
1

In spite of its name, XQuery is certainly more than a query language. But what

is it? Recent extensions of the language, giving access to non-XML resources,

viewed in conjunction with the typical strengths of the language, seem to open

a new perspective: XQuery as a data integration language. Let us explore.

Well, the language is a set of facts, provided by the language specification,

which is clear and precise. But the facts themselves are not yet the picture we

see. The picture results from how we view the facts, how we restructure and

connect them, and last not least - our imagination. Here, you might see white

doves, or black ones, or even both. Similary, when looking at XQuery, it is

possible to see very different things.

2

Data integration means dealing with information distributed over several,

usually heterogeneous resouces. Any general purpose programming language

has APIs for accessing different types of resources - so every general

purpose language can be used for data integration. Then why might a

language be called a data integration language? The key aspect is simplicity. A

data integration language enables simple solutions for typical operations of

data integration.

3

Some typical operations required during data integration. A data integration

language should support them well especially in a context of multiple,

heterogeneous resources.

4

We shall first investigate the integration capabilities of XQuery in a pure XML

environment. Then we evaluate XQuery access to non-XML resources. Finally

we ask whether the integration capabilities observed in an XML-only

environment can be applied to these non-XML resources as well.

5

Any understanding of XQuery and its potential uses is based on awareness of

XQuery‘s concept of data navigation – XPath.

6

Data integration is not dealing with a single resource, but many resources.

Hence our interest in bulk navigation – navigation applied to many resources

simultaneously, producing an integrated result.

7

And here we encounter a first fact which might have an impact on our picture

of XQuery. The transition from single document navigation to bulk navigation

does not add any complexity to the code. You only have to add an initial step

to your path expression, producing the documents to be navigated. This

extended path applies the original navigation to all those documents and

delivers a merged result.

8

So here we have a simple design pattern how to transform single document

navigation into bulk navigation: prefix the path by an expression producing

URIs, which are piped into document construction, whose result is then piped

into the proper navigation.

9

Another fact deserving attention when thinking of data integration is cross-

document navigation: link traversal. A path step reaches items containing

document URIs, the subsequent step leaps to the roots of the referenced

documents, whence the navigation continues, drilling down into those

documents.

10

Joining these insights into a single whole – the precision and simplicity, the

bulk friendliness, the irrelevance of document boundaries – a picture emerges

which shows XPath navigation as boundess. And the space of this navigation

– the sum total of accessible XML documents – is in turn fused by XPath into a

single, homogeneous substrate, which I like to call the info space. By

definition, this space is an ideal stage for data integration.

11

The immediate effect of data navigation is data selection. But data integration

needs more than data selection – distributed information must not only be

selected, but reassembled into new entities. Construction is as essntial a part

of integration as selection.

12

In this example, different navigations are used to select data sources (flight

elements) and new element contents, which are a filtered copy of the data

source contents. The effort of construction is minimal, thanks to navigation.

13

It is worthwhile to consider a special case of construction – modification. The

XQuery Update Facility enables an elegant combination of navigation and

change: an independent sub expression selects the target node, another

expression provides the new value to be inserted, which more often than not is

in turn expressed by some navigation - for example into a configuration file.

14

Let us look at an example of bulk modification. The first line pumps documents

into the navigation to flight elements which describe a flight from a non-US

airport to Washington. The last line modifies the contents of these flight

elements, inserting an „international“ attribute into its addInfo child element.

15

Resource exploration is an important activity when attempting data integration.

It is about gaining insight about resource contents. XQuery is a great tool for

such tasks. For example, when confronted with an unknown type of XML

documents, you may want to learn the names and sampled contents of its data

elements.

16

A few lines of XQuery code give you the answer. It goes without saying that

transition to bulk exploration is just a couple of code lines away.

17

Validation is important, and it is very important in the context of data

integration. It is a pity that there are not yet standard functions available

providing XSD and other validation. Fortunately, popular XQuery processors

offer extension functions for validation. What XQuery has to offer is excellent

support for bulk validation and expression-based validation.

18

Interesting in the context of data integration is bulk validation: validating a

heterogeneous set of instance documents against a collection of XSDs, letting

the bulk validator sort out for each instance document which schema to pick.

This is a trivial task of bulk navigation – inspect the name and namespace of

the instance document root, and pick the schema with matching target

namespace and containing a top-level element declaration with a matching

name.

19

Grammar-based validation cannot check business rules. XQuery espressions

are an ideal way of both defining and checking a rule. This example shows a

simple generic rule checker. The validation is essentially executed by

navigation: visit the rule descriptors, filter them by applying their expression to

the target document, and emit the associated message. Note that this code

uses a vendor-defined extension function for the dynamic evaluation of

XQuery expressions found in the configuration.

20

Ok – dealing with an XML-only environment, XQuery is excellently suited for

data integration – thanks to a language structure laying a groundwork of

boundless data navigation and using it to power construction and modification.

Navigation also provides the programmer with strong support for

transformation, exploration and validation.

21

Take a deep breath – our first result is that XQuery is a great tool for XML

integration. Recent versions of the language (3.0, 3.1) added access to non-

XML resources – plain text and JSON. And in the mean time popular XQuery

processors already provided access to numerous other resource types. So let

us ask: is XQuery suitable for data integration in general?

22

Let us first consider the concept of resource access. In XQuery, resource

contents must be represented by an XDM value. Resource access is provided

by an XQuery function returning a resource representation.

23

We should be aware of various access pattterns. Resource contents are

delivered in exchange to a resource URI, or to the resource text itself, or a

request message, or a database query. The resource representation can be an

XML node tree, a tree of nested maps/arrays, or simply a string.

24

If data integration becomes a strategic goal, we may need new concepts

defining the relationships between XDM values and resource instances,

expressing constraints on information loss and the effects of round-tripping.

Here comes a proposal for a formal definition of resource representation.

25

XDM bindings create a formal bridge between format instances and XDM

values. Now we can compare format instances by comparing the associated

XDM values

.

26

And now we can define the transformation between format instances in terms

of XDM manipulations. A transformation between two format instances can be

accomplished as the transformation between the corresponding XDM values

as defined by a particular XDM binding. The result of the XDM transformation

can be serialized into a format instance which is guaranteed to be XDM equal

to the intended end result.

27

XML binding is just a special case of XDM binding – the XDM represention is

an XML node tree. This is an important aspect as XPath navigation can only

be applied to node trees, not to map/array trees.

28

Let us consider examples of XDM binding. Dealing with JSON resources and

using the BaseX processor, three XDM bindings are available. The first is

given by a BaseX-defined parsing function, which produces a BaseX-defined

XML-representation. The second is given by a standard function, which

produces a W3C-defined XML representation. And the third is given by a

standard function returning a map/array representation. Now let us ask how to

perform a navigation which in an XML context would be expressed by

//booking/bookingID.

29

In the case of an XML representation the navigation is accomplished by a

more or less simple path expression. The expression varies, dependent on

which XML representation is used – the BaseX-defined representation, or the

W3C-defined representation.

30

If the resource is represented by nested maps and arrays, the navigation can

only be accomplished by writing complex code. This is not navigation any

more – this is just a piece of tough programming work. Sorry - the XDM value

obtained for the JSON document is not in scope of XQuery‘s outstanding

navigation capabilities.

31

Map/array trees can be navigated in a primitive way, using the lookup operator

(?). It is important to realize that this navigation simply cannot be compared

with XPath navigation.

32

If for a given format F an XML binding exists, it is fully within scope of

XQuery‘s navigation capabilities. This seems to imply that the format is within

scope of XQuery‘s integration capabilities. But what if only a map/array binding

is available? Certainly, the format is not within scope of XQuery‘s navigation

capabilities, and as a rule the ease of integration is reduced. But to which

degree? Does the format fall out of integration, or is the potential of integration

by an large preserved? The answer also depends on the complexity of the

format instances – the less complex, the smaller the disadvantage of having to

do without strong navigation. The answer might be similar to the answer

whether Escher‘s graphic shows white or black doves.

33

Wrapping up, XQuery‘s capabilities of integration are tightly coupled to its

capabilities of navigation. If the XQuery Working Group should identify data

integration as a strategic goal of XQuery, non-XML resource access would

need to be extended systematically, and a strong emphasis on XML bindings

would be important.

34

Coming to an end, I return to the beginning of XQuery, the first sentences of

the spec... These sentences are about data integration. They envision XML as

a unified view on many kinds of data, a view made available by middleware

services creating XML on the fly. This picture turns XQuery into a data

integration language, which, however, depends on middleware – infrastructure

outside of the language. But by now the acceptance of XML is decreasing and

such middleware cannot be taken for granted.

35

But the vision of XQuery as a data integration language might be preserved by

introducing a second way how non-XML data might become node trees: not

only by middleware services, but by parsing functions, those of XML bindings.

36

So... Let‘s edit the text a little...

37

... and call it a day (or night) – thank you for listening.

38

