[image: Balisage logo]Balisage: The Markup Conference

Could authors really write in XML one day?
Peter Flynn

Balisage: The Markup Conference 2013
August 6 - 9, 2013

Article copyright © 2013 by Peter Flynn.

How to cite this paper
Flynn, Peter. "Could authors really write in XML one day?." Presented at: Balisage: The Markup Conference 2013, Montréal, Canada, August 6 - 9, 2013.  In Proceedings of Balisage: The Markup Conference 2013. 
        Balisage Series on Markup Technologies vol. 10 (2013). https://doi.org/10.4242/BalisageVol10.Flynn02.

Abstract
The learning curve for non-markup-expert authors to start
	writing and editing structured documents in XML is steep, and
	there are some specific barriers to the acceptance of editor
	interfaces (). In exploring
	the reasons behind these barriers, we identified some changes
	that could be made to common interfaces to improve
	acceptability ().
This paper presents the results of usability tests on the
	modifications, and suggests how some aspects of structured
	editing software could be adapted to extend their use into
	additional areas and markets.
This research is being submitted for a PhD in the
	Department of Applied Psychology, UCC (Human Factors Research
	Group).



Balisage: The Markup Conference


      Could authors really write in XML one day?

      
         Table of Contents

         
            	Title Page

            	Writers just wanna write
                  	Who writes what

                  	What they write with

               

            

            	What can we change?
                  	How can we change it?

                  	Additional mechanisms

                  	Testing

               

            

            	Results
                  	Using the affordances

                  	Divergences from the expected patterns

                  	Comment and discussion

                  	Conclusions

               

            

            	About the Author

         

      
   Could authors really write in XML one day?

Writers just wanna write
The initial impetus for this research grew out of a facile
      observation many years ago that an author had to learn SGML in
      order to use an SGML editor.
This is a necessary requirement in many fields where the
      content is complex: for example encoding literary or historical
      documents in TEI, or writing computer systems documentation in
      DocBook. The author needs to understand what markup is available
      so that it can be used to describe the finely-detailed features
      accurately, but the naming and function of the markup is not
      always entirely obvious ([Reid1980],
      [Joloboff1989]).
By contrast, to submit a paper to a conference, an article
      to a journal, or a book to a publisher, the conventional author
      uses a wordprocessor, or another standard like LaTeX. It is
      the author's responsibility to adhere to the sometimes arcane or
      inconsistent formatting instructions provided by the publisher,
      even when assisted by the publisher's style template.
Publishers have traditionally mistrusted authors who do
      their own formatting, even when using the publishers'
      specifications to provide final-format copy. Authors, for their
      part, are always encountering new reasons why
      their article, book, or paper has to be
      formatted differently. Where a stylesheet is provided, abusing
      or ignoring the styles is common, because it is sometimes the
      only way to get the formatting the author believes necessary,
      because they feel they should be in charge of the formatting
      ([Piez2007], [Ebel2005]). In
      many cases the solution is for the production team to remove all
      the author's formatting and send the document to a typesetter to
      have the house style applied.
In wordprocessors, structure is largely non-existent in the
      markup, and only interpretable by human eyes through the
      formatting. Synchronous typographic (ST) editing (usually, if
      inaccurately, called WYSIWYG) has been the standard interface
      for some decades, but it hides the markup boundaries so
      effectively that accurate editing is sometimes
      impossible.[1] In XML and LaTeX editors, the adoption of ST
      editing was slower although it is now widespread.
Unless there has been some extensive (and expensive)
      customization, conventional use of a structured-document editor
      usually means learning the language, the specific markup
      required for the domain, and the logic or business rules that
      accompany it. Much of this is far beyond the comfort zone of
      those writers who have no exposure to markup but nevertheless
      still have cause to write a document under the constraint of
      producing a specific (structured) file format.
The objective of this research was to see how much of the
      cognitive, perceptual, and technical burden of creating a
      formally-structured document might be relieved by changing some
      of the ways in which the interface works.
In earlier work we found that most writers simply want to
      write in what they perceive to be the easiest way
      (ST), adding what formatting they deem appropriate, without ever
      seeing a pointy bracket or a backslash, and without having to
      come to terms with the language of trees and graph theory,
      predicate logic, or document engineering ([Flynn2009]). While this desire was generally
      acknowledged by experts, it was felt possibly to be one of the
      reasons for the failure of XML and LaTeX to be adopted as
      general authoring formats outside their related technical
      fields.[2]
Who writes what
The target population for this study was those writers who
	are required to write (or who wish to write) documents
	adhering to a well-defined structure, but whose professional
	area of expertise is not in computing
	science, markup, editing, typesetting, or technical
	documentation, where advanced knowledge of markup technology
	is more commonplace. There are three key features to the
	activity of this population:
	it is very diverse: it includes people in the private
	    sector, public sector, NGOS, research, and
	    academia;

	its members are writing or editing to a known
	    structure (articles, books, reports, white papers, web
	    pages, and similar documents) defined by their field or
	    industry or organization;

	the documents themselves are intended or expected to
	    become a part of the permanent record; or to require
	    access to the structure for the purposes of re-use.


Structured documents tend not to be created for ephemeral,
	transient, or inconsequential use. This means that structured
	document file formats tend to have a high degree of
	durability, system-independence, reusability, and freedom from
	exogenous or arbitrary change. XML and LaTeX supplied the
	use cases in this study.
Structure for this purpose means a
	hierarchy of enclosures whose implicit or explicit content is
	a selection of repeatable objects holding text and other
	text-bearing containers, whose identity and existence is
	programmatically enforceable or verifiable. XML and LaTeX
	were therefore candidates; wordprocessor and DTP formats were
	generally not, except when they use named styles in a rigorous
	manner which identifes their content.

What they write with
In the survey of existing markup systems users reported
	earlier ([Flynn2009]), we identified that the
	editors most respondents had experience of were oXygen (24%)
	followed by Word with styles (13%). LaTeX editors accounted
	for another 12%, and the Arbortext editor rated 6% along with
	OpenOffice. Emacs (11%) and vi (7%) were also reported, but
	the number of other editors was very large and diverse.
Figure 1: User Survey: Markup types used
[image: ]


Outside the markup field, the much-publicized figure of
	500M people using Word appears to have no
	verifiable basis: the source most often cited for this ([Schulz2009]) just claims roughly half a
	  billion people use Office. However, observation
	would suggest that the penetration of Word is nevertheless
	extremely high, possibly close to 100% in tightly-governed
	environments, but more from organisational imperatives than
	from end-user choice. There are also many areas where there
	are legacy alternatives (eg Lotus, WordPerfect), or where
	open-source or free-to-use competition is accessible
	(OpenOffice, Libre Office, Google Docs). Recent, public,
	independently-verifiable global figures do not appear to be
	available from conventional sources (eg UN), although there
	are claims that many organizations use Word out of habit,
	familiarity, or legacy investment ([McLeish2008]). We therefore made the assumption
	that users of systems other than XML and LaTeX will be
	acquainted with Word or something very similar.


What can we change?
The earlier research also identified over 20 specific
      functions or tasks which the authors and editors surveyed found
      hard to use, misleading to identify, difficult to find, or
      non-functional in the structured editing systems they had used.
      A few of these (eg equation formatting) were outside the scope
      of the research; some were not specifically markup issues
      (opening and closing files, for example); and some were
      concerned with exogenous requirements (eg Unicode).
From these functions or tasks, six categories of direct
      concern were identified. Analysis showed that in many cases,
      users expected a specific behavior which not all editors
      provided, or the expected behavior required markup-related
      information that was not seen as relevant. The expectations were
      summarised in XML and XPath terminology for comparability, and
      are shown in an abbreviated form in Figure 2. Two
      supporting technologies were identified: Smart Insertion (SI)
      and Target Markup Adoption (TMA): see section “Additional mechanisms”. Some editors already implement some of the
      actions listed here.
Figure 2: Categories of interface action identified, with desired
	behavior
	Keyboard controls
	For the first three, detect multiple successive
	      keypresses and enter the appropriate formatting
	      dialog.
	Enter: create a new instance of the closest
		  repeatable ancestor-or-self element type in element
		  content; if this is impossible, or in the case of an
		  immediate second Enter keypress, annul the action
		  and re-try at the next higher level in the
		  hierarchy.
(At this point the behaviour requires definition
		  for each document type: only in a wordprocessor with
		  a flat data model can the candidate for a new object
		  always be a paragraph type.)

	TAB: valid only for cell-to-cell movement in
		  tables; otherwise a dead key.

	Space: must not auto-repeat (meaningless in
		  normal documents).

	Backspace/Delete (leftwards erase and rightwards
		  erase): erase character data including the content
		  of sibling elements traversed in mixed content, and
		  removing their markup when emptied. When
		  encountering a boundary with element content,
		  continue to erase content in the sibling or parent
		  element, removing emptied elements where permitted
		  by the grammar.



	Documents and metadata
		New Document: present skeleton instances of all
		  supported document types (classes), offering access
		  to user-provided types with a dialog for the
		  creation of initial styling (the Arbortext Architect
		  dialog, for example).

	Metadata: require compulsory metadata before
		  continuing.



	Insertions
	(Requires the use of SI and TMA.)
	Insert: replace with the term New
		  for adding new elements in element content, as the
		  concept of insertion into a document tree is foreign
		  to most writers; insertion into mixed content,
		  however, is understood.

	From external documents: use structural logic
		  (eg XPath) to identify elements in a dialog and copy
		  them to the current location (avoid having to open
		  the external document in a window and navigate to
		  the target to perform a copy-and-paste).



	Formatting controls
		Font style buttons: where possible, allow B, I,
		  and U (and S) to drop down a menu of the relevant
		  meanings (usages) that achieve the formatting goal
		  and capture the meaning in markup (eg the eight [now
		  ten] reasons for italics identified in [Flynn2002]).

	Formatting: apply changes to margins, spacing,
		  indentation, etc by invoking a stylesheet dialog
		  with selection of the current element type or all
		  instances of the same element type.



	Moving blocks
	(Requires the use of SI and TMA.)
	Block moves: allow function to mark start-point
		  from which scroll and search can be used to locate
		  the end-point without the need to hold keys
		  down.

	The use of tree-based navigation panes was
		regarded as too complex, and required too much
		foreknowledge.



	References
		Cross-references: use a map (pane, list) of
		  existing structure to identify the target and
		  obviate the need for manual ID/IDREF values. For
		  targets not represented in the structure, use the
		  mark-and-move mechanism (as for block moves) to
		  preserve the point of reference while marking the
		  target.

	Bibliographic references: use robust import or
		  dynamic reference from common reference database formats
		  via dialog or drag-and-drop. Citation may operate in
		  the same way as for cross-references.







How can we change it?
In addition to the actions listed in Figure 2, the survey identified specific
	requirements for actions not found in all editors, for example
	the joining and splitting of adjacent elements of the same
	type. With these additions, and the subsuming of
	keyboard-character usage into actions that were detected
	during a test (as opposed to being testable items themselves),
	a list of 12 tests was devised (see section “Testing”).
The requirements and expectations were compared with the
	list of editor functions reported in earlier work ([Flynn2006]), and a solution for each in interface
	terms devised. As these were model or outline solutions for
	testing, it was recognized that implementation in an editor
	would require adherence to the features and functions
	available.

Additional mechanisms
In order to express (and therefore test) the required
	changes, we identified two mechanisms which needed
	formalizing. Both have existed for some time in a few systems,
	but as far as is known, neither has been widely adopted. It
	should be borne in mind that these mechanisms, or their
	equivalent, are important when a writer cannot see any
	markup.
Some of the actions described require that the cursor
	position at an element boundary (start-tag, end-tag) dictate
	that tests for validity may be required both for a position
	inside and outside the boundary.
	Smart Insertion (SI)
	When a whole element or sequence of elements has
	      been cut or copied from elsewhere in the same
		document or another one of the same type,
	      pasting must be possible even when the target location
	      does not allow the fragment element types.
This is based on the principle of operating in an
	      environment where markup is not displayed, where
	      rejection of a paste action is not acceptable unless it
	      occurs at the boundaries of reason. Only when no
	      solution can be identified should the user be informed
	      that the material cannot be pasted at the target
	      location, a suitable explanation provided, and pasting
	      into the user's choice of possible elements allowed.
To achieve this, the containing element type[s] of
	      the fragment must be changed to one which is permitted
	      at the target location, including the validity of any
	      sub-element markup.
Any algorithm to implement SI must take into account
	      the possible changes to the containing element type as
	      well as to the changes in location described below. This
	      must include the possibility of demoting or promoting
	      the clipboard container element type in the hierarchy,
	      especially when the target location is within such a
	      hierarchy (eg section/subsection/subsubsection,
	      etc).
Where no such element type can be identified, the
	      test is repeated, starting with the original cut or
	      copied element types, on successive axes from the target
	      location, until a match is found, or a barrier reached
	      (eg the root element on the way up, or character data on
	      the way down). If a match is found, any required
	      containing elements are created to preserve validity,
	      and the user informed.

	Target Markup Adoption (TMA)
	When pasting a fragment from another
		document of a different type into mixed
	      content, any containing element type from element
	      content is first removed, so that the pasted material is
	      all mixed content.
If the target location is inside an element which
	      does not permit subelements, and subelements are present
	      in the clipboard material, the target location must be
	      moved to a point where pasting subelements is
	      permitted, or the nested markup must be removed and the
	      exposed character data merged with the preceding and
	      following text nodes.
Where there is a mismatch between the subelements
	      and the element types available in the target mixed
	      content, a table of equivalences or some derived
	      heuristics must be used (eg em in HTML to
	      equate with emphasis in DocBook,
	      hi in TEI, or \emph in
	      LaTeX).
All font-related markup, where identifiable, is
	      stripped from the clipboard, except Bold, Italic,
	      Underline, and Strikeout, and the resulting sequence
	      normalized before pasting.




Testing
For reasons of practicality, it had already been
	determined that writing an entirely new editor in full, just
	to test a dozen interface items, was not feasible. Two editor
	manufacturers did very generously offer a copy of their
	(completely undocumented) monolithic source code for
	experimental purposes, but these were declined with regrets as
	involving work beyond the time limits available. After
	examining the several usability testing methodologies
	available, the decision was made to use Paper Prototyping
	([Snyder2003]), as this provided the levels of
	control required, with the ability to conduct the tests
	without committing to a specific operating environment, or
	predicating a specific editor.
Screenshots were prepared of the 12 test scenarios
	developed from the foregoing list in the form of a simple
	editing task to be completed (eg Highlight this word
	  because it's a product name). A panel of testers was
	recruited from local institutions, following the requirements
	listed in the section “Who writes what” where possible. A
	web-based questionnaire was used to gather information on
	their work area, background, and professional experience in
	order to eliminate those who fell outside the specifications,
	resulting in 20 testers being asked to participate.
Testing was carried out in the Usability Testing
	Laboratory of the Human Factors Research Group (HFRG) in the
	School of Applied Psychology at University College
	Cork, during June and July 2013.
The test harness (some 200 generated screenshots with a
	script and protocol) was piloted both with colleagues in the
	HFRG experienced in usability testing, as well as with users
	from outside the institution who fitted the target user
	profile. Some logic choices, phrases and expressions, and
	changes to the rubrics were implemented as a result. The base
	screen used is shown in Figure 3.
Figure 3: Base screen showing generated interface
[image: ]


The additions and changes in the interface are:
	a New menu item and toolbar button for adding new
	    structural elements

	a specific New-Doc toolbar button

	an Outline toolbar button for access to the document
	    structure for navigation

	a Mark toolbar button for recursively selecting the
	    current container

	Crossref and Cite toolbar buttons

	an additional List type toolbar button for description
	    lists


Each tester was given time to study the interface
	screenshot before starting, and the additional buttons and
	menu items were explained. They were then presented with the
	12 tests in sequence, and their clicks or keystrokes were
	recorded on paper for later analysis. After testing there was
	the opportunity to discuss the interface, and to identify if
	the tester felt that it was more or less efficient than their
	current system.
A sample screenshot is shown in Figure 4. This shows the drop-down menu from clicking
      the I button.
Figure 4: Paper-prototyping screenshot showing
	drop-down I button menu
[image: ]


The 12 tasks were:
	Create a new document (a journal article)

	Add a new paragraph after the current one

	Split a paragraph into two

	Join a paragraph to the preceding one

	Join a paragraph to the following one

	Add a new section to the article

	Add a new (numbered) list

	Move a block of text from one place to another

	Highlight a product name (in italics)

	Add a cross-reference to another section

	Insert a citation and reference to a source

	Insert a fragment from another document


A set of keystroke/mouseclick patterns was constructed for
	comparison with the testers' solutions, consisting of a
	sequence of mnemonics for the existing (traditional) ways of
	doing the tasks, and the new ways envisaged using the new
	affordances (buttons/menus).
Figure 5: Pattern examples
	Add new list (task 7, rank 1, new method)
	numlistbut

	Move a block of text (task 8, rank 7, old method)
	cursor,hilite,cut,cursor,paste

	Add new section (task 6, rank 5, old method)
	cursor,newbut,section





Some of these (especially the list buttons) involved a
      change in behaviour which was explained before the test. The
	List buttons add a new list at the first
      available point after the cursor; they only make the current
      paragraph into a list item if the paragraph was selected.


Results
All testers completed all the tasks successfully, with one
      minor exception, although there were numerous divergences from
      the expected patterns en route. There were
      two principal axes of measurement:
	how much use the testers made of the new functions in
	  the interface; this was measured by a pattern rank value and
	  an affordance class (old, new, or hybrid) for the pattern
	  eventually followed in each task (Figure 6);

	how much they diverged from the expected patterns;
	  this was measured by the number of unexpected steps
	  along the way to completing a task.


Using the affordances
The responses fell into two groups: those tasks solved by
	a preponderance of old or new methods, and those solved by a
	much wider mix.
Figure 6: Number of testers by task showing affordance
	  class
[image: ]


	Three of the twelve tasks (create new document, insert
	    cross-reference, and insert citation) were solved almost
	    entirely using the new affordances; two more were solved
	    using a hybrid approach (highlight product and insert
	    fragment); and two were solved entirely using the
	    traditional method (both join paragraph tests);

	The remaining five showed an unrelated mix of old and
	    new methods, showing a wide variety of approaches by the
	    testers, although in two (adding new section and adding
	    list), 12 out of 21 testers used the new
	    affordances;


A preference for editing methods using existing, known,
	keystrokes or mouseclicks appears to be strong in the longest
	and most complex task (moving a block of text), and in the
	least understood task (splitting a paragraph: some testers had
	to ask what this meant).
Question 8 (highlighting in italics) has also been
	successfully tested independently by a project in the
	Netherlands examining a related but different aspect of text
	editing ([Geers2010]).

Divergences from the expected patterns
Thirty-five out of the 252 task solutions (12×21) included
	dvergences from the expected patterns: keystrokes or
	mouseclicks which were out of sequence, exploratory,
	unintended, or otherwise abnormal.
An outlier was eight divergent steps to solve Task 12
	(Insert a fragment of another document) using
	the traditional steps of opening the external document,
	finding, marking, and copying the required text, closing the
	document, and pasting the text into position. This was an
	extreme case, and perhaps indicates that the anecdotal
	perception of user reluctance to adopt new methods may not be
	entirely correct.
Figure 7: Total number of occasions of divergence by test
[image: ]


A measure of divergence was taken by by multiplying the
	number of divergences by the number of testers who diverged (a
	form of weighting) as shown by Figure 7.
Three tasks (create document, highlight product, and
	insert citation) were completed with no divergences at all,
	and five more (add paragraph, join paragraph [both], insert
	cross-reference, and insert document fragment) with only one
	or two.
The greater numbers of divergences were in task for which
	there are traditionally several different ways of achieving
	them, all equally valid. This may indicate that not all users
	stick to a single, canonical way of performing a task:
	#3, Split paragraph; as noted earlier, some
	    uncertainty clearly existed in the testers' mental model
	    of a paragraph. In all these cases except the last, the
	    first move (position the cursor) was correct, but three of
	    them (four if we include the last) then exercised the New
	    menu or button, believing the task to require the
	    introduction of a new paragraph. It is not known if this
	    is due to a fault in the rubric, although as the majority
	    of testers succeeded with no problem, this is regarded as
	    unlikely.

	#6, Add new section; these are minor, as they are
	    almost all the introduction of [unnecessary] vertical
	    white-space before finally using the new affordances to
	    add the new section.

	#7, Add new list; as with test 3 above, the initial
	    cursor movement was unexceptional (although unnecessary),
	    but as with test 6, the extra white-space reveals the
	    inheritance of the wordprocessor model, where the list
	    buttons operate on the current paragraph.

	#8, Move text; these were slightly more varied
	    divergences: some do indeed use the same model as above
	    (of adding white-space, in this case before pasting), but
	    they included an experimental excursion into
	    vi keystroke (shortcut) mode,
	    and a use of the Find function to
	    locate the end of the required section.


None of these would appear to affect the thesis that the
	new affordances provide an alternative means to completing the
	tasks, but they do perhaps reveal the change of mind-set
	required for efficient use of a structured editor. In
	discussion, several testers said they were unaware that an
	editing interface could do so much; that is,
	automate so much of the task as this one implies.

Comment and discussion
Three questions were asked after each test session was
	completed:
	How obvious was it what to click on?

	Did you feel it needed more or fewer clicks than your
	    current system?

	Do you feel that the program is doing it
	      right (that is, as you would
	      expect)?


These were not intended as formal survey questions, but
	more designed to elicit a conversational response, although
	time was limited as sessions were targeted at 45 minutes, and
	30 of those were nominally assigned to the tests. They do
	nevertheless contribute an indication of potential user
	satisfaction, which is overall positive.
	Obviousness
	Eight testers felt the interface was
	      very obvious to use; 13 rated it
	      mostly obvious.

	More or fewer clicks?
	12 testers thought such an interface would take
	      fewer clicks than their current system (mainly
	      Word); six thought it would
	      take about the same number or not more;
	      one declined to answer; one thought it would be more,
	      but the interface was good; and one would
	      only say it was acceptable.

	Does it right?
	18 felt the interface did it right;
	      one declined to answer; one said mostly;
	      and one just thought it was easier.



The overall impression was of slight surprise that there
	even existed ways different from Word of doing everyday
	editing and writing tasks.
The additional comments made in answer to the questions
	indicate that some aspects of the interface as tested would
	need revising, or that a different way of expressing the
	intent (the affordance) should be investigated:
	the term document fragment was a poor
	    choice, as it uses a term not commonly
	    understood. Paragraph or (in the
	    context), signature block would have been
	    better, even though the concept being tested was actually
	    generalisable to other element types.

	the distinction between New (additional structural
	  material) and Insert (new material inside existing text
	  within a paragraph) was imperfectly understood. Despite the
	  extensive misunderstandings created by the application of
	  the term in the concept of document trees, perhaps it is
	  already too well-entrenched to change.

	the idea is interesting that more clicks would even be
	    acceptable if the resulting document quality is improved
	    or the reason for the clicks is made clear.

	the breadcrumb should have been clickable.



Conclusions
We conclude that changes along these lines are likely to
	contribute to making a structured-document editor more usable
	by the target population.
In addition, a number of unexplored techniques were
	identified which could contribute to lower user frustration,
	among them Target Markup Adoption and Smart Insertion.
The benefits likely to accrue from these changes are
	greater user satisfaction and less training, leading to
	increased productivity and greater accuracy in document
	construction.
We did not directly test whether these benefits would lead
	to lower costs within an organisation, as there are many other
	factors which affect this, including the organisational change
	which may be required to move to a new system. However, as
	several of them have recently been implemented in interfaces,
	including Word and Xopus, there appears to be a willingness
	among manufacturers as well as users to use them.


References
[Ebel2005] Ebel, Hans Friedrich; Bliefert,
      Claus; and Russey, William E. The Art of Scientific
	Writing: From Student Reports to Professional Publications in
	Chemistry and Related Fields. Wiley-VCH, Weinheim,
      Germany, 2nd ed. 2005. ISBN 9783527298297.
[Flynn2002] Flynn, Peter. Formatting
	Information. Special issue of TUGboat 23:2, 2002.
      TeX Users Group, Portland, OR. http://www.ctan.org/tex-archive/info/beginlatex/, 
      §8.2.5, p.158.
[Flynn2006] Flynn, Peter. If XML is so
	easy, how come it’s so hard?: The usability of editing
	software for structured documents. Presented at the
      Extreme Markup Languages Conference 2006, Montréal, Canada,
      August 7–11, 2006. http://research.ucc.ie/articles/extreme06
[Flynn2009] Flynn, Peter. Why writers
	don't use XML: The usability of editing software for
	structured documents. Presented at Balisage: The
      Markup Conference 2009, Montréal, Canada, August 11–14, 2009. In
      Proceedings of Balisage: The Markup Conference 2009. Balisage
      Series on Markup Technologies, vol. 3 (2009). doi:https://doi.org/10.4242/BalisageVol3.Flynn01.
[Geers2010] Geers, Frederik.
      User-friendly structured document editing: removing
	barriers for author acceptance. Masters Thesis,
      Content and Knowledge Engineering, University of
      Utrecht.
[Joloboff1989] Joloboff, Vania.
      Document Representation: Concepts and standards.
      In Andre, J; Furuta, R; and Quint, V: Structured
	Documents, CUP, Cambridge UK, 1989,
      pp.75–105.
[McLeish2008] McLeish, Sheri; McNabb, Kyle;
      Tsang, Keith. Breaking Up Is Hard To Do: The Microsoft
	Word Love Story. Forrester Research Inc, Cambridge MA,
      Report 46409, December 2008. http://www.forrester.com/home?docid=46409#/Breaking+Up+Is+Hard+To+Do+The+Microsoft+Word+Love+Story/fulltext/-/E-RES46409
[Piez2007] Piez, Wendell and Usdin, Tommie.
      Separating Mapping from Coding in Transformation
	Tasks. Presented at the XML Conference, Boston, MA,
      December 3–5, 2007.
[Reid1980] Reid, Brian. Scribe: A
	Document Specification Language and its Compiler. PhD
      Thesis, Carnegie-Mellon University, 1980.
[Schulz2009] Schultz, Michael.
      Microsoft Office Is Right at Home. Microsoft
      Corporation, 8 Jan 2009. http://www.microsoft.com/en-us/news/features/2009/jan09/01-08cesofficeqaschultz.aspx
[Snyder2003] Snyder, Carolyn. Paper
	Prototyping. Morgan Kaufmann (Elsevier Science), San
      Francisco, 2003. ISBN 1558608702.



[1] One editor, compiling chapters from different authors,
	  unwittingly pasted all but the first chapter into the final
	  footnote of the first chapter, because the cursor appeared
	  to be at the end of the chapter, and OpenOffice permitted
	  the footnote to hold eleven chapters' worth of text!
[2] Although both Word and OpenOffice/Libre Office now XML
	  as a file storage format to represent the (unstructured)
	  content of documents, we are concerned here with the use of
	  semantic markup.

Balisage: The Markup Conference

Could authors really write in XML one day?
Peter Flynn
Peter Flynn runs the Electronic Publishing Group in IT
	  Services at University College Cork. He is a graduate of the
	  London College of Printing and the University of
	  Westminster. He worked for the Printing and Publishing
	  Industry Training Board and for United Information Services
	  as IT consultant before joining UCC as Project Manager for
	  academic and research computing. In 1990 he installed
	  Ireland's first Web server and since then has been
	  concentrating on electronic publishing support. He was
	  Secretary of the TeX Users Group, and a member of the IETF
	  Working Group on HTML and the W3C XML SIG, and he has
	  published books on HTML, SGML/XML, and LaTeX. Peter is
	  editor of the XML FAQ and an irregular contributor to
	  conferences and journals in electronic publishing and
	  Humanities computing. He is currently completing a part-time
	  PhD in user interfaces with the Human Factors Research Group
	  in UCC. He maintains a technical blog at
	  http://blogs.silmaril.ie/peter



Balisage: The Markup Conference

content/images/Flynn02-001.png
N of responses

20
15
10 -11
9
5— - - 6
5 5
3 3
07 SR S B S E S D T 6 & & 08 P PR
SIS O IO O
O 3K NG NN ECIENSR
K Wof é}~§\ §§Q¥’ " échp & S N
é\ &,bo & é“\\o KD
o°

Editor






content/images/Flynn02-003.png


content/images/Flynn02-002.png
File Edit New Insert Format Settings View Table Window Help

ENN= BN RV R RIS U g AN I " B ORISR N - AR S TN

"
New-Doc Open Save Save-As Print Quick Outline Mark Cut Copy Paste New Find Crossref Cite Chars Spell Thesaurus Settings

Help

|Paragraph Ivl

Charter Roman |v||12 |V| @ @ . DE

9\1 2 3 4 5 6 7 8 9 10N 12131415161718192021222324252627282930313233343536373839404142%4445
1 1 1 1

to 11 ringleaders of the world’s largest software counterfeiting syndicate today. The
sentences, ranging from 1.5 to 6.5 years, include the longest sentences handed down for
this type of crime in China’s history. Based in the southern China province of
Guangdong, members of the syndicate were arrested by Chinese authorities in July
2007, following an international investigation led by China’s Public Security Bureau
(PSB) and the FBI. Microsoft and hundreds of Microsoft customers and partners also
provided information which assisted in the investigation.

The 11 accused were part of a criminal syndicate responsible for manufacturing and
distributing more than an estimated $2 billion (U.S.) worth of high-quality counterfeit
Microsoft software. The counterfeit software, found in 36 countries and on five
continents, contained fake versions of 19 of Microsoft’s most popular products and was
produced in at least 11 languages. ['Microsoft greatly appreciates the work of China’s
PSB and the FBI in taking strong enforcement action against this global software
counterfeiting syndicate,” said David Finn, associate general counsel for Worldwide
Anti-Piracy and Anti-Counterfeiting at Microsoft. “Unfortunately, software counterfeiting
is a global, illegal business without borders. Criminals may be on the other side of the
globe and may not even speak the same language, but they prey upon customers and

Article>Section(3)>Subsection(3.2) >Paragraph (7) Page 15: 3,309 words Mode: User






