:Author"/>
 <xs:element ref="sarrali:CreationDateTime"/>
 <xs:element name="DisseminationCriteria" type="sarrali:DisseminationCriteriaType"/>
 <xs:element ref="sarrali:RelatedSarList" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

Figure 2: Screenshot of XSDGuide’s interface on a desktop computer after
 generating the interface for the schema SAR-RALI.xsd (see listing
 above).
[image:]

Figure 3: Screenshot of XSDGuide’s interface on a smartphone.
[image:]

Application Architecture
Figure 1 shows the general client-server
 architecture implemented by XSDGuide. The back end implements most of the
 XML-related logic, including the creation of the XML document, the management of
 schemas and the exploration of their constraints. These features are made possible
 by Java libraries from the Apache Xerces™ Project[10]. The back end also includes a lightweight web server (implemented with
 Apache Jetty) responding to queries made from the front end, written in JavaScript
 and leveraging the popular frameworks JQuery[11] and Bootstrap[12].

Implementation Details
For this project, even if we are writing a web application, we opted to implement
 most of the logic within the Java backend. This means that most of the models for
 the XML document and the corresponding schemas are maintained there, and that the
 HTML rendering is carried out in the backend. This is consistent with the fact that
 we wanted to be able to render the UI guides within the Java library we created,
 instead of relying too heavily on the client-side JavaScript to carry out this task.
 Moreover, we wanted this rendering step to be as “close” as possible to the Java
 models and validators to simplify the design.
The interaction steps involved when creating a new document can further explain
 XSDGuide:
	The user visits the page and the Jetty server produces an interface
 essentially made out of static elements. HTML elements are laid out with
 Bootstrap, which simplifies the creation of the UI, and provides an elegant
 responsive interface (e.g. for smartphones).

	 When the user clicks “New report”, JQuery is used to create an AJAX
 request to the backend to create a new element. The request specifies the
 name of the XSD file stored in the backend (e.g. SAR-RALI.xsd)
 and the root element of the XML document (e.g.
 http://rali.iro.umontreal.ca/sarrali:SuspiciousActivityReport).

	The server parses the corresponding schema, and creates a new XML document
 in memory. This is done using the Apache Xerces API and the
 javax.xml package, which both play key roles in this
 project. The server then returns the id of the new document, as well as the
 id of the newly created root element.

	 The JavaScript client asks for the HTML rendering of the elements it
 wants to display (here, the root element as well as any non-optional child
 elements).

	The server replies with a snippet of HTML for each element. This snippet
 includes the rendering of the associated interface guide (see following
 section), as well as additional information on the possible child elements
 and attributes. The JavaScript library is responsible for parsing and
 positioning this code snippet within the HTML document. It also adds event
 listeners to the guide in order to validate the data the user enters into
 the newly created controls.

The backend offers a few simple services, called with AJAX from the user’s
 browser. These include the standard CRUD operations on an element, as well as the
 validation operation on the document. The validation process is described in Section
 section “XML Validation”.
When implementing the HTML form elements needed by the prototype, we briefly
 considered using XForms[13], which provides sophisticated form markup to gather, validate and
 process XML data within web pages (among other document types). However, to our
 knowledge, none of the popular web browser supports XForms natively, and the W3C
 recommendation seems to have been eclipsed in part by HTML5 controls. The latter
 were also investigated and, while they provide valuable support for the validation
 of some constraints, they cannot implement some of the simplest XSD rules. For
 instance, an HTML5 input control with a type of “number” cannot constrain the number
 of digits after the decimal point (fractionDigits in XSD). For these
 reasons, and simply because we wanted to retain full control over this
 implementation, we used traditional web forms augmented with JavaScript
 controls.

Interface Guides
This section explains how XSDGuide transforms XSD-defined constraints into usable UI
 guides for the end user. The rendering of these constraints is a—sometimes
 difficult—compromise between enforcement of the constraint expressed in the schema and
 the need for an accessible user interface.
General Principle
The general principle of the UI guides is to establish a mapping between an
 element or attribute type (whether it be named or anonymous) and a specific UI
 widget or widget group. For instance, if an element type is derived (either directly
 or not) from the base type xs:string, then it makes sense to render it
 as text field in HTML. Furthermore, if additional constraints (e.g. a regular
 expression pattern) control the content of the element, it is desirable that these
 constraints be present when the user fills out the fields so as to provide valid
 information as early as possible in the SAR authoring process.

Element Nesting
Element nesting (e.g. a complex type containing sub-elements) is presented as a
 set of nested html elements, so that the user understands the compositionality of
 the complex elements. For instance, in Figure 2, a
 SuspiciousActivityReport root element is composed of an element
 Metadata, clearly visible as a nested box inside the element
 SuspiciousActivityReport. The element Metadata also
 contains sub-elements. The simple-typed sub-elements (e.g. UniqueId)
 appear as simple text fields inside Metadata, while complex ones (e.g.
 SubmissionSystem) is a sub-box.
To allow the user to customize this nested view, a triangle icon to the right of a
 complex element’s name hides or shows the child elements.

Element Documentation
Element documentation included in xs:documentation schema elements are presented
 to the user either as text (under the element heading) or as tooltips when hovering
 over fields corresponding to element information. When collecting
 xs:documentation, we traverse the complete type hierarchy for a
 given element to gather as much documentation as possible, from the base class down
 to the current element. Additional help is provided by the prototype itself, for
 instance when an xs:choice is encountered, in order to help the user
 make sense of the choice that is presented to them (see Section section “xs:choice and Substitution Groups”).

Number of Occurrences
XML schemas specify the number of occurrences of attributes and elements, through
 different types of rules. Examples of this are xs:sequence rules, where
 each child element can appear from 0 to any number of times. By default, the minimal
 number of occurrences and the maximum number of occurrences is set at 1. They can
 often be overridden using minOccurs and maxOccurs
 attributes.
These limits are not all explicitly stated to the user. For instance, when a new
 element is created, all elements whose minimal number of occurrence is greater or
 equal to n are also created n times. In Figure 2, for
 instance, the creation of the SuspiciousActivityReport causes the
 creation of one Metadata element and one Data element. The
 Metadata element is also populated likewise recursively.
When the schema allows the user to pick the number of elements, the user can click
 on links like the one labeled “Add new RelatedSarList (optional)” in Figure 2. The element is then dynamically added to the
 current report (and possibly populated with mandatory sub-elements). If the user
 tries to add more elements than allowed by the schema, a warning appears.
The user can also delete unwanted elements by clicking a “Trash” visible when the
 user hovers over an element. The latter is then removed dynamically from the report.
 The user cannot remove more elements than the schema allows.
The Java back end naturally mirrors the changes made in the web page, by creating
 and deleting elements in its in-memory representation of the SAR.
The same is true of attributes whose presence or absence can be customized (in
 this case, the occurrence count is either 0 or 1).

Enumerations
In suspicious activity reports, there are numerous places in the schema where
 experts in safety and security have elaborated exhaustive lists pertaining to the
 description of entities. For example, there are 26 possible colors of gun finishes
 defined by NIEM-SAR. It is critical that such enumeration be presented in a
 user-friendly way. The current implementation translates enumerations into simple
 dropdown lists. A tooltip presents the documentation for each element of the
 enumeration, when it is available.

Data Entry Widgets
One way of minimizing the risk of entering invalid data in a SAR is to provide
 widgets and UI cues guiding the input of valid values in fields. These widgets can
 also alert the user when a value is incorrect as soon as a field loses focus.
We put a lot of effort in detecting the base type for most simple elements in
 order to implement these UI guides. For instance, a field based on an
 xs:id type will alert the user when the id provided is not unique
 in the document. Figure 4 shows some UI guides for some of the
 primitive types referenced by an XML schema.
Figure 4: Examples of UI cues and widgets for types xs:id (top), xs:dateTime
 (middle) and xs:string with regular expression pattern (bottom).
[image:]

xs:choice and Substitution Groups
xs:choice rules and substitution groups are schema constraints that
 differ in nature but are rendered similarly in the user interface. This is an
 interesting instance where the potential complexity of the schemas is hidden from
 the user, who sees two different constraint types expressed in the same way: a
 simple logical disjunction (an or).
A choice model group (xs:choice) is used within a complex type to
 specify a set of element types from which a single element can be selected. A
 substitution group consists of a set of element types. When an element type
 associates itself with a substitution group (by specifying a
 substitutionGroup attribute), it is a valid substitution for the
 referenced element type.

 Figure 5 shows the listing (top) defining the type
 LengthType for our schema. This type includes an
 xs:choice alternation. The figure shows the interactions the user
 can have with the control derived from this type. The user can either specify the
 height of an individual as a MeasurePointValue (a single value) or as a
 MeasureRangeValue (a range).
Figure 5: Figure showing the UI guide for a type xs:choice whose listing is
 shown in the top frame. (a) The initial display of the control. (b) The user
 specifies a 6 foot height. (c) The user changes his mind, switches from
 MeasurePointValue to MeasureRangeValue and specifies a 6-to-7 foot
 height.
[image:]

XML Validation
XML Validation ensures that the suspicious activity report being written conforms to
 the underlying XML schema or schemas. In XSDGuide, it is a two-step process. It first
 involves the logic built into the front end, then, if no errors are found, that of the
 back end. Figure 1 shows the two constituents.
Validation is invoked when the user clicks on the navigation bar item “Validate XML”.
 The user is oblivious to whether the error messages emanate from the front end or the
 back end. In both cases, they are shown at the top of the page.
Validation Carried out by the Front End, in the User’s Browser
When the front end is built, not only are visual elements laid out for the user to
 interact with, but validation rules are created in the JavaScript logic running in
 the user’s browser. These rules are built client-side by relying on information
 provided by the server indicating the base type of the field (XSD’s built-in
 datatypes), as well as additional restrictions.
Here are some examples of the rules implemented for elements and
 attributes.

 	When elements have a number of occurrences of at least one, or when
 attributes are marked required, then the front end will check for their
 presence.

	Types deriving from xs:id are checked to make sure they
 are well-formed and unique in the document

	xs:idrefs should reference an existing xs:id
 in the document

	Decimal and floating-point numbers are deemed valid if they are
 consistent with possible minimum and maximum values.

	Regular expressions restricting the content of text-based data are
 used to validate strings.

The validation feedback for an element of type xs:id is shown in
 Figure 4 (top). Whenever an error is found for a specific
 field, it is highlighted in red and a short description of the problem is presented
 to the user.
Validation taking place in the front end is especially concerned with the data
 entered in the different fields provided to the user. In other words, the structure
 of the document itself, e.g. the nesting of elements and their respective number of
 occurrences is not validated client-side. Indeed, the user would be hard-pressed to
 find a way to circumvent those rules while creating a report, since interactions
 that would create such validation errors are prohibited.
Consequently, when validation is invoked by the user, the front end checks if data
 entered in each field is consistent with the rules found for it. These rules were
 manually crafted for most data types and elements, but still constitute a
 best effort. Indeed, the Apache Xerces validator in the
 back end is bound to be run on the document when the front end has deemed it
 error-free (see following section).
The advantages of first running the validation on the front end are twofold. This
 scheme allows for a quasi-immediate response from the browser, without having to
 send the document over the network and wait for the validator messages. Moreover,
 this validation can be carried out interactively as the user is typing data, which
 allows quick rectifications of the data just entered, fresh in the user’s
 mind.

Validation Carried out by the Back End, XSDGuide’s Java Engine
As mentioned in Section section “XSDGuide’s General Architecture”, XSDGuide
 builds a full-flegdged XML validator from the XML schema(s) selected by the user to
 create his SAR. This validator is put to good use during this second step, and any
 remaining validation errors are captured and sent back to the user.
At this point in the development of the prototype, this validation still leaves
 room for improvement. The principal problem is that, when validation fails, the
 error messages are not clearly tied to the offending field(s) (contrarily to the
 messages produced in the step described in the previous section). See Section section “Current Limits and Perspectives” for more on this.

Saving the Suspicious Activity Report
At any time during the creation of the SAR, the user has the possibility to save his
 report by clicking the appropriate navigation menu item. This triggers the download of
 the XML document being edited. The document root contains the association to the
 corresponding XSD schema, through an xsi:schemaLocation attribute. The URL
 of the schema points to the XSDGuide server, which acts as a schema server, for the
 referenced schema and its possible XSD dependencies.
This allows the validation of the SAR using external tools, such as <oXygen>, which
 dereferences the schema URL and proceeds with validation.

Schema Management
In order to demonstrate the versatility of XSDGuide, we implemented a feature allowing
 the user to upload his own schema (or schema archive) in order to create SARs based on
 new XSD schemas. The user only has to click the “Add XML Schema” to upload a new XSD
 file. He also has the possibility of uploading and entire zip archive containing the XSD
 file as well as its dependencies (mainly specified through import and
 include statements). Uploading an entire archive is quite useful in our
 cases, since most complete SAR schemas are saved in IEPD zip files (see Section section “NIEM-SAR and Suspicious Activity Reporting”).
 Whether uploaded alone or alongside its dependencies, each XSD file is validated
 before the operation can proceed. The validation consists in the compilation of the XSD
 file using the relevant Apache Xerces functions. If validation fails for at least a
 file, the operation aborts and the user is shown the offending file name and validation
 error(s).

Current Limits and Perspectives
In its current stage of development, XSDGuide is still a prototype, and our effort
 focused on making sure that most NIEM-SAR IEPD schema rules are recognized and correctly
 processed. However, the XSD standard taken as a whole is quite vast, and consequently
 there are various XSD validation rules that are yet to be implemented. Furthermore, some
 features are lacking from the overall application.
XSD Rules to Implement
Some of XML schema’s constraints are not yet implemented in XSGuide. They were
 either rarely seen in the IEPDs we worked with, or posed difficult ergonomics
 problems. We describe some of them below and give an idea of the prevalence of these
 rules in the IEPD “ISE-FS-200-version-1.5 Suspicious Activity Reporting (SAR)”
 mentioned in Section section “NIEM-SAR and Suspicious Activity Reporting”.
The subtle distinctions between the text-like types string, ncname, nmtoken,
 token have not been implemented. Only xs:token and
 xs:string are used in the IEPD ISE-FS-200.
Some facets for numbers and text (e.g. whitespace, length,
 totaldigits) are incomplete.
The regular expression language used in XSD to validate text content has not been
 entirely ported from the schema to the user interface. This proved difficult because
 the W3C XML Schema standard defines its own regular expression flavor, and some
 patterns cannot be copied verbatim from the schema specification to JavaScript. For
 instance, the range subtraction construct ([...-[...]]) does not exist
 in JavaScript. For now, only simple regular expressions are copied from XSD to
 JavaScript. Only one pattern is used in the entire ISE-FS-200 IEPD.
For the time being, the number of occurrences for model groups xs:sequence,
 xs:choice or xs:all can only be 1. There are no
 xs:choice or xs:all rules in the example IEPD and the
 cardinalities for xs:sequence is always 1. However, the IEPD contains
 56 substitution groups. Consequently, we focused our efforts on these use-cases.
 Expanding on this to include other cardinalities should not be difficult.
Elements with mixed content (mixed="true") constitute a particularly
 arduous constraint when it comes to producing an appropriate UI guide. Fortunately,
 they rarely appear in IEPD (they are absent from all IEPDs we studied). Nonetheless,
 they represent an interesting challenge.
An element with mixed content may contain text, usually interspersed with nested
 elements. The UI guide should make it clear that the user can type arbitrary text
 and that he can insert nested elements within that text. The current interface
 choices implemented by XSDGuide make it difficult to provide this type of guide. We
 could have provided the user with the possibility to insert tags inside his free
 text, but we opted to avoid their use as much as possible, since they require a
 level of computer literacy that is not to be expected from the average user.
Figure 6 shows an idea for a mixed content guide. A text
 area allows the user to enter free text, and buttons allow the creation of nested
 elements within the text. Whenever the user clicks on these nested elements, the
 complete element appears below the text area, and behaves like any other element
 guide.
Figure 6: Mockup idea for user interface guides for mixed content. The
 content text can be interspersed with nested elements of types
 Person, Location or Time in this
 case.
[image:]

Additional Features
SAR Loading
For now, the most important feature lacking from the prototype is the ability
 to load a previously saved SAR. While it is possible to create an XML instance
 of a given XSD schema, the interface does not allow the user to open such an
 instance and edit it in the interface. There are no specific conceptual hurdles
 to implementing this, it is simply that we could not complete this feature
 within the short timeframe allotted for this project. Obviously, such a feature
 is essential if our prototype is to be rolled out in a production
 setting.

Validation Feedback
While validating, the feedback provided by the back end is too generic and
 does not indicate clearly to the user the offending fields or values. Contrarily
 to error messages provided by the front end, these messages do not come with a
 visual feedback including the highlighting of the fields at the origin of the
 problem. This is indubitably disconcerting to the user.
Traditional text-based XML editors like <oXygen/> do not suffer from this
 problem, since the validation API provided by Apache Xerces associates line and
 column numbers to each validation problem. The editor can then highlight the
 problem in the code. In our case, we cannot benefit from such clear indications,
 since the SAR document is not text-based: it is kept as an in-memory DOM. One
 solution to this is to inspect the post-schema-validation
 infoset (PSVI)[14] provided by the API. After validation, the PSVI includes
 assessment outcome information that can offer the
 validation status of some elements and attributes. It then becomes a matter of
 mapping these statuses back to the interface so that the user understands the
 corrections needed.

Other Schemas
In theory, XSDGuide is not tied to a specific schema. In practice however, it has
 been designed to implement constraints found in our test set. The limitations one is
 bound to encounter when loading new schemas in our prototype have been outlined
 earlier in this article. Beside the (admittedly important) fact that not all
 constraints are implemented, other considerations are to be examined in order to
 tackle non-SAR schemas.
One of the most complex problems we see is that XML schemas can be used (and
 abused) to encode data models in ways that do not lend themselves well to the
 automated generation of a user interface. For instance, an XSD file may encode a
 data model featuring multiple inheritance through custom-made elements that only
 make sense to the application that created the schema. One way to encode such “proprietary” information is through the
 <xs:appinfo> element in XSD. For instance, a software tool could create
 <xs:appinfo> sub elements like <myapp:baseclass
 qualifiedname="basetypename"> to achieve a data model with multiple
 inheritance. XSDGuide’s corresponding interface would not be able to translate this
 clearly, simply because these extra layers of meaning are obviously not accessible
 to the schema processor.
In these cases, it’s difficult to imagine how a program like XSDGuide could be
 useful. Additional resources would need to be provided in addition to the XSD
 schema. Creating a generic tool in these conditions becomes arduous, if at all
 possible.

Conclusion
The XSDGuide prototype we have presented here was aimed at facilitating the creation
 of suspicious activity reports by public safety and security experts as well as by
 members of the public, in a timely fashion. Moreover, one of our aims was to design a
 tool allowing users to inspect and understand complex schemas by using familiar user
 interface controls.
In spite of some limitations, we feel that the prototype is sufficiently developed to
 clearly showcase the possibilities that intelligent user interfaces offer to achieve
 these goals. XSDGuide proposes a way to materialize schemas created within the NIEM-SAR
 framework into a concrete user interface in a web application. The latter can be used to
 create validated SARs but also to explore the data model defined by these schemas by
 parsing these constraints and rendering them in a uniform, user-friendly manner.
A formal evaluation of the prototype (probably after some improvements whose nature is
 outlined in Section section “Current Limits and Perspectives”) should be carried out in order
 to objectively assess the usefulness of the software. This evaluation could measure the
 time needed to create the same SAR using XSDGuide versus a more traditional approach.
 The quality of this SAR should be evaluated as well. Ultimately, however, the approach
 we propose here can only be judged when it is integrated in the full information
 processing pipeline. This pipeline goes from the creation of the SAR, to the
 data centers where information is stored and cross-referenced,
 and back to users in the fields in the form of notifications, warnings, etc.
A recurring question during the development of the software presented here is the
 quality of the standards used. While NIEM-SAR is undoubtedly an exceedingly well
 thought-out framework, the complexity that arises from such exhaustiveness can be
 perplexing for the authors of SARs. Moreover, some of the implementation choices in XSD
 are debatable. For instance, certain elements allow free text when they should probably
 have been enumerations, or complex types constrain the order of sub-elements when it is
 unnecessary. These questions arise simply because creating schema-backed XML documents
 is an excellent way of putting these schemas to the test.
An interesting perspective to the project is the collection of data through the
 creation of SARs. With such a tool as our prototype, it does become possible to envision
 a SAR creation campaign soliciting the help of interested parties (e.g. law enforcement
 agencies). Such data could prove invaluable in the creation of additional guides during
 SAR creation, like autocomplete features based on previously entered values. XSDGuide
 would then act as a “bootstrapping” tool in the implementation of a more advanced SAR
 authoring tool.

Bibliography
[1] Information Sharing Environment (ISE) Functional
 Standard (FS) Suspicious Activity Reporting (SAR) Version 1.5
[2] Adoption and Use of the National Information Exchange
 Model (NIEM)
[3] NIEM User Guide, Volume 1, 2014
[4] NIEM Suspicious Activity Report Schema
[5] Communications Interoperability Strategy for Canada
 2011

[1] See for instance
 http://www.slideshare.net/drrwebber/niem-and-future-sar.
[2] http://www.nomagic.com/products/cameo-enterprise-architecture.html
[3] https://niem.gtri.gatech.edu/niemtools/iepdt/display/container.iepd?ref=opCeOMCX_74
[4] https://niem.gtri.gatech.edu/niemtools/iepdt/display/container.iepd?ref=ntsXeIX7M6Q=
[5] https://niem.gtri.gatech.edu/niemtools/iepdt/display/container.iepd?ref=-6kRpaB0tyY

[6] https://eclipse.org/
[7] http://oxygenxml.com/
[8] It is worth noting that XSDGuide can process arbitrary XSM schemas, as long as
 they are in XSD format.
[9] http://rali.iro.umontreal.ca/rali/?q=en/xsdguide
[10] http://xerces.apache.org/
[11] http://jquery.com/
[12] http://getbootstrap.com/
[13] http://www.w3.org/TR/xforms11/
[14] http://www.w3.org/TR/xmlschema-1/

Balisage: The Markup Conference

XSDGuide – Automated Generation of Web Interfaces from XML Schemas: A Case Study for
 Suspicious Activity Reporting
Fabrizio Gotti
Researcher
RALI, Université de
 Montréal

<gottif@iro.umontreal.ca>
Fabrizio Gotti is a researcher at the Laboratory for Applied Research
 in Computational Linguistics (RALI) at the Université de
 Montréal.

Kevin Heffner
CEO
Pegasus Research &
 Technologies

Kevin Heffner is President of Pegasus Research &
 Technologies, a Montreal-based company specialized in flight
 simulation and training, constructive simulations, unmanned/autonomous systems
 and command & control.

Guy Lapalme
Professor
RALI, Université de
 Montréal

<lapalme@iro.umontreal.ca>
Guy Lapalme is Professor of Computer Science at the Université de Montréal
 (Laboratory for Applied Research in Computational Linguistics), where he has
 been a faculty member since 1980. He is a leading expert in the computer
 processing of human language. He has published on many aspects of the subject
 including spelling correction, dictionary editing, text generation, automatic
 summarization, information extraction, opinion mining and machine translation
 tools. His career combines innovative research and outreach to the practical
 world through long-term collaboration with partners from both the academic and
 industrial worlds. Recently, he was awarded an Honorary Doctorate from the
 Université de Neuchâtel (Switzerland) and Lifetime Achievement Award from the
 Canadian Artificial Intelligence Association.

Balisage: The Markup Conference

content/images/Gotti01-006.png
MixedElement v

‘An element containing mixed content. The text can be interspersed with various elements.

[one of the persons seen on the scene of the crime was [T who was.

interviewed by’ Tan
Content
T

‘An element for a human being.

i+ personZ

Add new PersonAgeMeasure (optional)
Add new PersongyeColorCode (optional)
Add new PersonHairColorCode (optional)
Add new PersonHeightMeasure (optional)
Add new PersonWeightMeasure (optional)
Add new Personiame (optional)

Add new PersonRaceCode (optional)

Add new PersonBuildText (optional)

Add new PersonFacialiairText (optional)

PersonsexCode * MALE.

content/images/Gotti01-005.png
“complexType e

“LengthType™>
P

locumentation>A
length. </xs:docunentation></xs:annotation>

annotation><xs

sMeasurePointvalue”/>

easureRangevalue" />
</xsichoice>

s

Lement minoccur:
</xs:sequence>
</xs:complexType>

sarrali:LengthunitCode”/>

PersonHeightMeasure v

The vertical height of 2 person. A length.

Choose only one of:

“This field s requi

p—— i
(a)

PersonHeightMeasure V.

‘The vertical height of a person. A length.

osonpanact [i
Ad new Measureoinaue ot ost L reuire)
MeasurePointValue * d

) LengthUnitCode * foot.

PersonHeightMeasure V

The vertical height of a person. A length.

Choose only one of: MeasureRangeValue]

[MeasureRangevalue v

RangeMinimumValue* 6

RangeMaximumValue * ‘ 7 ‘

LengthUnitCode * foot.]
(c)

content/images/Gotti01-002.png
port Schema manager ~ h to simple

SuspiciousActivityReport V

A structure that describes a SAR Report.

A structure that describes Metadata about a related SAR.

Add new RelatedSarlList (optional)

Uniqueld *

Title *

SubmissionSystem V

Element that uniquely identifies an organization and a system where date originated, was submitted from, or is
being sent.

OrganizationName *

Identifier *

Contact information for the system owner. Includes a person and organization to contact and their phone
number and email address.

AuthorPerson V

The person who authors the report.
Add new TelephoneNumber (optional)

FirstName *
LastName *
OrganizationName *

EMailAddress *

CreationDateTime *

DisseminationCriteria * H

(=)
S
)
<

The primary information contained in a SAR.

Add new EntityPerson (optional)
Add new EntityLocation (optional)
Add new EntityFirearm (optional)
Add new Activity (optional)

Add new Associations (optional)

content/images/Gotti01-001.png
XSDGuide

HTML Rendering.
User Interface |::> JR—
Guides
XSD [AIAX
150N
(® |:> XML Document <: [
Arbitrary XD (2 Document is valid
Schema(s) Validator I:> © vaia _"’e"m(s)
Java Jquery
Apache Xerces™ Project Bootstrap 3.0

Jetty Web Server

content/images/Gotti01-004.png
Uniqueld *

Uniqueld *

Uniqueld *

This field is required.

13

hunter2

The value does not match the prescribed pattern.

Duplicate i

CreationDateTime *

2015-03-12T14:0p:54

4 n March- 2015-) -
s oo ufffg s u

content/images/Gotti01-003.png
81% W 14:21

SAR Creator —

Astructure that describes a SAR Report.

Astructure that describes Metadata about a
related SAR.

Uniqueld *

Title *

Element that uniquely identifies an
organization and a system where date

originated, was submitted from, or is being
sent.

OrganizationName *

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

