[image: Balisage logo]Balisage: The Markup Conference

Indexing Queries in Lux
Michael Sokolov
Senior Architect
Safari Books Online

<sokolov@falutin.net>

Balisage: The Markup Conference 2013
August 6 - 9, 2013

Copyright © V. Michael Sokolov 2013

How to cite this paper
Sokolov, Michael. "Indexing Queries in Lux." Presented at: Balisage: The Markup Conference 2013, Montréal, Canada, August 6 - 9, 2013. In Proceedings of Balisage: The Markup Conference 2013.
 Balisage Series on Markup Technologies vol. 10 (2013). https://doi.org/10.4242/BalisageVol10.Sokolov01.

Abstract

 Query optimizers often mystify database users: sometimes queries
 run quickly and sometimes they don’t. An intuitive grasp of what
 will work well in an optimizer is often gained only after trial,
 error, inductive logic (i.e. educated guessing), and sometimes
 propitiatory sacrifice. This paper tries to lift the veil by
 describing work on Lux, a new indexed XQuery search engine built
 using Saxon and Lucene, which is freely available under an
 open-source license. Lux optimizes queries by rewriting them as
 equivalent (but usually faster) indexed queries, so its results are
 easier for a user to understand than the abstract query plans
 produced by some optimizers. Lucene-based QName and path indexes
 prove useful in speeding up XQuery execution by Saxon.

Balisage: The Markup Conference

 Indexing Queries in Lux

 Table of Contents

 	Title Page

 	Why another XML search engine?

 	Lux Architecture

 	Query optimization with indexes
 	Formal setting

 	Filtering the context

 	Path Indexes

 	Other optimizations
 	Special Functions

 	Sorting

 	Range Comparisons

 	FLWOR expressions and variables

 	Results
 	Correctness

 	Indexing Performance

 	Query Performance

 	Note on benchmarking

 	Conclusions

 	About the Author

 Indexing Queries in Lux

Why another XML search engine?

 So first: why? There are a number of excellent XQuery databases
 available, both commercial and free ones, even open source. Some of
 our motivation was historical; for a variety of reasons we ended up
 with a number of applications built on top of a Solr/Lucene data store.
 We keep XML in these indexes, and we can define XPath indexes, but our
 query syntax is limited to Lucene's simple query languages, which are
 not at all XML aware. So we wanted to be able to use XQuery in an
 efficient way with these pre-existing data stores.

 [image:]

 The diagram shows the PubFactory architecture. Interactions with the
 DB are done using its native API. For MarkLogic and eXist, this is
 all XQuery. Solr's APIs are a mixture of Lucene query language and a
 thin Java API that wraps a number of HTTP REST calls. When using an
 XML-aware database, The XML Indexer component is not required. We
 created this component to work with Solr, which provides full text
 indexes and typed indexes (for strings, numbers, dates, geolocations
 and so on).

 This system design has a lot of nice features: it enabled us to
 accomplish most of what we needed with a leaner technology stack, and
 we gained a degree of power and flexibility by doing so, since we had
 Java programmers on staff who could fill in the missing bits. But
 having done this we also had to grapple with some missing conveniences
 that those programmers were somewhat reliant on.

 We knew from the beginning that we would miss the ad
 hoc query capabilities that both MarkLogic, and eXist,
 which we had been using, provided. We had come to rely on CQ and the
 eXist sandbox: what would take their place? The Solr admin query
 interface is a truly impoverished replacement for these. In fact it
 has recently gotten a facelift, but the query interface is
 essentially unchanged: you have no opportunity to operate on the
 results beyond selecting which fields are returned. Worse still, all
 of our indexes would have to be computed in advance. MarkLogic
 provides a great feature for ad hoc querying,
 which I think they call the "universal index." This index provides
 for lookup by word (ie full text search) and value (exact match)
 constrained by the name of containing elements and attributes.

 So Lux was really born out of this need for an ad
 hoc query capability, something akin to what Micah Dubinko
 presented at Balisage last year in Exploring
 the Unknown. Our first thought was something like this: "Hey,
 Saxon provides an XQuery capability, and Solr provides indexing and
 storage: all we need to do is marry them, and presto! We'll have an
 indexed XQuery tool." It turned out though that there was a lot more
 work required to produce a usable version of that than it appeared at
 first blush. This is the story.

Lux Architecture

 A quick overview of the Lux internal software design provides context
 for the XQuery indexing optimizations that are the main topic of this
 paper.

[image:]
	Evaluator
	the highest-level abstraction in Lux. It contains the
 other objects listed below (and the underlying Saxon objects) and
 provides a central access point for all Lux functionality, but in
 particular provides the evaluate(query) method.

	Compiler
	compiles XQuery expressions into an executable form

	SaxonTranslator
	translates expressions from Saxon's internal Expression
 tree structure to Lux's AbstractExpression tree structure.

	PathOptimizer
	rewrites AbstractExpression to make use of Lux indexes

	FunctionLibrary
	Provides index-aware XQuery functions

	XmlIndexer
	Indexes XML documents, generating Lucene field values

	Searcher
	Searches the Lucene index, returning matching documents stored there

	XML Highlighter
	Highlights terms in a document matching a search query

	Query Parser
	Parses queries in Lux's extended Lucene query language and its XML form

Query optimization with indexes

 When executing queries in a setting with a large amount of data,
 indexes are critical. A properly indexed query may execute in less
 than a millisecond while the same query, unoptimized, could easily
 take so long that it would effectively never complete. In Lux,
 queries are implicitly executed with the entire contents of the index
 as their context: more precisely, wherever there is an absolute
 expression (a path rooted at "/"), Lux inserts, conceptually, a call
 to collection(), the function that returns all
 documents. This approach has been adopted in other databases; we've
 attempted to provide a familiar environment.

 Sometimes users exercise control over the indexes that are generated
 and how they are used to resolve queries. XSLT's key functionality
 is an example of this. In other cases, like SQL databases, users
 specify the indexes and hope they've chosen the right ones that will
 nudge the optimizer to speed up their queries. And sometimes indexes
 are created and used with little or no user intervention at all. This
 is an ideal situation when it works, but nearly impossible to get
 right all the time in a general case where queries are expressed in a
 complex language such as XQuery. There are two main difficulties:
 knowing which indexes might be useful enough to justify the cost of
 creating them, and then actually applying those indexes to optimize
 queries.

 Our philosophy is to provide as much automatic help as possible, so
 the user doesn't have to think, but to get out of the way when the
 user tells us they want manual control.
 	
 Provide basic indexes that can be applied automatically and
 relied on to provide value for a wide range of queries.

	
 Give the user clear information about the output of the
 optimizer. Sometimes the optimizer can be tricked by otherwise
 insignificant syntactic constructs, like variables. If the user
 is made aware of this, they can often rectify the situation by
 rewriting their queries.

	
 Allow the user to specify indexes explicitly: users can be relied
 on to know when there are especially interesting sequences to be
 indexed.

	
 Provide users with query constructs that reference the indexes
 directly. This way users can take over when the optimizer fails.

 This paper addresses the first point primarily, exploring some
 challenges we overcame providing the built-in indexes and optimizing
 queries to use them, but it's important not to lose sight of the
 bigger picture as well.

 It has become standard practice to index XML with the following kinds of
 indexes:
 	QName indexes

	Path indexes

	Full text indexes

	QName value and/or text indexes

	XPath indexes

 These kinds of indexes are provided by MarkLogic,
 eXist
 and BaseX,
 SQL
 Server (Primary XML index covers paths and values; full text
 is available, and Secondary index provides XPath), Oracle
 and DB2,
 to name a few popular systems. A review of the indexing capabilities
 of these and other tools is beyond the scope of this paper, but it is
 apparent that the index types described above are well-represented in
 the field.

 Lux currently provides path, full text, element/attribute full text,
 and xpath indexes. We've done some work on an element/attribute
 value index as well. The optimizer generates search expressions
 using the path indexes, and in some cases, the full text indexes and
 XPath indexes. The user can make explicit use of all the indexes for
 search, optimized counting, and sorting by calling index-aware
 functions provided in the Lux function library.

 There are a variety of optimizations using indexes we could imagine
 applying in order to make a query go faster: Filtering the input
 collection to include only "relevant" documents is the main one, and
 it sounds simple enough, but there are a lot of specific cases to be
 considered, and there is a real danger of over-optimizing and getting
 incorrect results. Optimizations tend to have a patchwork character,
 and in order to stay on top of things, it's important to have a
 formal framework we can use to prove to ourselves that the
 optimizations are correct; that they preserve the correct results.

Formal setting

 Because XQuery is a functional language, it's natural to think of
 queries as functions, and to apply the formalisms of functional
 logic. In this light, query optimizations can be described formally
 as a special kind of homomorphism [1] over
 the space of all queries. A function is generally defined as a
 mapping from one set to another: in this case from sequences of
 documents to sequences of items. So in this terminology, two
 queries are homomorphic if they represent the same mapping from
 documents to items. We won't take this formal setup very far, but
 we note that homomorphism is preserved by composition. In other
 words if two optimizations are "correct" independently, applying
 both of them will still be "correct", in the sense of preserving
 correct results, and we can apply them in whichever order we
 choose. This is important because it enables us to work on query
 transformations independently, without worrying that making changes
 in one place will suddenly cause problems to crop up somewhere
 completely different.

 Defining optimization as a mapping from queries to queries has
 another nice property: it means we can fairly easily show the user
 what the optimized query is: it's just a different (hopefully
 faster) query that returns the same result. This is different from
 the situation in some systems, where optimizations are completely
 opaque to the user, or are presented as a kind of abstract "query
 plan" that bears little or no resemblance to an actual query. Of
 course the user needs to be able to understand the optimized XQuery
 form, but given that they wrote the original XQuery, it shouldn't
 be too much of a stretch for them.

Filtering the context

 It is often the case that query expressions return an empty sequence
 when evaluated in the context of a given document. For example, the
 query //chapter[.//videoobject]/title returns the titles
 of all (DocBook) chapters containing references to videos. Suppose
 our database contains 1000 books broken into a document for every
 chapter. Only a small fraction of these may actually contain videos,
 but a naïve unoptimized implementation might have to load every one
 of those documents into memory, parse them, evaluate the query on
 them, only to return nothing. One of the main goals of the optimizer
 is to filter the context early in the process, using indexes, so that
 all this unnecessary work can be avoided.

 We said that we operate on the whole database by replacing "/" with
 collection(). We can think of every query to be optimized then as
 some function whose single argument is the sequence of all
 documents. What we'd like to be able to do is to filter out all
 documents from that sequence that have no chance of contributing to
 the query results. Intuitively we know that the result of

 collection()//chapter[.//videoobject]/title

 will be the same as the result of:

 collection('chapters with videos (and titles)')//chapter[.//videoobject]/title

 Some XQuery expressions, and in particular path expressions, have
 the nice property of commuting with sequences: that is, their
 result sequence will be the sequence formed by applying the
 expression to each element of the input sequence in turn. Or, more
 concisely:

 f(s1,s2,s3,...) === (f(s1), f(s2), f(s3), ...)

 Combining this with the fact that sequences don't nest, we get that
 (for these functions):

 f(S) === f(s∈S | f(s) is not empty)

 which just basically says that we only need to run the query on
 documents that will return results - we can skip all the other ones
 since they are irrelevant.

 This is very useful. What it means is that if we can come up with
 some index query that selects only those documents that return
 results for a given XQuery, then we can use that to filter the
 documents "up front," and save a lot of processing. Actually it's
 OK to retrieve more documents than we need, but the game is to
 retrieve as few as possible without missing any important ones.

 So that's goal #1 of the optimizer: for any XQuery, produce an
 index query that minimizes the number of documents required to be
 retrieved. How do we do that? The strategy is to devise indexes,
 and queries, that match XQuery primitives like QNames and simple
 comparisons, and then to combine those primitive queries when they
 appear as part of more complex, composite expressions, like
 sequences, boolean operators, set operators, FLWOR expressions and
 so on. In particular what the Lux optimizer does is to perform a
 depth-first walk of the syntax tree of a query, pushing, popping,
 and combining index queries on a stack as it goes. The
 pseudo-logic of optimize(xquery) goes something like
 this:

 if (xquery has no children)
 push a corresponding primitive index query
 else
 let current-query = match-all
 for each child expression
 pop the child-query
 if (child is absolute (contains a Root sub-expression: /))
 replace the Root with search(child-query)
 else
 let current query = combine (current-query, child-query)
 push current-query

Path Indexes

 Let's look more closely at optimizing queries with path expressions
 in them, since these expressions are uniquely characteristic of
 querying tree-structured data like XML. We've implemented
 different kinds of structure-related indexes, and it's interesting
 to compare what each one buys, and what it costs.

 The most basic approach that captures some document structure is
 just to index all the names of all the elements and attributes (the
 QNames) in each document. If we do that, we can easily make sure
 not to go looking for videos in documents that don't have them.

 But the simple QName index doesn't really capture anything about
 relationships of nodes within a document. It feels like it ought
 to be possible to search chapter titles independently from
 searching book titles or section titles, for example, even if they
 are all tagged with <title>, as in DocBook. A natural thing
 to do is to index the complete path of every named node. We've done
 this by treating each path as a kind of "sentence" in which each
 node name is a single word or token. Then using phrase queries and
 similar queries based on token-proximity, we can express
 constraints like a/child::b, a//b (and
 others) much more precisely. With the simple QName index, it isn't
 possible to write a query even for //a//b that won't
 match other irrelevant documents as well (such as
 <a/>).

 Here's a concrete example:

[image:]

 The figure shows a syntax tree for the example expression roughly
 as it would be expressed by the Saxon parser, in blue rectangles,
 and in orange it shows the corresponding Lucene pseudo-query that
 is generated by Lux. Parent queries are formed by joining together
 child queries using the recursive process described above. The
 combine() method alluded to there is somewhat complex for path
 queries. Its job is to characterize the relationship between two
 child expressions and to generate as precisely as possible (ie
 matching as few documents as possible, without missing any) a query
 corresponding to the parent expression. For the simple boolean
 queries that are generated when only QName indexes are in use, this
 is generally just a matter of deciding whether the children should
 be AND-ed together or OR-ed together. The choice is typically
 dictated by the character of the parent expression: most are
 restrictive and generate AND-queries, but some, like "or", "|", and
 "union" conjoin their child expressions and generate OR-queries.

 Joining path queries also requires computing a distance between two
 subexpressions. The optimizer computes this distance when visiting
 path expressions (a/b) and predicates (a[b]), translating
 non-adjacent path axes like descendant, and intervening wildcard
 steps like /*/*/ into corresponding phrase distances in the Lucene
 proximity query.

 Once the optimizer has generated a Lucene query corresponding to an
 XQuery expression, it replaces the collection() (or /) expression
 with a call to Lux's search function, passing it the generated query
 as its argument.

 One benefit of the Lux architecture is that it optimizes
 expression trees that have already been optimized to some extent by
 Saxon. Saxon reduces a number of equivalent expressions to a
 simpler canonical form, making it easier to perform the analysis
 needed for optimization. There are some drawbacks to this approach
 as well: Saxon converts some expressions (like atomized sequences)
 into internal forms that have no direct correspondence with
 XQuery expressions, so some clever inferencing is required in those
 cases to create an equivalent XQuery.

 Of course we can keep on devising more and more precise indexes.
 Consider indexing every occurrence of every path, so that we keep a
 count of each path as well: that should give us a handle on queries
 involving positional predicates like //title[2]. We
 often want to know if there is a second same-named element since it
 might violate a schema that requires a singleton. Indexing paths
 as phrases in Lucene doesn't really lend itself well to maintaining
 this kind of statistic since the tokens in that case are QNames.
 But if we index each complete path as a token (i.e. "/a/b/c" as a
 single token, rather than "a b c" as three tokens associated by
 position-proximity), then the index will maintain a term count for
 us.

 We have made some experiments with these "path occurrence" queries.
 The path queries become token queries, possibly involving
 wildcards, rather than phrase queries. The performance of the
 resulting queries is roughly the same as the phrase-like queries
 described before. The promise of indexing positional predicates
 proves difficult to realize, though. In Lucene, the primary
 function of term frequency counts is to compute relevance-ranking
 scores: using them to filter queries is much more involved,
 requiring some deeper spelunking into Lucene's internals, but this
 is a promising avenue for future work.

Other optimizations
The optimizer knows a few other tricks, beyond simply ignoring
 irrelevant documents.

Special Functions

 In general, function calls are opaque to the optimizer, but it
 does apply special optimizations for a few built-in XPath
 functions: root(), exists(),
 empty(), count() and
 subsequence().

 count(), exists(), and
 empty() can be evaluated using indexes only, without
 loading documents, when it can be determined that their arguments
 are faithfully modeled by an appropriate query. When this
 inference can be made, the speedup is are often dramatic, so we
 go to some lengths to track a few properties that characterize
 the precision of the Lucene query that the optimizer generates.

 If we can prove that a given Lucene query retrieves *only* the
 documents that produce XQuery results, no more and no fewer, then
 we call the query minimal. A minimal query
 is the best we can do in terms of filtering the context set for
 the query. When their arguments' queries are minimal,
 exists() and empty() are replaced by an
 index-aware analogue, lux:exists(), which simply
 checks whether any documents match a (Lucene) query (or its
 negation, in the case of empty()).

 Another useful property that some queries have is that they only
 return one result per document. We call these
 singular. It's useful to track singularity
 since a minimal, singular query can be counted efficiently, using
 indexes only. It's not always possible to tell whether a query's
 result will be singular, but in some cases it is. In particular,
 if a query returns only documents (or root element nodes), then
 it will be singular. Lux recognizes that the root()
 function is singular, and counts paths ending with
 /root() in an efficient manner.

 The subsequence($seq,$start,$length) function provides
 a fixed window into a larger sequence. We can rely on the XQuery
 processor's lazy evaluation to avoid retrieving documents beyond
 the right edge of the window. When the windowed sequence is
 singular, we can also avoid loading the documents to the left of
 the window by telling the Lucene searcher to skip the number of
 documents indicated by subsequence's second argument. Also note
 that Saxon does us the favor of translating numeric predicates
 ($sequence[10]) into subsequence function calls, so the same
 optimization applies to those.

Sorting

 Sorting a sequence using an XQuery "order by" clause typically
 requires the entire sequence to be loaded into memory in order to
 evaluate the ordering expression for use in sorting, even if only
 a subset of the documents will eventually contribute to the
 overall query result (they may be filtered by subsequence() for
 example). We can do better when the ordering expression has been
 indexed.

 Lux can populate a Lucene field for any user-supplied XPath
 expression, and exposes these fields in XQuery via the
 lux:key (formerly lux:field-values)
 function. When the optimizer finds a
 lux:key($field) call used as an ordering expression,
 the field argument is used to order the Lucene query result. In
 general results can be ordered much more quickly this way. Such
 optimizations are applicable for single-valued fields with string
 and numeric values. They support empty least/greatest, and can
 handle multiple fields.

Range Comparisons

 Lux optimizes range comparisons (=, !=, <, <=, >, >=, eq,
 ne, gt, ge, le, lt) when one of the operands is a constant, and
 the other is a call to lux:key() or can be proven to match an
 indexed expression. For example, if there is a string-valued
 index called "book-id" on //book/@id, the expression
 //book[@id="isbn9780123456789"] would be optimized
 into something like:
 lux:search("book-id:isbn9780123456789"), and
 evaluated using indexed lookup. There will be additional clauses
 to the generated query, such as path constraints. Also, equality
 tests may be optimized using the built-in full text indexes. In
 the example above, a word-based query such as:
 <@id:isbn9780123456789 would be generated, which
 would find the given isbn, ignoring text normalizations such as
 case, in any id attribute. These text queries are less selective
 than the query based on the XPath index, but can often be
 selective enough, depending on the structure of the documents.

FLWOR expressions and variables

 There are no special optimizations related to these constructs,
 but they do present special problems. Lux doesn't make any
 attempt to apply constraints from where clauses, but since Saxon
 converts most where clauses to predicates, this isn't a
 significant drawback. Variables are handled by keeping track of
 variable bindings while the try is being optimized, and applying
 any query constraints from a variable's bound expression to its
 containing expression as if it were simply expanded in place.

Results
Correctness

 It's critical to ensure that an "optimized" query returns the same
 results as the original, but it's not always so easy to prove that
 a given optimization is homomorphic. Sometimes we think we've done
 so, but a counterexample arises. If we were better mathematicians,
 perhaps we wouldn't need to, but as engineers, we take a pragmatic
 approach and build lots of tests.

 XQTS was a great help, in resolving query translation issues, and
 somewhat helpful in testing the optimizer. But it isn't targeted
 at testing queries to be run over large numbers of documents, so
 we created our own test suite to ensure that our optimizations do
 in fact improve query speed. In the course of doing this, we
 uncovered numerous bugs, even though we had a nearly 100% pass
 rate on XQTS. You just can't have enough unit tests.

Indexing Performance

 Of course the whole point of this exercise is to improve query
 performance. No paper about optimization would be complete
 without some measurements. And we have been able to make
 improvements. In some ways it's uninteresting to look at
 specific performance comparisons with and without index
 optimizations, since the improvement (when there is one) can
 usually be made arbitrarily large simply by adding more documents
 to the database. There are a few inferences to be drawn from the
 numbers, though.

 Note on the test data: we used Jon Bosak's hamlet.xml (courtesy
 of ibiblio.org) to generate a set of 6636 documents, one for each
 element in the play's markup. So there are a single PLAY
 document, five ACT documents, and so on, in our test set.

 We evaluated the cost, in bytes, of enabling various indexing
 options. The size of the indexes is an important consideration
 since it has an effect on memory consumption and on the amount of
 disk I/O the system will need to perform when updating and
 merging. For the Hamlet test set, the relative sizes of the
 index fields are given in the following table, in bytes, and as a
 percentage of the size required to store the XML documents.

	Index Option	Size (in bytes)	% of xml
	XML Storage	1,346,560	100%
	Full Text	1,765,376	100%
	Node Text	1,770,496	100%
	Paths	122,880	100%
	QNames	88,064	100%

 The Full Text index includes all of the text, but no node name
 information. The Node Text index indexes each text token
 together with its element (or attribute) context. Note that the
 sizes of the QName and Path indexes are fairly low relative to
 the size of the documents themselves (also: the QName index isn't
 needed if we have a Path index). The next section shows the
 effect of these indexes on query performance.

Query Performance

 The table below shows the time, in milliseconds, to evaluate a
 certain query with different indexes enabled. The queries were
 repeated 500 times in order to smooth out the noise in the
 measurements. The column labeled baseline
 represents an unfiltered baseline where every query is evaluated
 against every document. The qname column
 filtered documents using qname indexes, and the
 path shows results for path indexes. The
 %change and difference
 columns show the difference between qname and path indexing;
 positive values indicate greater times for qname indexes. The
 queries have been sorted in descending order by this difference.

	query	baseline	qname	path	%change	difference
	/LINE	444	262	185	29.19	76.48
	//ACT/TITLE/root()//SCENE/TITLE/root()//SPEECH/TITLE/root()	338	31	2	92.01	28.52
	/ACT['content'=SCENE]	318	32	8	75.12	24.04
	/ACT//SCENE	366	40	18	55.62	22.25
	/ACT[SCENE='content']	372	29	8	70.46	20.43
	/ACT[.='content']	360	30	9	68.08	20.42
	/ACT/SCENE[.='content']	333	29	9	67.47	19.57
	/ACT/SCENE	359	35	15	55.61	19.46
	count(//ACT/SCENE/ancestor::document-node())	151	20	0	95.59	19.12
	number((/ACT/SCENE)[1])	17	23	5	74.62	17.16
	/ACT/text()	379	18	8	56.25	10.13
	/*[self::ACT/SCENE/self::*='content']	366	16	6	60.85	9.74
	/ACT//*	323	20	10	47.62	9.52
	/ACT	342	17	9	46.84	7.96
	/*[self::ACT/SCENE='content']	321	13	5	60.95	7.92
	//ACT|//SCENE	497	37	35	7.69	2.85
	//ACT	334	24	21	11.47	2.75
	//ACT[exists(SCENE)]	334	21	18	11.97	2.51
	(/)[.//ACT]	390	35	33	7.07	2.47
	//ACT[empty(SCENE)]	521	27	24	8.86	2.39
	for $doc in //ACT order by lux:field-values('sortkey', $doc) return $doc	385	39	37	5.27	2.06
	for $doc in //ACT order by $doc/lux:field-values('sortkey'),
 $doc/lux:field-values('sk2') return $doc	525	26	24	7	1.82
	//ACT[.//SCENE]	328	37	36	4.17	1.54
	//ACT/@*	265	21	20	6.27	1.32
	subsequence (//ACT, 1, 10)	275	18	17	5.96	1.07
	(//ACT)[1]	8	14	13	7.54	1.06
	//ACT[not(SCENE)]	291	19	18	4.51	0.86
	not(//ACT/root()//SCENE)	169	1	0	50.89	0.51
	(for $doc in collection() return string ($doc/*/TITLE))[2]	8	10	10	3.9	0.39
	//ACT/SCENE[1]	416	22	21	1.08	0.24
	for $doc in //ACT order by $doc/lux:field-values('sortkey') return $doc	280	24	24	0.84	0.20
	not(//ACT)	16	1	1	18.88	0.19
	/node()	236	157	157	0.1	0.16
	/*/ACT	314	22	21	0.15	0.03
	(/)[.//*/@attr]	459	0	0	-180.29	0.00
	//*[@attr]	414	0	0	-6.53	0.00
	//*/@attr	322	0	0	53.42	0.00
	//ACT/@id	338	0	0	27.49	0.00
	//AND	382	0	0	-18.86	0.00
	//lux:foo	455	0	0	75.42	0.00
	//node()/@attr	322	0	0	32.51	0.00
	/ACT[@id=123]	435	0	1	-135.83	0.00
	/ACT[SCENE/@id=123]	452	0	0	-24.56	0.00
	count(/)	287	0	1	-197.15	0.00
	count(//ACT/ancestor::document-node())	152	0	0	66.07	0.00
	count(//ACT/root())	165	0	0	-49.56	0.00
	empty((/)[.//ACT and .//SCENE])	15	0	0	67.55	0.00
	empty(/)	13	0	0	-176.63	0.00
	empty(//ACT)	14	0	0	-377.25	0.00
	empty(//ACT) and empty(//SCENE)	14	0	0	-67.5	0.00
	empty(//ACT/root())	470	0	0	37.91	0.00
	empty(//ACT/root()//SCENE)	448	0	0	-78.32	0.00
	exists((/)[.//ACT and .//SCENE])	10	0	0	-185.37	0.00
	exists(/)	13	0	0	69.54	0.00
	exists(//ACT)	10	0	0	-53.78	0.00
	exists(//ACT) and exists(//SCENE)	11	0	0	64.64	0.00
	exists(//ACT/root())	363	0	0	0.86	0.00
	exists(//ACT/root()//SCENE)	377	0	0	79.15	0.00
	not((/)[.//ACT and .//SCENE])	4	0	0	4.59	0.00
	not(//ACT) and empty(//SCENE)	5	0	1	-205.65	0.00
	not(//ACT/root())	352	0	0	-17.33	0.00
	(for $doc in collection() return data($doc//TITLE))[2]	15	9	9	-0.69	-0.06
	subsequence (//ACT, 1, 1)	13	11	11	-1.52	-0.17
	//ACT[exists(.//SCENE)]	347	34	35	-0.9	-0.31
	not(/)	15	1	2	-35.76	-0.36
	//ACT[not(empty(.//SCENE))]	340	23	23	-1.84	-0.42
	//*/ACT/SCENE	396	35	35	-1.4	-0.49
	(/)[.//ACT][.//SCENE]	340	24	24	-2.89	-0.69
	count(//ACT/root()//SCENE)	315	34	35	-3.99	-1.36
	//ACT[SCENE='content']	324	32	33	-4.3	-1.38
	//SCENE[last()]	623	45	46	-3.24	-1.46
	//SCENE[1]	626	37	39	-4.57	-1.69
	/ancestor-or-self::node()	285	239	241	-0.77	-1.84
	//ACT/TITLE | //SCENE/TITLE| //SPEECH/TITLE	425	55	57	-3.87	-2.13
	/PLAY/(ACT|PERSONAE)/TITLE	342	19	21	-11.31	-2.15
	/*	288	310	312	-0.73	-2.26
	count(//ACT)	222	19	21	-12.14	-2.31
	//SCENE[2]	571	57	60	-4.65	-2.65
	//ACT[count(SCENE) = 0]	253	18	21	-17.2	-3.10
	/descendant-or-self::SCENE[1]	452	26	30	-13.43	-3.49
	//ACT[.='content']	368	27	31	-13.13	-3.55
	/self::node()	292	309	314	-1.58	-4.88
	number((/descendant-or-self::ACT)[1])	364	19	25	-30.09	-5.72
	/	312	347	362	-4.45	-15.44
		288.23	34.52	31.15	9.76	

 It is clear that the path index is providing some benefit when
 the queries contain paths with multiple named steps. In other
 cases there is sometimes some increase in query time - it's not
 entirely clear why, but the absolute value of this increase tends
 to be small. It may be that there is some further improvement
 possible by avoiding the use of positional queries when there are
 not any useful path constraints in the query.

Note on benchmarking

 Some reviewers expressed the desire for comparative performance
 benchmarks with other database systems. We've known since
 at least 1440 that "comparisons are odious," or, according
 to Dogberry, in a later gloss, "odorous." One would like the
 data, but we don't feel well-placed to provide an objective
 benchmark comparing our system against others. The best I can
 offer is that we observe comparable performance with other
 indexed XQuery systems, and simply note that the key factor for
 performance is to extend the cases where indexes can be applied.

Conclusions

 We described an XML search engine, Lux, based on Saxon and Lucene.
 We gave an overview of how it optimizes queries, and we explored its
 Path indexes in more depth. Measurements show a substantial benefit
 from using these indexes. For many queries the Path index can provide
 additional benefit beyond what the QName index does, with a small
 additional cost in terms of index size. We also described some other
 index-based optimizations that Lux applies.

 The indexing techniques described here are not unique to
 Lux. Although we're not aware of any existing use of proximity
 queries to match path constraints, it's a natural enough idea and is
 almost certainly in use in other systems as well. The main innovation
 here is the application of XML-unaware indexing technology to
 accelerate XML-aware queries, and the new combination of existing
 open source software packages to provide a reliable and powerful
 indexing and query system. Leveraging existing technology decreases
 the amount of code that needs to be maintained and tested, and leads
 to a high quality product with less effort than might otherwise be
 required.

Bibliography

 Exploring
 the Unknown, Micah Dubinko, 2012 Balisage conference proceedings, doi:https://doi.org/10.4242/BalisageVol8.Dubinko01.

 MarkLogic Admin Guide

 eXist indexing documentation

 BaseX Indexes

 SQL
 Server XML index documentation

 Oracle XML index documentation

 Shakespeare in XML

 Lux web site (high-level
 documentation)

 Lux repository (source code and documentation)

[1] A homomorphism is
 a kind of mapping that preserves structure.

Balisage: The Markup Conference

Indexing Queries in Lux
Michael Sokolov
Senior Architect
Safari Books Online

<sokolov@falutin.net>

 Michael Sokolov is a software developer and data architect. He has
 been creating online reference and reading platforms since 1999,
 first at iFactory, and since 2013 as part of Safari Books Online.
 He is fascinated by the ways humans interact with large texts via
 computer and works on document and text processing, indexing, and
 search. Michael was the data and search architect for the OED
 online's relaunch in 2010, and in previous lives worked on speech
 recognition, internationalization, object databases, and in the
 remote past, computer vision.

Balisage: The Markup Conference

content/images/Sokolov01-002.png
Evaluator Compiler

XML Indexer

content/images/Sokolov01-001.png

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Sokolov01-003.png
Syntax tree for //chapter[.//videoobject]/title

B xawey
B Lucene auery

collection()

PATH=chapter,* videoobject AND PATH=chapter title

predicate child::title

PATH=title

PATH=chapter,* videoobject

descendant descendant::videoobject

PATH=chapter PATH=videoobject

