
2013-08-07 The XML info space 1

The XML info space

Perceiving the space,
pushing its boundaries,

addressing its limitations
HansHans--JJüürgen rgen RennauRennau, , TraveltainmentTraveltainment GmbHGmbH
PresentedPresented at Balisage 2013, August 7at Balisage 2013, August 7

Presenter
Presentation Notes
This is a talk the info space. But what is the info space? It is not a model, program or product. It is only an abstraction - an abstraction which throws new light on XML technology, which can lead the way to new priorities, concepts and solutions.

2013-08-07 The XML info space 2

Roadmap
Facts & Experience XML technology

Abstraction Info space

Perceptions Potential Boundaries Limitation

Responses Space non-XML p-faced
paradigm redefinition collections

Presenter
Presentation Notes
The abstraction is derived from technological facts and coding experience. It provides a focus which enables clear perceptions, namely the potential of the info space, its boundaries (what is within, what is not?), and its limitations (what is the principal weakness?). These perceptions certainly call for responses, and it is these responses which ultimately determine the value of the info space abstraction.

2013-08-07 The XML info space 3

Facts !

Presenter
Presentation Notes
Facts first!

2013-08-07 The XML info space 4

Facts (1)

XML document = node tree

fn:doc(u1) = node tree at URI u1

u1, u2, u3, … = node forest

One single node forest

File system

Internet Intranet

Static documents

Dynamic documents

XML db

Presenter
Presentation Notes
An XML document is a tree of nodes. Many trees are a forest. Taken together, all accessible documents – found in the file system, in XML databases, the internet or an intranet – are one single forest of nodes.

2013-08-07 The XML info space 5

Facts (2)

Uniform content model

Content = node

Defined by a fixed set of node properties

Uniform location model

Location = node

Expressed by URI & node relationships

Uniform navigation model

Start, End = nodes

Expressed by URI & node relationships

Uniform processing model

In, out = sequence of (nodes | atoms)

Presenter
Presentation Notes
Reading and rereading the specs, and relating theory to actual coding experience, one can discover a unity and simplicity of design which is amazing.

2013-08-07 The XML info space 6

Coding experience

Presenter
Presentation Notes
This uniformity enables a remarkable coding experience.

7

Task
<projects>

<project id="p1">
<xsd>

<aRQ href="/user/xsds/aRQ.xsd"/>
<aRS href="/user/xsds/bRS.xsd"/>

</xsd>
<msgs>

<aRQ href="/user/msgs/aRQ.xml"/>
<aRS href="/user/msgs/aRS.xml"/>
<aER href="/user/msgs/aER.xml"/>

</msgs>
</project>
<project id="p2">
…

</projects>

<aRQ>
…
cty=‘FX’
…

<aRQ>
…
cty=‘FX’
…

Task:
Check all messages of project “p1”
for invalid country codes.
(Valid codes are provided by a doc.)

Presenter
Presentation Notes
This slide shows a catalog of document URIs, which are arranged in a tree-structure. Their placement within the structure implicitly associates them with additional information, enabling their distinction – for example to which project a URI belongs.

8

Solution
<projects>

<project id="p1">
<xsd>

<aRQ href="/user/xsds/aRQ.xsd"/>
<aRS href="/user/xsds/bRS.xsd"/>

</xsd>
<msgs>

<aRQ href="/user/msgs/aRQ.xml"/>
<aRS href="/user/msgs/aRS.xml"/>

</msgs>
</project>
<project id="p2"> …

</projects>

<aRQ>
…
cty='FX'
…

<aRQ>
…
cty='FX'
…

doc('p.xml') //
project [@id='p1'] / msgs // @href /
doc(.) // @cty /

[not(. = doc('c.xml') // code)]

Presenter
Presentation Notes
The task is solved by a single expression – a one-liner – which enters the catalog, selects URIs, leaps into the corresponding documents, extracts country codes and filters them by comparison with a code list provided by another document.

2013-08-07 The XML info space 9

Abstraction

Presenter
Presentation Notes
Amazing… I seek an abstraction which captures something essential about those facts and the experience.

2013-08-07 The XML info space 10

The info space
Node =

uniform point of content & location

Sum of nodes =
homogenous space of located information

[Definition] info space =
sum total of all accessible XML resources

Presenter
Presentation Notes
The result of my search is essentially a single word – space, with its connotations of homogeneity and continuity.

2013-08-07 The XML info space 11

Unified …

content location

processing navigation

Presenter
Presentation Notes
The space is homogeneous because it is governed at any point by a unified concept of content, location, navigation and processing.

2013-08-07 The XML info space 12

Specs & the info space

The specs define nodes

Nodes imply the images “tree”, “space”

Image “tree” enables definition “axis”

Image “space” enables definition “…”?

Tree image foundation of the navigation model

Space image extension of the navigation model?

Presenter
Presentation Notes
The image of a space can have a real impact on how we think about navigation, perhaps even suggesting extensions of the XPath navigation model. And I would like to remind you of the fact that “node tree” is also only an image – but an image enabling new concepts like navigation axes.

2013-08-07 The XML info space 13

Three key perceptions

Awareness of an info space enables
three key perceptions:

The space - its potential (its usefulness)

The space - its boundaries

The space - its limitations

Presenter
Presentation Notes
The info space concept provides a focus which enables three key perceptions.

2013-08-07 The XML info space 14

The potential

Presenter
Presentation Notes
The potential seems to me obvious – a radical reduction of the complexity required to evaluate distributed information. But access to the potential totally depends on whether the information of interest does reside in the info space. And even if it does, the realization of the potential depends on whether we let the evaluation happen within the space, rather than just extracting items from the space and performing the evaluation outside of the space (as JAXB does, the mainstream approach to XML data in Java)…

2013-08-07 The XML info space 15

Space Paradigm

Information … into the space!

Evaluation … within the space!

REST

XQuery / XSLT

Presenter
Presentation Notes
So the desire to use the info space as widely and as fully as possible - makes me embrace two general rules, which I call the “space paradigm”.

2013-08-07 The XML info space 16

Pushing the boundaries!

Presenter
Presentation Notes
There are resources within the space, and others without – the space has boundaries!

2013-08-07 The XML info space 17

Three boundaries

XML info space

Physical boundary

API
 b

ou
nd

ar
y Form

at boundary
http POST

http header

zipped

JSON

CSV

SQL

unconnected

Presenter
Presentation Notes
Resources are excluded by three different boundaries.

2013-08-07 The XML info space 18

Add standard functions accessing documents.
For example:

fn:httpDoc

fn:zipDocs

httpDoc ($uri, $username, $password,
$headerFields, $body)

zipDoc ($uri, $directories, $namePatterns)

The API boundary

Presenter
Presentation Notes
One need not think about the info space in order to appreciate new functions providing extended access to XML resources. However, awareness of the info space boosts their priority! A nice-to-have becomes something essential.

2013-08-07 The XML info space 19

The format boundary

XML syntax = representation of a node tree

data syntax = representation of a node tree

generalization

Presenter
Presentation Notes
Without the image of an info space, there is no such thing as a format boundary. There is XML, and there are other formats, so what? The very image of an info space changes the picture: for many data formats there is no good reason why they should be excluded from the space. Exclusion seems simply wrong once we dare to generalize a basic principle of XML technology…

2013-08-07 The XML info space 20

Redefinition of non-XML
Simple example: CSV, redefined

A,B,C
1,2,3

<table xmlns="http://www.w3.org/infospace/csv">
<row><col>A</col><col>B</col><col>C</col></row>
<row><col>1</col><col>2</col><col>3</col></row>

</table>

parsingserialization
fn:csvDoc

fn:csvString

Presenter
Presentation Notes
As a simple example, CSV syntax might be redefined to be a shorthand for XML documents describing tables. If the redefinition is standardized, a standard function may parse CSV resources into node trees and another standard function may serialize such node trees to CSV. End result – XML and non-XML representations are equivalent, we can switch between them at any moment. This means a seamless integration of CSV files into the info space.

Meta-model:
format redefinition

R1 Mapping rules: F => node tree
R2 Mapping rules: node tree => F
R3 Rules: can a given node tree be mapped to F?

Given a non-XML format F:

C1 For any format instance G: R1(G) satisfies R3
C2 Node tree N satisfies R3

R1(R2(N)) is deep-equal to N

Rule sets

Constraints

Presenter
Presentation Notes
The redefinition of non-XML formats must provide formal equivalence of XML and non-XML representations. A small meta-model of format redefinition is required. It defines rule sets which an actual redefinition must provide, and constraints which it must meet. Key constraint: input and output of round-tripping must be deep-equal (not byte-equal).

2013-08-07 The XML info space 22

Types of format redefinition

Vocabulary based

Format instances can be captured by a

format-specific vocabulary

Examples: CSV, CSS, SQL, Java-Properties

Structure based

Node tree structure reflects format instance structure

Example: JSON

Presenter
Presentation Notes
In simple cases – e.g. SQL - format redefinition only requires the design of an XML vocabulary which captures the non-XML representation. The important case JSON needs a different and difficult approach – an unambiguous mapping between data structures which does not resort to vocabularies.

2013-08-07 The XML info space 23

JSON & the info space

JSONiq

integrates JSON into XQuery…

but does not model JSON as node trees

Mapping approaches

Map JSON to an XML document …

but add nodes (e.g. @name) to “remember” the source JSON

The info space approach:

JSON = node tree

But the redefinition is problematic – JSON names are strings !
Redefinition requires an extended node model :
new node properties [key], [model]

Presenter
Presentation Notes
The info space abstraction has a profound impact on the evaluation of attempts to integrate XML and JSON technologies. Without the concept of an info space, JSONiq appears to be a successful integration of JSON into XML technology. But JSONiq does not integrate JSON into the info space, as JSONiq does not model JSON documents as a node tree. Consequence: JSON is inaccessible to path expressions, and JSONiq navigation in JSON cannot even remotely be compared with XPath navigation in XML. JSONiq has important merits. But before accepting JSONiq as the *standardized* approach how to integrate JSON into XML, one should consider carefully the alternative: modeling JSON as node trees – integrating JSON into the info space. We might not get a second chance.

2013-08-07 The XML info space 24

The limitations

INFO SPACE

Presenter
Presentation Notes
The info space is a space – rather than a heap - because XPath can move across it freely. But the potential of the info space is reduced by a principle limitation.

2013-08-07 The XML info space 25

Unstructured set of trees

XPath navigation

strong - within-document (path expressions)

weak - between-document (fn:doc, fn:collection)

Info space structure

node tree = highly structured set of nodes

info space = unordered collection of trees

Presenter
Presentation Notes
XPath navigation has a strong side and a weak side, and this reflects the very structure of the info space…

26

Navigation support data

URI1 URI2 URI3 URI4 URI5 URI6

Navigation Support Data

Resources

External
node properties

Structure
(e.g. directories)

Links
(e.g. XLink)

XPath
Navigation

Engine

XPath
Evaluation

Context

Presenter
Presentation Notes
URIs are just strings – they do not convey structure or semantics. The info space is therefore an unstructured set of unrelated resources which cannot be distinguished until an in-memory representation is constructed. This explains why XPath offers so little support for between-document navigation. There is no space structure, we ignore resource relationships, and resources do not have any properties visible from without. Space structure, resource relationships and visible properties may, however, be introduced on the grounds of support data which create a second layer of information, built upon the first layer consisting of the resources themselves. Key idea: formally define navigation support data and make them available to the XPath navigation engine. This requires the extension of the XPath evaluation context by components capturing navigation support data.

27

XLink data

URI1 URI2 URI3 URI4 URI5 URI6

Navigation Support Data

Resources

XPath
Navigation

Engine

External
node properties

Structure
(e.g. directories)

Links
(e.g. XLink) XPath

Evaluation
Context

fn:xlink

Linkbases

Presenter
Presentation Notes
For example – how about linkbases? They define arcs which can be regarded as navigation steps. If the evaluation context has access to linkbases (perhaps importing them, similar to schemas), XPath navigation along arcs is possible.

2013-08-07 The XML info space 28

XLink per XPath
XLink arc: a mapping S1 => S2

where S1 and S2 are sets of resources

XPath arc step: “return the ending resources of selected arcs”

Arc selection:

Arc must “match” a QName

The context node must be among the starting resources

Expressions - axis or function

fn:xlink ($arcTest as xs:QName) as node()*

xlink::x:y

Presenter
Presentation Notes
An XLink navigation step might be defined by the selection of arcs to be traversed, and such selection might be expressed by a QName. The step could be made available by a new standard function, or even a new navigation axis.

29

Navigation support data

URI1 URI2 URI3 URI4 URI5 URI6

Navigation Support Data

Resources

External
node properties

Structure
(e.g. directories)

Links
(e.g. XLink)

XPath
Navigation

Engine

XPath
Evaluation

Context

Presenter
Presentation Notes
The idea is clear, I think. Another, perhaps more important possibility concerns external properties which might be attached to nodes, especially document nodes.

30

External node properties

URI1 URI2 URI3 URI4 URI5 URI6

Navigation Support Data

Resources

XPath
Navigation

Engine

External
node properties

Structure
(e.g. directories)

Links
(e.g. XLink) XPath

Evaluation
Context

fn:nodes

p-faced
collections

Presenter
Presentation Notes
Such association might be provided by a novel kind of collection – so-called p-faced collections, short for “property-faced collections”. Let us look more closely …

2013-08-07 The XML info space 31

The info space –
without collections

URI

URI

URI

URI

URI

Presenter
Presentation Notes
Without collections, access to documents requires knowledge of their URI.

2013-08-07 The XML info space 32

The info space –
with a collection

URI

Presenter
Presentation Notes
If collections are available, we get several documents for the price of a single URI – the collection URI.

2013-08-07 The XML info space 33

Filtered collection

fn:collection("http://proteins")
[.//xref/@id eq "P51587"]

W A S T E F U L L
(construct all nodes)

collection URI

Presenter
Presentation Notes
An alternative to fn:doc: (a) retrieve a collection, (b) filter it. A wasteful procedure, because all collection nodes must be constructed.

2013-08-07 The XML info space 34

p-faced collection

fn:nodes("http://proteins?id=P51587")

collection URI

p-filter

N O W A S T E
(construct only selected nodes)

Presenter
Presentation Notes
Now imagine that the collection nodes are associated with additional, external properties – for example metadata. They could be used as filter criteria, and a new XPath function might return the filtered collection. As the filtering does not refer to node data, but external properties, the function does not need to construct any nodes which are not actually selected!

2013-08-07 The XML info space 35

p-faced collection

code: fr
borders: at, be, ch, …
rivers: Rhein, Loire, Maas, …

code: de
borders: at, be, ch, …
rivers: Donau, Elbe, Rhein, …

code: it
borders: at, be, fr, …
rivers: Drava, Po, Adige, …

node

node

node

nodes p-faces

borders=at and
(rivers=Maas
or rivers=Elbe)

p-filter

Presenter
Presentation Notes
The external properties of a node are called its p-face (“property-face”). A p-face is not part of the node data – it is merely associated with them. The association between a node and its p-face is provided by a novel kind of node collection (“p-faced collection”), to which the node belongs. The p-faces allow a selection of nodes which does not require their construction. The selection is specified by a so-called p-filter.

2013-08-07 The XML info space 36

Underlying models

p-face

A set of name/value pairs

names - NCName (or better QNames?)

values - sequence of atomic values

p-filter

condition tree

leaf nodes – p-value comparisons (foo=X, bar>1, zoo~a.*)

inner nodes – Boolean operations (and / or / not)

Presenter
Presentation Notes
Striving to keep things simple, I constrain the p-face to be a set of name/value pairs. A p-filter is a condition which can be applied to p-faces, yielding either true or false. A simple p-filter model is based on comparisons between property values and test values, as well as Boolean combinations of such comparisons. The filter is a condition tree in which the leaf nodes represent property value comparisons and the inner nodes represent Boolean operations.

2013-08-07 The XML info space 37

Collection = set of maps

Collection entry = a logical map

_node = node string (URI, serialization, …)

property1 = property-value-1

property2 = property-value-2

property3 = property-value-3

Presenter
Presentation Notes
The p-faced collection is in fact just a set of maps. Each map has a special entry, the “node string”, which is a string somehow enabling the construction of the respective node. It might be a serialized document, a document URI, or some other kind of location info. The remaining entries represent properties. A property might provide metadata, or echo node data, or perhaps be some aggregation of node data like an average or count.

2013-08-07 The XML info space 38

Collection - example

node URI code borders rivers

file://countries/fr.xml fr at, be, ch, ... Rhein,
Loire, …

file://countries/de.xml de at, be, ch,… Donau,
Elbe, …

file://countries/it.xml it at, ch, fr,… Drava,
Po, …

Presenter
Presentation Notes
If each collection member does have the same set of external properties, the collection can be represented by a simple table, and it might be stored in a relational database. If the set of external properties is not uniform, the collection can be stored as a NOSQL collection – e.g. a MongoDb collection. P-faced collections can be stored and queried by non-XML technologies!

Using non-XML technology

p-filter engine

Node factory

p-filter SQL-query node strings

nodes

MySQL

nodes

data storequery engine

p-filter engine

Node factory

MySQL

Presenter
Presentation Notes
Their integration into the XPath processor requires components – a p-filter engine and a node factory. Let’s assume the collection is stored in a MySQL data base. The p-filter engine translates the p-filter into a SQL-query, queries the data store, obtains for each selected entry a node string and passes these node strings to the node factory.

2013-08-07 The XML info space 40

P-filter syntax

XML syntax

Command syntax

<p:filter>
<p:or>

<foo>X</foo>
<bar op="gt">1</bar>

</p:or>
</p:filter>

foo="X" or bar>"1"

Presenter
Presentation Notes
A p-filter is formally defined as an element information item. Besides XML syntax, a concise command syntax is supported...

2013-08-07 The XML info space 41

REST & fn:nodes

REST

URI = collection-URI + ? + p-filter

Result = selected nodes wrapped in a root element

fn:nodes
a) URI = URI of a deployed collection ?

> use p-filter engine and node factory
b) otherwise

> invoke REST and deliver child nodes of response root

Presenter
Presentation Notes
… which can be handy when selecting nodes from a p-faced collection. The selection requires a collection URI plus a p-filter – two simple strings, that is, which can be concatenated. Therefore, p-faced collections are well-suited for exposure via REST-full web services. The new fn:nodes function may access both, locally deployed collections (via p-filter engine and node factory) and REST-accessed collections.

2013-08-07 The XML info space 42

p-benefits

p-faced collections offer two distinct benefits

Augments XPath navigation

Enables the integration of non-XML technologies
into XML data storage and XPath navigation

MySQL

MongoDB

fn:nodes

Presenter
Presentation Notes
p-faced collections offer two distinct benefits, and it is difficult to tell which is more important. The integration of non-XML technologies enables effective answers to the massive scaling problems which XML is notoriously prone to.

2013-08-07 The XML info space 43

Space – three potentials

Status quo – follow the space paradigm

Pushing the boundaries

API boundary – new XML access functions

Format boundary – non-XML read/write functions

Addressing the limitations

p-faced collections - fn:nodes

XLink - fn:xlink

Presenter
Presentation Notes
Wrapping up, the info space is a perspective which focuses on three potentials: the potential offered by the technological status quo, the potential to be unlocked by pushing the boundaries, and the potential promised by improved inter-document navigation.

2013-08-07 The XML info space 44

Space – levels of response

Application level
extension functions my:nodes

Processor level
extension functions vendor:nodes

Standards level
standard functions fn:nodes

Presenter
Presentation Notes
The space abstraction guided me towards concrete proposals how to increase the potential of the space, pushing boundaries and addressing limitations. These proposals mean new XPath functions. Such new functions can appear on three different levels – as extension functions on the application level, as extension functions on the processor level, or as new standard functions. Therefore the info space is a challenge to which we can respond without delay – certainly on the application level, hopefully on the processor level. If these levels create interesting facts, the standards level may respond to them, in due time. What I propose now, and here– is to mind the image of an info space!

Thank you!

content location

processing navigation

	The XML info space
	Roadmap
	Facts !
	Facts (1)
	Facts (2)
	Coding experience
	Task
	Solution
	Abstraction
	The info space
	Unified …
	Specs & the info space
	Three key perceptions
	The potential
	Space Paradigm
	Pushing the boundaries!
	Three boundaries
	The API boundary
	The format boundary
	Redefinition of non-XML
	Meta-model: �	format redefinition
	Types of format redefinition
	JSON & the info space
	The limitations
	Unstructured set of trees
	Navigation support data
	XLink data
	XLink per XPath
	Navigation support data
	External node properties
	The info space –� without collections
	The info space – � with a collection
	Filtered collection
	p-faced collection
	p-faced collection
	Underlying models
	Collection = set of maps
	Collection - example
	Using non-XML technology
	P-filter syntax
	REST & fn:nodes
	p-benefits
	Space – three potentials
	Space – levels of response
	 Thank you!

