
Markup and the Canadian 

National Model Building Codes 

 

 

Balisage 2013,  Montréal 

 

Brent Nordin 



Introductory Comments 

 Canadian National Model Building Codes: 
◦ Building 

◦ Fire 

◦ Plumbing 

◦ Energy Code for Buildings 

◦ Farm Buildings 

 Developed by a secretariat at Canada’s National 
Research Council 

 Talk will cover markup aspects of the Codes 
documents: 
◦ XML content lifecycle 

◦ Publishing chains 



The XML Library 

 Codes content converted from 
proprietary format to SGML for the 1995 
printing 

 Data model expressed as a DTD 

 Converted to XML for 2005 printing 

 One library for all Codes documents 

 Content stored as XML fragments 
 A single sentence or table of the normative material 

 A larger self-contained chunk for non-normative 
material 



XML Library Structure 

 A single tree of XML fragments 

 Leaves contain the bulk of the Codes text 

(sentences, tables, appendix notes, intent 

analysis) 

 Higher levels in the tree contain 

structural information fragments 

 Tables, appendix notes, and intent analysis 

fragments are referenced from sentence 

fragments 



Leaf node 

 Sentence, table, appendix note, objective 

analysis 

 Rich structure 

 Leaf nodes related to a single building 

Code sentence (provision). 

 Tied together through REFIDs or 

Xlink:HREF 



Non-leaf nodes 

(structural fragments) 
 Articles 

◦ Include a title 

◦ References to sentences and tables 

 Parts 

◦ Include part/section/subsection 

◦ Include titles for each level 

 Book 

◦ Include references to parts 



XML Fragment Maintenance 

 Formal workflow 
◦ Acceptance for review 

◦ Technical committee work 

◦ Governance review 

◦ Stakeholder review 

◦ Public review 

◦ Editing 

◦ Translation 

◦ Publication 

 Workflow now mediated by a CMS 
◦ Electronic form for each proposed change 

◦ XML fragments attached to form as separate documents 



System Architecture 

 
CMS 

(web server, CGI) 

Change form 
(browser, HTML, Javascript) 

XML Server 
(web server, Python) 

NoSQL 

DB 
(XML) 

XML Library 
(filesystem, R/O) 

REST 

API 



NoSQL Database 

 One per Codes document 

 Structural representation of each 

document 

 Includes some publishing artifacts like 

sequence numbers 

 Queries are parameterized XSLT 

transforms 



XML Server 

 XML web server adds Codes-specific XML 
functionality to the CMS 

 RESTful API 

 Implemented in Python (on top of CherryPy 
framework) 

 Interactions with the NoSQL DB and any 
generated XML documents based on XSLT 
or Xpath 
◦ No horrible DOM coding 

◦ No data model mismatches between XML and 
programming language 

 



Composite Fragments 

 Attached to the Codes change form 

 Built up in stages 

◦ 1st stage from NoSQL DB 

◦ 2nd stage adds referenced files 

◦ 3rd stage looks for appendix note references, 
builds link templates 

◦ 4th stage adds appendix notes, resolves link 
templates 

 Creates a complete work package for the 
technical committees 



Fragment Bursting 

 Edited composite fragments must be 
returned to XML library 

 Editing governed by DTD (in Arbortext) so 
content is structurally sound 

 Bursting process does limited semantic 
checking 

◦ ID, IDREF syntax 

◦ ID, IDREF links 

 Recreates structural and leaf node XML 
fragments 



Publishing Chains 

 XML to HTML  

◦ for preview and online viewing 

 HTML to PDF  

◦ for print 

 HTML to HTML 

◦ For side by side output 

 XML to XML to HTML 

◦ for consolidated print 



XML to HTML 

 Main publishing chain 

 Multi-stage rendering chain 

◦ CMS server-side job setup 

◦ 2 preprocessing steps 

◦ Main rendering step 

◦ Post-filtering 

◦ HTML Tidy 



Side by Side Rendering 

 Merge HTML versions of rendered 

French and English Codes change forms 

 Relies on class information in HTML for 

synchronization 

 



Consolidated Print 

 Merges all open proposed changes with 

reference content 

 Designed to show what a Codes 

document would look like: 

◦ Relative to the previously published version 

◦ Including overlapping proposed changes 

◦ With new sequencing to allow for discussions 



Summary 

 A semantically rich data model enables 
unforeseen capabilities 

 A clear distinction between content and 
metadata has been critical 

 The Canadian Building Codes will outlive 
both me and any markup technologies 

◦ SGML was good 

◦ XML is good 

◦ A markup technology yet to be invented will 
be good 

 



 

Thank you 

 

Brent Nordin 

anglebrackets@outlook.com 


