[image: Balisage logo]Balisage: The Markup Conference

Semantic Profiling Using Indirection
Ari Nordström
<ari.nordstrom@condesign.se>

Balisage: The Markup Conference 2013
August 6 - 9, 2013

Copyright © Ari Nordström 2013

How to cite this paper
Nordström, Ari. "Semantic Profiling Using Indirection." Presented at: Balisage: The Markup Conference 2013, Montréal, Canada, August 6 - 9, 2013. In Proceedings of Balisage: The Markup Conference 2013.
 Balisage Series on Markup Technologies vol. 10 (2013). https://doi.org/10.4242/BalisageVol10.Nordstrom01.

Abstract
Profiling is an often-used XML publishing technique where nodes are marked as
 conditional according to a set of profiles, identified using attribute values as
 filtering conditions. When publishing, the nodes are only included if the publishing
 conditions match the publishing context. The profiles are sometimes also used as
 variables in text content, including the attribute value in the publication.
While useful, these techniques have a number of problems. For example, if the
 attribute values need to be changed, the new values usually require converting any
 live legacy documentation to the new values, changing the schema,
 stylesheets, etc, and supporting both the old and new profiles will not be possible.
 This paper takes a look at profiling, some of the common problems and suggest ways
 to solve those problems.
An abstraction layer solves this. The profile values are not used directly;
 instead they represent a specific semantic profile. The abstraction
 layer can be expressed using URNs that are matched to human-readable values when
 required.
A different problem arises when handling XML documents with structures not in our
 control. The document might be from a third party and not be editable directly, or
 use incompatible profiling semantics.
These documents can be profiled using out-of-line
 profiling, describing the conditions outside the document, for example, in an
 extended XLink linkbase listing the nodes and their profiles. XLink, as it turns
 out, is well suited for this.

Balisage: The Markup Conference

 Semantic Profiling Using Indirection

 Table of Contents

 	Title Page

 	Intro
 	Definitions

 	The Basic Example

 	Multiple Conditions

 	Variable Text

 	Tools and Processing
 	Publishing

 	Boolean Logic

 	But There Are Problems
 	Renaming Values

 	Changing Scope

 	Text Content

 	Localisation

 	A Basic Solution
 	Why Do We Have Problems?

 	Abstraction Layers

 	Use URNs to Name Filters

 	Processing
 	Editor

 	Variable Text and Localisation

 	Combining Profiles

 	Base Profiles

 	Assertions

 	Publishing

 	The Grammatical Problem Solved

 	Out-of-line Profiling
 	Extended Profiling
 	Basic Requirements for the Document

 	XLink Roles and Titles Put to Use

 	Out-of-line Processing
 	Editor

 	Schematron Uses

 	Variable Text

 	The Grammatical Problem Revisited

 	End Notes
 	In Or Out Of Line?

 	I'm Not Alone

 	Thank You

 	About the Author

 Semantic Profiling Using Indirection

Intro
Profiling is an often-used XML publishing technique where nodes are marked as
 conditional according to a set of profiles, identified using attribute values as
 filtering conditions. When publishing, the nodes are only included if the publishing
 conditions match the publishing context. The profiles are sometimes also used as
 variables in text content, including the attribute value in the publication.
While useful, these techniques have a number of problems. This paper takes a look at
 profiling, some of the common problems and suggest ways to solve those problems.
Definitions
Before I begin, let me briefly attempt to define the terminology used in this
 paper. Consider the following markup example:
<doc profile="B">
 <p>Information common to products A, B, and C.</p>
 <p profile="A">Information about product A.</p>
 <p profile="B C">Information about products B and C.</p>
 <p profile="B C">Information about products B and C.</p>
</doc>

The above is an example document that describes a product with the three product
 variants A, B and C; in other words,
 it's the same basic product (imagine, for example, a diesel-engined car model with
 three different-sized engines) but with three differing configurations.
I try to use the following terminology throughout the paper:
	A profile is a set of conditions defining when a node
 is applicable. The profile="A" attribute in the second
 p element, for example, says that this particular
 p element is applicable for the variant
 A.

	A profile's value is the human-readable condition for
 a specific profile, there to help a reader identify the condition in the
 text flow. For example, information that applies to theD5
 diesel engine might be marked up with profile="D5".

	A profile's semantics, on the other hand, represent
 the underlying meaning behind the value. The
 D5 diesel engine might be renamed to something very
 different without changing the semantics of a profile[1]. For example, a marketing department might decide to rename it
 without the engineering department changing a single engine
 component.

	A profiling context is the condition(s) applied to
 the document when publishing it. In my examples, I try to consistently set
 that profile in the root element; above, the publishing context is
 B, which means that only nodes either
 without any profiles or nodes
 including the context profile's value are included
 in the publication.

The Basic Example
Consider the following example:
<doc>
 <p>Information common to products A, B, and C.</p>
 <p profile="A">Information about product A.</p>
 <p profile="B">Information about product B.</p>
 <p profile="C">Information about product C.</p>
</doc>

Three p elements are profiled for products A,
 B, and C, respectively. A fourth remains
 unprofiled and is therefore always applicable. When publishing, the profile to be
 used could be selected by adding an attribute to the root, like this:
<doc profile="A">
 ...
</doc>
The profile attribute in the root is used as a context for the publication. Processed, the document would
 become:
<doc profile="A">
 <p>Information common to products A, B, and C.</p>
 <p profile="A">Information about product A.</p>
</doc>
Multiple profiles can be defined using this principle, of course, separating each
 value with a whitespace character:
<doc profile="B">
 <p>Information common to products A, B, and C.</p>
 <p profile="A">Information about product A.</p>
 <p profile="B C">Information about products B and C.</p>
 <p profile="B C">Information about products B and C.</p>
</doc>

Here, the last two p elements with B C profiles match
 the publishing context, B, assuming OR logic.
Similarly, using B C as context, profiles using B,
 C, and B C would be included, again assuming OR
 processing.

Multiple Conditions
It is common to use different attributes for different profiling purposes. There
 might be an attribute profile for processing product variants and an
 attribute audience for processing content according to intended reader
 category. Here's an example:
<doc profile="B" audience="default">
 <p>Information common to products A, B, and C.</p>
 <p profile="A">Information about product A.</p>
 <p profile="B C" audience="default">Information about products B and C.</p>
 <p profile="B C" audience="admin">Information about products B and C.</p>
</doc>

Here, the information is filtered in context B and a
 default audience, so the last paragraph would be excluded because
 the audience attribute doesn't match.
A third attribute might be required for processing the intended platform, a fourth
 for differences in diagnostic software, etc. Basically, different attributes would
 be used for differing semantics or when mixing them might prove messy for one reason
 or another.

Variable Text
Profiles can be used for variable text, like this:
<p>Information about product <phrase profile="A B C"/>.</p>
Ignoring the linguistic difficulties this construction tends to cause, the idea is
 simple. When processed, the phrase element is replaced with the
 context's profile value, A, B, or C. In
 the published document, a more generic text can be replaced with the exact product
 variant.

Tools and Processing
A profile's allowed values are sometimes defined as in enumerated lists to avoid
 user errors. In DITA, for example (see [id-dita]), an audience
 type attribute includes the following values[2]:
<!ATTLIST audience
 type (user | purchaser |
 administrator | programmer |
 executive | services | other |
 -dita-use-conref-target) #IMPLIED
... >
It follows that adding a new audience will cause problems. For that reason,
 CDATA constructs are common, as are catch-alls like this:
othertype CDATA #IMPLIED
This allows for new audience types without having to change the DTD. Here, having
 the authoring software keep track of the allowed values in a database or such is a
 good idea, because someone will almost certainly misspell the new audience type,
 causing problems later. Here's an example from a CMS I sometimes use:
Figure 1
[image:]

The values are fetched from a database. The profile uses two levels, a group
 (Grupp_B, above), and products C,
 D, and E that belong to the group[3].
Publishing
Publishing is a simple XSLT transformation that filters the contents according
 to context. If several conditions with differing semantics are used (such as
 profile and audience, above), using one stylesheet
 per profile type is easy to set up in an XProc pipeline used to preprocess the
 document.
Essentially, filtering is about string matching. The publishing context value
 needs to match the node's profile for the node to be included[4].

Boolean Logic
The above examples all assume OR. A single profile value match is enough to
 include a node. Similarly, even with a multiple-value context, a single matching
 profile value is enough:
<doc profile="A B">
 <p>Information common to products A, B, and C.</p>
 <p profile="A">Information about product A.</p>
 <p profile="B C">Information about products B and C.</p>
 <p profile="B C">Information about products B and C.</p>
</doc>

Here, nothing is excluded from the output because the A context
 matches the first node and B the second and the third.
Sometimes, Boolean AND is preferred[5]. Here is a simple (and limited) way to do it:
<doc profile="B">
 <p>Information common to products A, B, and C.</p>
 <p profile="A">Information about product A.</p>
 <p profile="B C">Information about products B and C.</p>
 <p profile="B C" boolean="AND">Information about products B and C.</p>
</doc>

Here, boolean="AND" in the last paragraph means that for it to be
 included, every
 profile value must match the context (B AND C). In
 this case, the last paragraph is therefore excluded from the output.
More advanced Boolean expressions might be useful, of course, but would almost
 certainly prove to be far more problematic to implement in an XSLT
 stylesheet:
<p profile="B AND C AND NOT(A OR D)">Some text.</p>
This is no longer mere XSLT territory; an external tool for parsing the
 attribute contents might prove necessary.

But There Are Problems
Renaming Values
Let's say you need to rename some of the profiles. It's not uncommon for a product
 to be renamed or even to possess multiple names, depending on, say, market
 requirements. Problems ensue:	If the values are from a schema, the schema must be updated with the
 new values, either by renaming the existing values or by adding new
 ones.
The first option means that legacy documents will no longer be valid
 and will have to be converted. The second means that the legacy
 documents will have to be converted anyway or there will be two
 unrelated values for what is essentially the same profile.

	Converting the old profiles to new values in this manner usually
 results in that the old ones can no longer be supported. If a legacy
 document is republished, it must use the new values. In a best case,
 this might confuse the existing users; in a worst, it might render the
 documents unusable.

	Very often, once the client is made aware of the basic problem, the
 decision is to keep the old document base, making them either
 incompatible or just very expensive to update, because of the doubled
 profiles.

Changing Scope
Changing the scope of a profile value means that
 the semantics of that value is updated.
 For
 example, let's say that a car engine D5 is updated with new
 components, perhaps as the result of updated specifications or new component
 suppliers. To marketing, it's still the same engine; after a certain date, it is
 simply manufactured using the new components instead of the old.
To engineers and mechanics, the changes are likely to be significant and require
 new assembly methods, diagnostics, spare parts, and so on. The documentation will
 have to reflect these changes. New content must be added, technical data updated,
 images and illustrations changed.
Keeping the old profile, D5, would still make sense to marketing,
 and the car itself would still leave the assembly line with a D5
 batch on the boot lid, but cause problems for the technical writer:	When updating legacy documents with new information (for example, when
 correcting errors), the writer would not be able to tell if a new
 warning, seemingly profiled with the same value, was compatible or not
 with the new information.

	When writing new D5 content, reusing old modules
 profiled with that same value would be equally deceptive; there is no
 easy way to know if the information is compatible or not.

Changing the profile value might solve part of the problem but again cause
 problems; the resulting conversions of old values to new are much harder to do.
 Which existing modules are compatible with the new version of the engine and which
 aren't? Very frequently the decision is to create a new (internal) profile, keeping
 the two apart, but this results in added processing when publishing, and certainly a
 doubled profile even in cases when the information is, in fact, identical.

Text Content
If the D5 profile, above, is used as variable text (see section “Variable Text”), changing the value is not an
 option. The product is still marketed as D5. The end user will
 most likely not know or care about the updated components or the resulting updated
 document content.
Here, again, some attempt to solve the problem by adding internal profiling
 values. In the car industry, model years are not used for profiling; instead, the
 vehicles are identified using manufacturing weeks. To someone in the know, the
 manufacturing week will clearly identify changes to a component such as the
 D5 engine, but this divides the readers into two categories: the
 internal audience that knows the significance of weeks and the external that only
 sees the model year. This may not seem as a big problem but any third-party
 technical group (consider, for example, third-party car mechanics, car enthusiasts,
 etc) will have problems unless they have knowledge about, and access to, the
 internal profiling.
Using profiles as variable text also results in language-related problems:	A single profile, say A, is uncomplicated to use in a
 variable: A is the latest-generation diesel
 engine for the environmentally conscious driver.

	A variable that might result from possibly multiple matching profiles
 is more difficult: B and C are
 high-performance turbo engines for the
 demanding racing driver.

For the writer, variable text resulting form single or multiple profiles are
 ultimately manageable only if they are known in advance.

Localisation
A related problem is about localisation[6]. If the target market requires different profiling values (perhaps the
 product is sold under a different name), the values must be handled either when
 translating or when publishing for that market. This is doable, of course, but will
 add to the complexity. If the localised value or scope needs to
 be changed at some point, as described above, further problems will arise.

A Basic Solution
Why Do We Have Problems?
The naming problems (that is, keeping the semantics of a profile unchanged but
 changing the displayed value) have a fairly obvious basic cause: Values
 are handled directly, instead of addressing the basic semantics of the
 profile. They inevitable change over time, but a simple product name
 change may be just that, a mere name change, meaning that the semantics remain
 unchanged. Yet, the profiling information that is available does not reflect
 this.
As with any changing content, any profile value should be version handled, yet
 they can't be when handled directly as strings.
The scoping problems offer further revelations:	We confuse semantics with values. Changed semantics may or may not
 result in a changed value; filtering should be based on semantics rather
 than representations.

	The semantics evolve over time, as do the values, but the values are
 only there to represent the semantics.
In the car example, D5 is used for both scopes because
 for the manufacturer's aftersales organisation, the engine variant is
 the same, regardless of the components used. In other words, we happen
 to have two different versions of the basic semantics but the same value
 to represent them.

	Because we confuse semantics and presentation, we can either describe
 the changes in presentation or describe the changes in semantics, but
 not both.

	A change in a profile's semantics should mean a new version of the
 profile but not necessarily new values.

Or, in so many words, we confuse semantics and current values, using them
 interchangeably and frequently changing the wrong one. We need to separate the
 two.

Abstraction Layers
The solution is to separate semantics from presentation, like this:
Table I
	
 Semantics

 	
 Presentation

	
 D5 old

 	
 D5

	
 D5 new

 	
 D5

Or, if changing profiles according to localisation, like this:
Table II
	
 Semantics

 	
 Presentation

	
 Platform X, GB

 	
 Vauxhall

	
 Platform X, DE

 	
 Opel

 Saab

	
 Platform X, SE

 	
 Opel

 Saab

And so on. In the former example, we have a basic name for the semantics
 (D5) and two versions, both represented by
 the same value. In the latter, we have three localisations of
 the basic platform name (X), GB, DE and SE. Interestingly, the
 localisations of the platform use three different values, Vauxhall, Opel and Saab.
 In this case, this represents the fact that the same basic platform is used to
 create three separate vehicle brands.
Obviously, all may be required to completely describe the correlation between the
 semantics and every intended representation of the profile[7], like so:
PROFILE-VERSION-LOCALISATION
The different versions and localisations could then be assigned values:
Table III
	
 Profile

 	
 Values

	
 D5.1-GB

 D5.1-DE

 D5.1-SE

 	
 D5

	
 D5.2-GB

 D5.2-DE

 D5.2-SE

 	
 D5

	
 X.1-GB

 	
 Vauxhall

	
 X.1-DE

 	
 Saab Opel

	
 X.1-SE

 	
 Saab Opel

Note that the table represents incomplete semantics rather than a real-life
 problem. More is required to determine which value to use and when.
If the core semantics change, the corresponding values may or may not change[8]; if changed values are desired, the corresponding semantics must change[9].
The core profile, the intended semantics of the filtering
 condition, should be uniquely and persistently named. That name should be version
 handled and localised as needed. So, I wonder, is there a convenient way to separate
 semantics from presentation?

Use URNs to Name Filters
I'm partial to URNs when it comes to uniquely identifying things. I'd have used
 URNs to name my kids, had I been allowed to.
It's easy to define a URN namespace for unique names. And if you control the
 scope, they can also be persistent. For URN-based profiling, something like this
 should do:
PROFILE:LANG-COUNTRY:VERSION

 PROFILE, of course, is the core profile, the semantic filter concept,
 LANG-COUNTRY the localisation and VERSION a specific
 milestone. Combined, they should describe the examples above, but
 PROFILE can be further broken down if needed. For example,
 Platform X in the above table could solve the
 semantic problems: X:OPEL, X:SAAB, etc.
A semantically identical profile used for different markets requiring different
 presentation (values) is solved like so:
Table IV
	
 URN

 	
 Values

	
 URN-X:sv-SE:12

 	
 V1

	
 URN-X:en-GB:12

 	
 V2

The values (V1 for Sweden, V2 for the UK) are
 different because the target localisation varies, but the core profile
 (URN-X) is the same, as is the version (12). The
 values V1 and V2 are therefore equivalent with each
 other.
Here's the introductory XML example using URNs as profiles:
<doc profile="urn:x-profile:a:sv-SE:12">
 <p>Information common to products A, B, and C.</p>
 <p profile="urn:x-profile:a:sv-SE:12">Information about product A.</p>
 <p profile="urn:x-profile:b:sv-SE:7">Information about product B.</p>
 <p profile="urn:x-profile:c:sv-SE:3">Information about product C.</p>
</doc>

A variable might be included like so:
<p>Information about product <phrase profile="urn:x-profile:a:sv-SE:12"/>.</p>
As the phrase element is a placeholder for variable content, the URN
 needs to be processed accordingly so that the right values are used when publishing.
 This construct, of course, can still result in a linguistic nightmare.
Can representing profiles with URNs solve the problems we've outlined?	If a profile is updated, either when changing the values or their
 scope, a system that can fully resolve the URNs will support both the
 old and new profiles. A new document can use the new values because it
 uses a later URN version while a legacy document can keep on using the
 old values because it uses the older URN version.

	As a consequence, no processing of legacy documents beyond resolving
 URNs is necessary.

	It is still easy to string match profiles when publishing, even if
 localisation is required.

	It is also easy to publish a legacy document that uses old URNs with
 new values by preprocessing the old URNs[10].

Processing
Editor
To make URNs practical, the writer will need help to identify and insert a
 profile (while URNs are unique, they are not necessarily human-readable).
 Similarly, when editing existing profiled nodes, the profiles must be easily
 identifiable.
The problem, of course, is that a string like
 urn:x-cassis:r1:cos:xplatform:000359:sv-SE:0.12 is not very
 descriptive. Identifying it requires asking the CMS, which might prove
 cumbersome if one ever wanted to work offline.
A cop-out solution is to use strictly human-readable URNs, but problems such
 as identifying the variations in scope in the D5 example above
 (see section “Changing Scope”) require
 more.
Perhaps better and certainly easier to process is to insert descriptive
 throwaway attributes containing current profile values when checking out or
 opening a document in the editor. Such an attribute, say, values,
 would be for convenience only and be stripped from the document at
 check-in:
<p profile="urn:x-profile:a:sv-SE:12" values="A">Information about product A.</p>
An more powerful alternative requiring a bit more processing is to use a
 mapping document listing any required profile-and-value pairs for any checked
 out or open documents, like so:
<maps>
		...
		<pair>
 		<profile>urn:x-profile:a:sv-SE:12</profile>
 		<values>A</values>
		</pair>
		<pair>
 		<profile>urn:x-profile:a:en-GB:12</profile>
 		<values>B</values>
		</pair>
 ...
</maps>
Or some variation thereof. A mapping document might also provide the basis for
 a profiling GUI, listing the available profiles and their versions in some
 human-readable form, an immediate advantage being that once populated, the
 mapping document would give access to the available profiles without requiring a
 server connection.
I've used a similar approach with a mapping document when matching URNs for
 checked-out or open documents with their temporary URLs in the editor:
<Repository>
 <RepositoryName>CosTI</RepositoryName>
 <Map>
 <UrnUrlPair>
 <Urn>urn:x-cassis:r1:cos:00002730:sv-SE:0.7</Urn>
 <Url>C:\Users\arin\Documents\condesign\cassis\ti\xmetal\2880321bb5d24b08a95e2854bccf859b\prox-för-cassis.xml</Url>
 <Writable>false</Writable>
 <EditUrl />
 </UrnUrlPair>
 </Map>
 <ShowMetadataDialog>true</ShowMetadataDialog>
</Repository>
Expanding this to include profiling would be relatively easy[11].

Variable Text and Localisation
Variable text in the editor can be inserted using both techniques above: a
 throwaway values attribute or a separate mapping document both do
 the trick. The former alternative requires less processing while the latter
 gives access to more features. Localised values, for example, would require the
 mapping document.

Combining Profiles
URNs (and indeed any type of abstraction layer) can help simplify complex
 profiles, such as the logical expressions mentioned in section “Boolean Logic”. Instead of having to
 process the expression in an attribute, the expression can be represented using
 another URN, like so (with apologies for the pseudo-code):
URN-EXPRESSION = URN1 AND URN2 AND NOT(URN3 OR URN4)
The replacement URN represents the expression and is used instead of it when
 processing. Of course, to be more than a theoretical exercise in neat ways of
 doing the unneeded, the situations in which boolean expressions can occur must
 be clearly defined. Such situations are common when describing complex modular
 products and their many variants; such products are frequently sold as
 individuals, requiring individualised documentation. A closer look of those
 situations is outside the scope of this document, but the point I want to make
 here is nevertheless an important one: rather than processing
 2*(3+2), process 10. An abstraction layer is
 simply some suitable representation of semantics.
Thus, a writer might use a shortcut URN to represent a group of profiles
 comprising several URNs. Such a user-defined URN could be paired
 with descriptive metadata to help identify it and other URNs created for similar
 purposes. The right systems support could easily provide the user with a listing
 of the underlying profiles.

Base Profiles
A complete profile includes localisation and version information, but
 sometimes it is useful to process the base profile
 regardless of language, country or version. This is easily done by defining
 wildcard behaviour:
URN:*:*
This basically ignores the wildcards; it matches every single one. With the
 URN semantics well defined (I use EBNF for mine) this should be easy.
Other useful variations here might define processing for, say, the latest
 version of a profile. A stylesheet treating URN:sv-SE:* as the
 latest is not hard to do but will, of course, require access to the
 corresponding values, either at runtime or when populating a mapping
 document.

Assertions
Sometimes, filtering profiled content causes structural problems in the
 resulting document, with required elements missing. Consider this admittedly
 simplistic example:
<doc profile="A">
 ...
 <warning>
 <p profile="A">Some content.</p>
 </warning>
 ...
</doc>
If a warning must always contain at least one p, the
 above will result in an invalid warning if published in context
 B rather than A. This is an easy mistake to
 make, and more complex nodes could easily end up being invalid without the user
 noticing, especially in modularised documents, resulting in the problem
 remaining undiscovered until the document is published.
As these problems will only appear later[12], they can be difficult to spot. This can be solved using schematron (ISO standard; see [id-idso-sch])
 assertions and validation on a document to check for problems and missing
 content after applying profiles. Such tests can be automated and used to
 validate the profiled nodes only. Here's a schematron fragment for checking if
 the warning contents match the publishing context:
<!-- Profiling status for node -->
<pattern>
 <rule context="warning">
 <assert test="p/@profile">No profiling information.</assert>
 <report test="p/@profile">Profiling present.</report>
 </rule>
</pattern>
<!-- Match -->
<pattern>
 <rule context="warning">
 <report test="contains(/*/@profile,p/@profile)">Profile matches
 publishing context.</report>
 </rule>
</pattern>
<!-- No match -->
<pattern>
 <rule context="warning">
 <assert test="contains(/*/@profile,p/@profile)">Profile does not
 match publishing context.</assert>
 </rule>
</pattern>
Note that complex schematron documents can be automatically generated if the
 possible profiles are known and the possible changes are defined in a
 schema.
It might be possible to use XML Schema 1.1 assertions but since an assertion
 on an element cannot refer to siblings or ancestors ([id-xsdassertions]),
 the assertion would have to be made on descendants only, like so:
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified">
 <xs:element name="doc">
 <xs:complexType>
 <xs:sequence
 maxOccurs="unbounded">
 <xs:element
 name="warning">
 <xs:complexType>
 <xs:sequence
 maxOccurs="unbounded">
 <xs:element
 name="p">
 <xs:complexType
 mixed="true">
 <xs:attribute
 name="profile"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute
 name="profile"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute
 name="profile"/>
 <xs:assert
 test="contains(@profile,.//*/@profile)"/>
 </xs:complexType>
 </xs:element>
</xs:schema>
This might result in some rather complex expressions, if the assertion
 required needed to go beyond the basics as illustrated above. I have not further
 explored this at the time of this writing.

Publishing
Publishing documents that include URN profiles remains easy; the URNs can be
 processed as strings, using string matching, so the filtering of nodes should
 not be a problem. Processing a translated document that uses untranslated
 profiles might prove tricky, however. Here is an example of a document
 originally profiled in Swedish but now translated to English:
<doc profile="urn:x-profile:a:en-GB:12">
 <p>Information common to products A, B, and C.</p>
 <p profile="urn:x-profile:a:sv-SE:12">Information about product A.</p>
 <p profile="urn:x-profile:b:sv-SE:7">Information about product B.</p>
 <p profile="urn:x-profile:c:sv-SE:3">Information about product C.</p>
</doc>

 None of the profiled p elements is
 included in the resulting publication. This, of course, could be the desired
 result, but more likely is that the profiles need to be preprocessed. One way
 could be to prep the file going to translation, replacing any language/country
 information in the URNs before translation. More flexible is to define the exact
 preprocess according to need. For one thing, if the profiled node is not
 relevant in the target localisation, the profile should remain unchanged[13].
Note
It might be better to include every applicable profile localisation
 directly in the above example, rather than replacing the original one during
 preprocessing, as suggested by a reviewer of this paper. Or, if the profile
 was always applicable, leave out the localisation altogether by using a
 wildcard convention (such as profile="urn:x-profile:a:*:12")
 with suitable assertions when preprocessing. More complex localisation
 requirements could be similarly handled (sv-SE
 and de-DE, but not
 en-GB, etc) using more complex
 assertions.

Also, the translators should be made aware of any processing requiring exact
 values (most notably when using profiles for variable text in content); the
 profile values in a localisation are far more important to
 the translator than their corresponding URNs. The latter, then, need to be
 mapped to any relevant values, including values resulting from localisation or
 from some special processing (i.e. if the latest version of a profile is
 preferred), before the original document is translated. The values can be placed
 in a mapping document[14], provided to the translators but they'd almost certainly prefer
 preprocessed documents where text variables such as the phrase
 element in section “Variable Text” include their values rather
 than the URNs:
<p>Information about product <phrase profile="A B C">A, B and C</>.</p>
Note
This will not solve the grammatical problem. It simply helps translators
 by showing the actual values rather than the URNs.

The Grammatical Problem Solved
The following sentence using a text variable will potentially cause problems
 if the number of applicable profiles varies:	A single profile, say A, is uncomplicated to use in
 a variable: A is the latest-generation
 diesel engine for the environmentally conscious driver.

	A variable that might result from possibly multiple matching
 profiles is more difficult: B and C are
 high-performance turbo engines for the
 demanding racing driver.

<p>The <phrase profile="A B C">is the latest generation diesel engine
for the environmentally conscious driver.</>.</p>
Brute force solutions involving marking up inline content to identify
 grammatical constructs might be manageable if only two need to be handled, if
 Boolean constructs are accepted, for example, by using expressions such as
 profile="(A AND NOT(B)) OR (B AND NOT(A))" for singular and
 profile="A AND B" for plural form, but even this will quickly
 become unmanageable for the writer.
Far more useful is to add an abstraction layer that defines the
 types of profiles, for example, diesel
 engines or turbo engines. A mapping document might
 define a group of profiles for the purpose, like so:
<group>
		<profile>urn:x-profile:abc</profile>
		<included>
 		<profile>urn:x-profile:a</profile>
 		<profile>urn:x-profile:b</profile>
 		<values>D5</values>
		</included>
 ...
</group>
Here, all variants are called D5 but the value could just as
 well be D Series Diesel Engine or something else. The point is
 that the abstraction is needed to a) group the participating profiles into a
 meaningful semantic group while b) keeping either singular
 or plural form, but not both, regardless of the number of exact profiles
 used.
A different but useful way to solve the problem is to count the context
 profiles in the root (one or more) and include markup to handle only the
 grammatically relevant differences. Singular might be marked up as
 <wrap context="s">is</wrap> and plural as
 <wrap context="p">are</wrap> or similar.

Out-of-line Profiling
The profiling abstraction layer described above provides the basic ideas but more fun
 can be had. What if, for example, you needed to profile XML following a schema that you
 don't control? There are ID attributes but no profiling semantics. You can't change the
 schema directly and processing for local needs would be too expensive[15]?
My immediate reaction when thinking about this was extended XLink.
 XLink ([id-xlink]) is an
 all-purpose linking standard that never really reached the level of acceptance I feel it
 deserves [16]. Among other things, the spec describes out-of-line
 links, that is, links that are described outside the resources they use,
 in linkbases. The linkbase lists locators that identify the start and end points of the links, and
 arcs that connect those points with each other. The
 spec allows for multi-ended links, which basically means that the link
 ends can be connected with each other in any combinations, as many times as
 needed.
Figure 2
[image:]

A linkbase (the blob to the left) lists locators and arcs that identify nodes and
 their relations in the document to the right. What's cool with extended XLink is that
 the link ends that participate in a link have no idea they are part of one. We can
 describe document semantics outside it.
Extended Profiling
Just as I can describe links outside the participant resources, I should be able
 to profile nodes in resources in a linkbase-like construct, like this:
<linkbase>
 <locator href="doc.xml#id1" profile="URN1"/>
 <locator href="doc.xml#id1" profile="URN2"/>
 <locator href="doc.xml#id2" profile="URN1"/>
 ...
</linkbase>
Two separate locators identify the two profiles for the node with
 id1 in doc.xml, URN1 and
 URN2, respectively. A third locator identifies a second node,
 id2, with the profile URN1. This, essentially, is
 the mapping document I described above (see section “Editor”), so throwaway values could
 easily be included, like so:
<linkbase>
 <locator href="doc.xml#id1" profile="URN1" values="A B"/>
 <locator href="doc.xml#id1" profile="URN2" values="C"/>
 <locator href="doc.xml#id2" profile="URN1" values="A B"/>
 ...
</linkbase>
With URNs identifying the document(s), it is easy to include proper version
 handling and match localisation values with their URNs, like so (this is not
 directly equivalent with the above):
<linkbase>
 <locator href="URN-DOC:sv-SE:1#id1" profile="URN1:sv-SE:1" values="A"/>
 <locator href="URN-DOC:en-GB:1#id1" profile="URN1:en-GB:1" values="B"/>
 ...
 <locator href="URN-DOC:sv-SE:2#id1" profile="URN1:sv-SE:2" values="A C"/>
 ...
</linkbase>
The first two locators describe version 1 of the document in Swedish and English
 containing the id1 node profiled with URN1, version 1, with localised
 values in Swedish (A) and English (B), respectively.
 The third locator describes the Swedish version 2 of the same document, profiled
 with version 2 of URN1 and updated values localised for Swedish (A
 and C).
As with the inline profiling (see section “A Basic Solution”), the URN profiles here can
 represent expressions.
Basic Requirements for the Document
Some requirements for that third-party document structure emerge:	The document must be XML.

	Any relevant node should be identified with IDs or some other way
 to uniquely identify profiled nodes.

	For variable text, there should be a placeholder to
 replace.

XLink Roles and Titles Put to Use
The XLink spec describes roles that can be
 applied to other XLink semantics:

 The value of the role or arcrole attribute must be a URI reference as
 defined in [IETF RFC 2396], except that if the URI scheme used is allowed to
 have absolute and relative forms, the URI portion must be absolute. The URI
 reference identifies some resource that describes the intended
 property.

Sound familiar? A URN, of course, is a type of URI, so roles in XLink can do
 more or less exactly what I have described above, except, of course, that there
 can only be one URN per locator. That means that either a set of URN profiles is
 described in a set of locators, with one URN per locator, or the URNs are
 combined to other URNs as hinted in section “Combining Profiles”. Of course, that
 resulting URN is just a reference [that] identifies some resource that
 describes the intended property, so we seem to be well within the
 intentions of the spec.
The spec also describes titles:

 The title attribute is used to describe the meaning of a link or resource
 in a human-readable fashion, along the same lines as the role or arcrole
 attribute.

So, here's an XLink version of the above example (stripping namespace stuff
 and such):
<linkbase>
 <locator href="URN-DOC:sv-SE:1#id1" role="URN1:sv-SE:1" title="A"/>
 <locator href="URN-DOC:en-GB:1#id1" role="URN1:en-GB:1" title="B"/>
 ...
 <locator href="URN-DOC:sv-SE:2#id1" role="URN1:sv-SE:2" title="A C"/>
 ...
</linkbase>
This, of course, is exactly what we need, and in processable form.

Out-of-line Processing
A lot of the required processing for out-of-line profiles is unchanged from the
 inline version (see section “Processing”).
 Out-of-line links, whether they are done in linkbases or in overlay documents, add
 some processing and may present practical difficulties, but also hint at a different
 approach when creating or editing the profiles in the editor.
Editor
When profiling a document out-of-line, we are essentially editing a linkbase,
 that is, a separate document. That document does not need to be edited using
 full XML editing capabilities, only what's needed for locating the nodes and
 profiling them. This suggests a DITA map-like approach. In quite a few XML
 editors out there, there is a separate window or pane for editing DITA maps. It
 is specialised and only needed to handle editing topicrefs and such.
Similarly, a linkbase editor needs only include the necessary profiling
 handling, adding locators to the linkbase using a function in the main editor
 and then adding profiles in the linkbase editor. For editing existing locators,
 it should be enough to click on them to locate the corresponding nodes in the
 editor but remain in the specialised window when editing them.
The remaining problem is a practical one: how does one visualise a profile in
 the main editor window so that the user can easily spot any profiled content.
 Here, a processing instruction might suffice if the editor has trouble
 populating the document tree from more than one source.

Schematron Uses
Schematron can be used to validate the resulting profiled content and to
 generate PIs in the target document to indicate profiles, but also to generate
 the linkbase itself, if the rules describing what can be profiled and how are
 formalised. If the target document doesn't contain IDs, a schematron-like
 reporting function implemented in the specialised editor can be used to identify
 nodes using XPath expressions.

Variable Text
Variable text is more difficult to implement properly out-of-line, not because
 of the out-of-line approach itself but because we don't necessarily control the
 document. The language must be such that the profile value naturally fits into
 the text flow.
If profiling content we don't control, the problem is mostly beyond our
 control. If there are placeholders, the problem can be solved, but if not, while
 we can pinpoint a location using a variety of means (anything from a PI to
 XPointer comes to mind) variable text when profiling out-of-line should probably
 not be attempted if we don't control the content.

The Grammatical Problem Revisited
The grammatical solution suggested in section “The Grammatical Problem Solved” is
 even easier to handle in a linkbase, as the profiles are all in one place,
 regardless of how many modules they are used in. They can easily be preprocessed
 by wrapping selected groups in abstractions (grouping profiles under a single
 label), counting them, and otherwise producing any relevant information about
 them when publishing a document.
A reviewer of this paper commented: Instead of storing the variable
 text only and using additional wrap element for the grammatical relevant
 differences, why not store the whole grammatical phrase as variable text?

This is perhaps an easier solution for an author to handle than the one I
 started out with, but one that will cause the duplication of any surrounding
 grammatical phrases and likely reintroduce copy-paste editing when authors
 include the complete phrases with the variant information, rather than only the
 product variants themselves. Applying this on the sentence from section “The Grammatical Problem Solved”,
 we might end up with a number of variants, almost but not quite copies of each
 other:
	A is the latest-generation diesel engine
 for the environmentally conscious driver.

	B is the latest-generation diesel engine
 for the environmentally conscious driver.

	C is the latest-generation diesel engine
 for the environmentally conscious driver.

	A and B are the latest-generation diesel
 engines for the environmentally conscious driver.

	B and C are the latest-generation diesel
 engines for the environmentally conscious driver.

	A, B and C are the latest-generation
 diesel engines for the environmentally conscious
 driver.

And so on, for any permutations that may arise. The conclusion, in my mind, is
 obvious: any more complex sentences involving named
 variants in this manner should probably be avoided in favour of a more generic
 label (say, diesel engine or D, in this case) in
 any real-world document.

End Notes
In Or Out Of Line?
Inline (meaning placed in the physical XML file) profiles can be
 messy. If new profiles need to be added to an otherwise unchanged XML file, it must
 nevertheless be edited to include those new profiles. In a system with version
 handling and modularisation, this frequently means that a profile change will result
 in that any module referring to the edited XML file must also be updated.
Moving the profiles out of line, to a linkbase, immediately solves this problem.
 With the profiles stored outside the physical XML files, the files only need to be
 edited if their contents (beyond the profiling information) are changed. Adding or
 editing profiles requires changing the linkbase, not the XML modules.
On the other hand, inline profiles are easy to display and highlight in an editor
 simply by adding some CSS. Out of line, there needs to be some kind of interaction
 between the editor and the linkbase. This may or may not be practical for an author,
 depending on the situation, and may be difficult to implement.
So which one is better? Leaving aside the implementation considerations for a
 moment, in a highly modularised[17] document management environment where each module is individually
 version handled for full traceability, moving the profiles out of line should be
 considered, especially if editing a module always means that it must be checked out
 and its version updated. A simple profile update inline could require updating not
 only the current module and its translations, but also any module that links to the
 current module, plus their translations.

I'm Not Alone
The techniques used when profiling and filtering, of course, are quite common.
 I've mentioned DITA as an example, but the same principles are found everywhere.
 DocBook's profiling attributes (arch, os, etc) come to
 mind, as do the more generic role attribute found in many
 schemas.
Indirection techniques to handle renaming are, of course, not uncommon, and are
 used in both XML-based systems and outside them. For a comprehensive, and, in many
 ways, different, profiling mechanism, have a look at the S1000D technical
 documentation specification's applicability model (see [id-s1000d-applic-model]
 for an introduction, or download the S1000D spec itself at [id-s1000d-home]).
The S1000D applicability model is frequently implemented by S1000D vendors in the
 so-called S1000D Common Source Database (CSDB) using a certain
 level of indirection. There is a product lookup database that is set up to manage
 and map product semantics with values (such as aircraft manufacturer names, product
 serial numbers and so on), including versioning. S1000D also includes an assertion
 mechanism, implemented to varying degrees by vendors.
Finally, it should be noted that the S1000D applicability model may use
 out-of-line profiling, for example, to manage inline filtering conditions.

Thank You
My sincerest thanks must go to the reviewers of this paper. I have attempted to
 update the paper accordingly, trying to clarify, expand and remove content as
 suggested by the many helpful comments. Any mistakes, omissions and
 misunderstandings are solely mine, however.
A far better title than the one originally supplied by me was kindly provided by
 the Balisage program committee. My original title, I feel, is best left
 unmentioned, but for the new one, my heartfelt (and relieved) thanks must go to
 Tommie & Co.

Bibliography
[id-dita] DITA audience Attribute http://docs.oasis-open.org/dita/v1.2/os/spec/langref/audience.html#audience
[id-urn] Uniform Resource Names (URN) Namespace Definition Mechanisms
 http://www.ietf.org/rfc/rfc3406.txt
[id-idso-sch] Schematron ISO
 standard http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
[id-xsdassertions] XML Schema 1.1 Structures
 (Assertions) http://www.w3.org/TR/xmlschema11-1/#cAssertions
[id-xlink] XML Linking Language (XLink) Version
 1.1 http://www.w3.org/TR/xlink11/
[id-prescod] XLink: behavior must
 go! http://www.biglist.com/lists/xsl-list/archives/199905/msg00218.html
[id-s1000d-home] The S1000D Web
 Site http://public.s1000d.org/Pages/Home.aspx
[id-s1000d-applic-model] S1000D Applicability Model http://www.ataebiz.org/forum/2008_ata_e-biz_forum_agenda/Applicability_vanRotterdam.pdf

[1] This is one of the basic problems with profiling that this paper
 attempts to address.
[2] The audience construct is more complex than that, but this suffices as an
 example.
[3] The resulting attribute value is a string, for example,
 Grupp_B_Produkt_C.
[4] With unprofiled content always being included.
[5] For example, the node might be an illustration showing a product
 variant (A) configured with a specific accessory
 (B), so it would only make sense to include the
 illustration in the published document if the publishing context
 included both A and B.
[6] For a moment ignoring the differing grammatical requirements imposed in
 variable text.
[7] Quite possibly, there might be other parameters to alter the basic profile
 in some way.
[8] A product may be partly or completely revised, yet retain its product
 name. Consider, for example, Apple's product naming strategy for tablets and
 laptops.
[9] Even though the product may be unchanged and the marketing department
 decide on a new name, without changing the basic semantic profile, there is
 no way of knowing when the name change occurred.
[10] Although it would result in having to check what exact
 semantics the later version represents. On the other hand, if
 profile semantics are versioned, it should be easy to bind
 specific versions to specific functionality.
[11] An added bonus is that in this case, the URN handling APIs are already
 in place.
[12] The document that is profiled remains valid, of course.
[13] Or the node removed; translators should not have to see it.
[14] Or in values throwaway attributes, depending on the
 situation.
[15] Agreed, this is a contrived example. I never really bought that classic
 namespacing argument, what if you need to import a foreign namespace into
 yours?

[16] The lack of a processing model while including behavioural attributes is a
 frequent criticism and arguably pertains to my suggested use, here. See, for
 example, Paul Prescod's XLink: behavior must go! ([id-prescod]).
[17] With multiple reuse levels or significant numbers of reusable modules, or
 both.

Balisage: The Markup Conference

Semantic Profiling Using Indirection
Ari Nordström
<ari.nordstrom@condesign.se>
Ari Nordström is the resident XML guy at Condesign AB in Göteborg, Sweden. His
 information structures and solutions are used by Volvo Cars, Ericsson, and many
 others, with more added every year. His favourite XML specification remains
 XLink so quite a few of his frequent talks and presentations on XML focus on
 linking.
Ari spends some of his spare time projecting films at the Draken Cinema in
 Göteborg, which should explain why he wants to automate cinemas using XML. He
 now realises it's too late, however.

Balisage: The Markup Conference

content/images/Nordstrom01-001.jpg
-Applic Value
Gupp_B

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Nordstrom01-002.jpg
Locator 1
Locator2
Locator 3

Locator 4
Locator5
Locator &

Locator 1
Locator 2
Locator 3
Locatora
Locator 5
Locator 6

