[image: Balisage logo]Balisage: The Markup Conference

The Apache Qpid XML Exchange
High speed, reliable enterprise messaging using open standards and open source
Jonathan Robie
Emerging Technologies
Red Hat

<jonathan.robie@redhat.com>

Balisage: The Markup Conference 2008
August 12 - 15, 2008

Copyright © 2008 by the author. Used with
permission.

How to cite this paper
Robie, Jonathan. "The Apache Qpid XML Exchange." Presented at: Balisage: The Markup Conference 2008, Montréal, Canada, August 12 - 15, 2008. In Proceedings of Balisage: The Markup Conference 2008.
 Balisage Series on Markup Technologies vol. 1 (2008). https://doi.org/10.4242/BalisageVol1.Robie01.

Abstract
XML is widely used for messaging applications. Message-oriented
Middleware (MOM) is a natural fit for XML messaging, but it has been
plagued by a lack of standards. Each vendor's system uses its own
proprietary protocols, so clients from one system generally can not
communicate with servers from another system. Developers who are
drawn to XML because it is simple, open, interoperable, language
independent, and platform independent often use REST for messaging
because it shares the same virtues. When XML developers need
high-performance, guaranteed delivery, transactions, security,
management, asynchronous notification, or direct support for common
messaging paradigms like point-to-point, broadcast, request/response, and publish/subscribe,
they have been forced to sacrifice some of the virtues that drew them
to XML in the first place. Java JMS is an API, defined only for Java,
and it does not define a wire protocol that would allow applications
running on different platforms or written in different languages to
interoperate. SOAP and Web Services offer interoperability if the same
underlying protocols are used and if the same WSI-protocol is used by
all parties, but at the cost of more complexity than a MOM system. And
as the basic components of enterprise messaging have been added piece
by piece to the original specifications, Web Services have become
complex, defined in a large number of overlapping specifications,
without a coherent and simple architecture.

The new Advanced Message Queueing Protocol (AMQP) is an open, language
independent, platform independent standard for enterprise messaging.
It provides precisely the coherent and simple architecture that has
been missing for sophisticated messaging applications.
Red Hat Enterprise MRG includes a multi-language, multi-platform, open
source implementation of AMQP. We develop the messaging component as
part of the upstream Apache Qpid project. In order to meet the needs
of XML messaging systems, we contributed the Apache Qpid XML Exchange,
which provides XQuery-based routing for XML content and message
properties. Together, AMQP, Apache Qpid, and the Qpid XML Exchange
provide a solid foundation for mission critical XML messaging
applications.

Balisage: The Markup Conference

 The Apache Qpid XML Exchange

 High speed, reliable enterprise messaging using open standards and open source

 Table of Contents

 	Title Page

 	Advanced Message Queueing Protocol

 	Programming AMQP Applications with Apache Qpid

 	The Apache Qpid XML Exchange
 	A Simple Example

 	A Weather Alert

 	Querying Message Properties

 	XML Messaging in the REST/SOAP/ESB Landscape

 	Summary

 	About the Author

 The Apache Qpid XML Exchange
High speed, reliable enterprise messaging using open standards and open source

Modern software systems are often composed of many separate
programs working together. In simple cases, there may be a few
programs running on one computer; in more ambitious systems, many
programs may be running on various hardware and operating systems on
machines scattered across the world.

These programs may be developed in a variety of languages, including
both traditional programming languages and scripting languages, and
they may include legacy programs written long before there was a need
to communicate with other programs.

Programs may be distributed across an organization, or span the
boundaries of an organization to include key trading partners,
suppliers, and consumers. These programs need to share data, and many
of these programs represent that data as XML. From the very beginning,
XML was designed to make it easier for programs to exchange data,
independent of the languages, platforms, and underlying systems [Bosak], and it has been widely used as a way to exchange
data with existing proprietary systems. But XML defines only the data
format, not the mechanism for exchanging documents among
programs.
In many systems, the requirement is to support message transfer,
allowing one program to send a message that can be received by one or
more other programs. These messages may be simple notifications, or
part of a request/response, publish/subscribe, or similar
pattern. Message-oriented middleware (MOM) provides direct support for
sending and receiving messages, hiding the details of network
communication, and providing guaranteed delivery, high performance,
transactions, and a variety of other features.
Most MOM systems support asynchronous messaging between programs,
typically sending messages to message queues that store a message
until it is retrieved, even if the receiving program is busy or not
connected. These systems are often described using an email analogy -
a program can address a message and send it, or receive the messages
addressed to it.
Other MOM systems use multicast or broadcast messaging instead of or
in addition to asynchronous messaging.

Unfortunately, message-oriented Middleware has been plagued by a
lack of standards. Each vendor's system uses its own proprietary
protocols, so clients from one system generally can not communicate
with servers from another system. For Java programs, most systems
support the Java JMS API, but this is only an API, and does not define
a standard protocol that would allow communication across systems.

The Advanced Message Queuing Protocol (AMQP) [AMQP]
was developed by a consortium of companies [1] to be an open standard for enterprise level
messaging. It is licensed to allow implementation on a perpetual,
worldwide, royalty-free basis, and will be submitted to a recognized
standards body.[2]

AMQP supports most common messaging idioms, including
request/response, point-to-point, publish/subscribe, and broadcast. It
has security, reliability, transactions, and other basic enterprise
messaging features built in.

AMQP defines a network protocol, which specifies what client
applications and message servers must send over the wire to
interoperate with each other. It also defines a protocol model, which
specifies the semantics an AMQP implementation must obey to be
interoperable with other implementations. AMQP is already being used
in production systems, where it is serving very high message volumes;
for example, one bank has a worldwide deployment that delivers over
100 million messages per day in a 7 hour trading window in its Tokyo
hub.
Red Hat Enterprise MRG [MRG] includes a multi-language,
multi-platform implementation of AMQP that provides enterprise level
messaging with guaranteed delivery, transaction management, queuing,
distribution, security, management and heterogeneous multi-platform
support. Client APIs include C++, Java, Python and C# for .NET. A JMS
API is also provided for JMS environments. We develop the AMQP
implementation as part of the upstream Apache Qpid project [Qpid].

The Apache Qpid XML Exchange is a messaging exchange
specifically designed for reliable, high performance XML messaging. In
the XML Exchange, message routing is specified in the broker (not in
the application), using XQuery, based on the content of XML messages,
message properties, or both. Queries can be as simple or as complex as
needed.

Clients can determine which documents they are interested in without
changing the applications that publish XML documents.

The Qpid XML Exchange was developed by Red Hat and contributed to the
Apache Qpid project.

This article discusses the AMQP protocol, shows how to write a basic
messaging application in Apache Qpid, then shows how to write
messaging applications using the Qpid XML Exchange, using XQuery to
specify which messages should be routed to a queue. Finally, we make a
brief comparison between the technologies presented in this paper and
alternative technologies like REST, SOAP and Web Services, Java JMS,
ESB, and ebXML.

Advanced Message Queueing Protocol
The AMQP Model
In the AMQP model, message producers write to exchanges, exchanges
route messages to queues, and message consumers read from queues. AMQP
allows modular architectures that cleanly separate the concerns of
each module; for instance, a message producer can write to an exchange
without knowing which queues its messages will be routed to, and a
message consumer can read from its queues without knowing anything
about the message producer or the exchange to which the message was
written.

Here are the basic components of the AMQP model:
	A message producer is a program that
writes messages to an exchange. To do this, it creates a
message, fills it with content, gives the
message a routing key[3], and sends it to an exchange. The routing
key is simply a string that the exchange can use to determine to which
queues the message should be delivered[4].

	An exchange accepts messages from message producers and routes them to
message queues if the message meets the criteria expressed in a
binding.

	A binding defines the relationship between an exchange and a
message queue, specifying which messages should be routed to a given
queue. For instance, a binding might state that all messages with a
given routing key should be sent to a particular queue. If a queue is
not bound to an exchange, it does not receive any messages from that
exchange.

	A message queue holds messages and delivers them to the message
consumers that subscribe to the queue. A message queue may be durable,
which means that the queue is never lost; even if the messaging broker
were to suffer a hardware failure, the queue would be restored when
the broker is restarted. A message queue may be exclusive, which means
only one client can use it. A message queue may also be auto-delete,
which means that the queue will disappear from the server when the
last client unsubscribes from the queue.

	A message consumer is a program
that reads messages from a message queue. A message consumer can
create, subscribe to, share, use, or destroy message queues and their
bindings (as long as it has have permission to do so).

Before delivering a message, the message producer can influence
message handling characteristics by setting various message properties
in the message; for instance, one property determines whether the
message is durable. If a broker supports persistence, it guarantees
durable messages are never lost; even if the messaging broker were to
suffer a hardware failure, all durable messages would be delivered
when the broker is restarted. Another property can be used to specify
message priority; the broker gives higher priority messages precedence
over lower priority messages. A message producer can use transactions
to ensure that a group of messages are all received. In a transaction,
messages and acknowledgements acknowledgements are batched together,
and all messages in the transaction succeed or fail as a unit.
The exact way that a message is routed depends on the exchange
type. Here are the main exchange types in AMQP:
	A fanout exchange routes messages to every queue
bound to the exchange, ignoring the routing key.

	A direct exchange routes a message only if
a queue's binding key is the same as the message's routing key.

	A topic exchange is similar to a Direct exchange, but it supports
multipart keys that contain multiple words separated by the “.”
delimiter; for instance, a message producer can create messages with
routing keys like usa.news, usa.weather, europe.news, and
europe.weather. Binding keys can include wildcard characters: a “#”
matches one or more words, a “*” matches a single word. Typical
bindings use binding keys like #.news (all news items), usa.# (all
items in the USA), or usa.weather (all usa weather items).

Any of the standard exchange types we have discussed in this
paragraph can be used for exchanging any kind of data, including
XML. Routing decisions are based on the exchange type and the routing
key only; none of these exhange types allow routing based on the
content of a message, and none has any direct support for XML.

The XML Exchange, which is the subject of this paper, is a custom
exchange type that lets programs use XQuery to specify routing for XML
messages. Before we discuss the XML Exchange, we will look at the code
needed for a simple and conventional AMQP program written in Python.

Programming AMQP Applications with Apache Qpid

This section shows how to write a basic AMQP application using Apache
Qpid. The examples in this section are written in Python and use the
direct exchange. Like the other native AMQP exchanges, the direct
exchange works well for sending XML messages as long as routing
decisions are not made based on the content of the messages.
Applications that need to do routing based on the XML content of a
message use the XML exchange, which is presented in the following
section.

This application is composed of two programs:
	A message producer that sends
messages to an exchange (which routes messages to the appropriate
message queue).

	A message consumer that creates
a message queue, binds the queue to the exchange, then reads messages
that are sent to its queue.

In this application, messages are published to the direct exchange using the key
"routing_key". The first step is to establish a binding on the server to route
these messages to a queue called "message_queue":

session.queue_declare(queue="message_queue")
session.exchange_bind(exchange="amq.direct", queue="message_queue",
routing_key="routing_key")

Before these lines can be invoked, the client must log in to the
server and create a session. Here is a complete program that uses the
above two lines to declare a queue:
import qpid
from qpid.client import Client
from qpid.content import Content
from qpid.queue import Empty

#----- Initialization ----------------------------

Set parameters for login

host="127.0.0.1"
port=5672
amqp_spec="/usr/share/amqp/amqp.0-10-preview.xml"
user="guest"
password="guest"

Create a client and log in to the server.

client = Client(host, port, qpid.spec.load(amqp_spec))
client.start({"LOGIN": user, "PASSWORD": password})

session = client.session()
session.session_open()

#----- Main Body of Program-----------------------

session.queue_declare(queue="message_queue")
session.exchange_bind(exchange="amq.direct", queue="message_queue",
routing_key="routing_key")

#----- Cleanup -----------------------------------

Close the session before exiting so there are no open threads.

session.session_close()

The following code publishes 10 messages to the direct exchange
using "routing_key" as the routing key. To create a full program,
simply replace the two lines in the main body of the previous example
with the following lines:

for i in range(10):
 message = Content("message " + str(i))
 message["routing_key"] = "routing_key"
 session.message_transfer(destination="amq.direct", content=message)

Now let's write a program that reads messages from the message queue.
First, the client creates a local queue into which messages will
be read from the server, subscribes to the message queue on the
server, and activates the local queue to start receiving messages. It then reads messages off the queue and prints them::

local_queue_name = "local_queue"
local_queue = session.incoming(local_queue_name)

session.message_subscribe(queue="message_queue", destination=local_queue_name)
local_queue.start()

final = "That's all, folks!" # In a message body, signals the last message
content = "" # Content of the last message read

message = None
while content != final:
 message = local_queue.get(timeout=10)
 content = message.body
 session.message_accept(RangedSet(message.id)) # acknowledge message receipt
 print content

This section introduced basic Apache Qpid messaging using a
direct exchange in python. For a more complete tutorial on Apache
Qpid, including point-to-point, broadcast, request-response, and
publish-subscribe applications, with persistence and transactions, in
Java JMS, C++, and Python, see the MRG Messaging Tutorial [MRGTutorial].

The Apache Qpid XML Exchange

The Qpid XML Exchange adds two basic capabilities to Apache Qpid: it
can route XML messages based on message content, and it can do more
sophisticated queries based on message properties. In both cases,
queries are expressed in XQuery.
For a Qpid programmer, the main difference between an XML
Exchange and any other exchange is the message binding. In the XML
Exchange, an XQuery is provided to indicate which documents should be
routed for a given binding.
A Simple Example
The following code declares an XML
exchange and uses an XQuery to specify that all messages with
odd-numbered ids should be routed to a queue named "message_queue":

session.exchange_declare(exchange="xml", type="xml")
session.queue_declare(queue="message_queue")

binding = {}
binding["xquery"] = "./message/id mod 2 = 1"

session.exchange_bind(exchange="xml", queue="message_queue",
routing_key="routing_key", args=binding)

A publisher can write XML messages to this message queue with no
knowledge of the query, it needs only the name of the XML exchange so
it can specify the destination:

for i in range(10):
 message = Content("<message><id>" + i + "</id></message>"))
 message["routing_key"] = "routing_key"
 session.message_transfer(destination="xml", content=message)

A consumer needs no knowledge of the publisher or the XML
Exchange, it simply reads messages from its queue, as shown in the
previous section.

A Weather Alert
Time to go Sailing!
Now let's explore an application that uses the XML Exchange in a
publish/subscribe application using weather observations from the
National Oceanic and Atmospheric Administration's National Weather
Service [NWS]. In this application, each
individual can set up a persistent queue, to which alerts are sent,
and identify weather conditions that should trigger an alert. For
instance, I like to sail small sailboats, and I live in Durham, NC, so
I might ask for a weather alert whenever it is really good weather for
sailing.
This example is composed of two programs:
	A message producer that sends
weather notifications in XML to an exchange (which routes messages to
the appropriate message queues).

	A message consumer that creates
a message queue, binds the queue to the XML exchange using an XQuery
to indicate messages it wants to receive, then reads messages that are
sent to its queue.

In this application, a producer posts messages to an XML
exchange named "weather" in the National Weather Service's standard
XML format. Here is one message in that format:

<current_observation version="1.0"
xsi:noNamespaceSchemaLocation="http://www.weather.gov/data/current_obscurrent_observation.xsd">
<credit>NOAA's National Weather Service</credit>
<credit_URL>http://weather.gov/</credit_URL>

<suggested_pickup>15 minutes after the hour</suggested_pickup>
<suggested_pickup_period>60</suggested_pickup_period>
<location>Raleigh-Durham International Airport, NC</location>
<station_id>KRDU</station_id>
<latitude>35.88</latitude>
<longitude>-78.78</longitude>
<observation_time>Last Updated on Apr 21, 2:51 pm EDT</observation_time>
<observation_time_rfc822>Mon, 21 Apr 2008 14:51:00 -0400 EDT</observation_time_rfc822>
<weather>Mostly Cloudy</weather>
<temperature_string>67 F (19 C)</temperature_string>
<temp_f>67</temp_f>
<temp_c>19</temp_c>
<relative_humidity>57</relative_humidity>
<wind_string>Variable at 7 MPH</wind_string>
<wind_dir>Variable</wind_dir>
<wind_degrees>999</wind_degrees>
<wind_mph>6.9</wind_mph>
<wind_gust_mph>NA</wind_gust_mph>
<pressure_string>29.95" (1014.0 mb)</pressure_string>
<pressure_mb>1014.0</pressure_mb>
<pressure_in>29.95</pressure_in>
<dewpoint_string>51 F (11 C)</dewpoint_string>
<dewpoint_f>51</dewpoint_f>
<dewpoint_c>11</dewpoint_c>
<heat_index_string>NA</heat_index_string>
<heat_index_f>NA</heat_index_f>
<heat_index_c>NA</heat_index_c>
<windchill_string>NA</windchill_string>
<windchill_f>NA</windchill_f>
<windchill_c>NA</windchill_c>
<visibility_mi>10.00</visibility_mi>
<icon_url_base>http://weather.gov/weather/images/fcicons/</icon_url_base>
<icon_url_name>bkn.jpg</icon_url_name>
<two_day_history_url>http://www.weather.gov/data/obhistory/KRDU.html</two_day_history_url>
<ob_url>http://www.nws.noaa.gov/data/METAR/KRDU.1.txt</ob_url>
<disclaimer_url>http://weather.gov/disclaimer.html</disclaimer_url>
<copyright_url>http://weather.gov/disclaimer.html</copyright_url>
<privacy_policy_url>http://weather.gov/notice.html</privacy_policy_url>
</current_observation>

The message consumer is an application that allows me to
subscribe to this weather feed, specifying conditions for my alerts
based on the data available in such a message. On my little sailboats,
I especially like to sail when the local weather is at least 60
degrees Fahrenheit, the wind is between 7 and 15 miles per hour, and
the temperature is at least 10 degrees above the dewpoint (so it is
unlikely to rain). The application would have a GUI to allow me to
specify these kinds of conditions, and would generate an XQuery for
the XML binding. Here is a query that expresses these
conditions:

let $obs := ./current_observation
return $obs/station_id = 'KRDU'
 and $obs/wind_mph >= 7
 and $obs/wind_mph <= 20
 and $obs/temp_f > 60
 and $obs/temp_f - $obs/dewpoint_f >= 10

Of course, this is very individual. My friend Jim has a 40 foot
sailboat in Clearwater, and his sailboat just starts to get moving at
speeds that would be very challenging in my little sailboat. So he
might specify very different values for wind speeds. And I have other
friends whose weather-related interests have nothing to do with
sailing - perhaps someone would simply like an alert when it looks
like it will rain. Each of us can declare an exclusive queue with a
binding that expresses which messages we are interested in, as
illustrated in the following code:

Use a UUID as the name of the queue
to guarantee a unique queue name
uuid = uuid()
session.queue_declare(queue=uuid, exclusive=True)

binding = {}
binding["xquery"] = """
 let $obs := ./current_observation
 return $obs/station_id = 'KRDU'
 and $obs/wind_mph >= 7
 and $obs/wind_mph <= 20
 and $obs/temp_f > 60
 and $obs/temp_f - $obs/dewpoint_f >= 10"""

session.exchange_bind(exchange="xml", queue="message_queue",
routing_key="routing_key", args=binding)

Querying Message Properties
When the data used by clients is flat, and clients are
interested in the same properties, a message producer can bind these
properties to a message so they can be accessed without parsing the
message content, which may be faster, since the message content need
not be parsed. When used in this way, the XML Exchange operates much
like Java JMS selectors.
In the XQuery used for binding, message properties are bound as
external variables of type string. The query must declare these
external variables before using them. The XML Exchange binds the
message properties to the corresponding variables before the query is
invoked. Here is the query from the previous example expressed using
message properties instead of XML message content:

declare variable $station_id as xs:string external;
declare variable $wind_mph as xs:string external;
declare variable $temp_mph as xs:string external;
$station_id = 'KRDU'
and xs:decimal($wind_mph) >= 7
and xs:decimal($wind_mph) <= 20
and xs:decimal($temp_f) > 60
and xs:decimal($temp_f) - xs:decimal($dewpoint_f) >= 10

Properties and XML content can both be used in the same
query. In the following query, the station identifier is read from the
message content, but the wind speed and temperature are read from
message properties:

declare variable $wind_mph as xs:string external;
declare variable $temp_mph as xs:string external;
./current_observation/station_id = 'KRDU'
and xs:decimal($wind_mph) >= 7
and xs:decimal($wind_mph) <= 20
and xs:decimal($temp_f) > 60
and xs:decimal($temp_f) - xs:decimal($dewpoint_f) >= 10

XML Messaging in the REST/SOAP/ESB Landscape
XML applications already have a bewildering number of choices
for exchanging data. Many applications already use REST [Fielding], SOAP [Soap1] [Soap2], ebXML [ebXML], Enterprise Service
Buses [ESBWiki], Java JMS Messaging [JMS], or any one of the dozens of other available choices
now available. Each of these sytems has advantages and disadvantages,
and a thorough comparison to these systems is beyond the scope of this
paper. This section attempts to point out some of the fundamental
design characteristics of AMQP and the XML Exchange to make it easier
for readers to make their own comparisons.
Like REST, AMQP is simple[5], open, platform independent, and programming
language independent. However, REST is designed only for client/server
request/response interaction, and because it relies on HTTP, it is a
synchronous protocol. AMQP supports request/response together with
other common patterns such as point-to-point, broadcast, and
publish-subscribe, which allows it to define communication among
messaging clients, not just communication to a server. AMQP is an
asynchronous protocol, which is much more suitable for
high-performance systems, though synchronous patterns are also
supported in the Qpid APis.
Java JMS provides broad support for these kinds of messaging
patterns, but it is a Java API, with no support for other languages,
and it does not define an interoperable protocol, allowing each
implementation choose how to exchange data. As a result, Java JMS does
not provide interoperability across languages or across messaging
systems.
SOAP and Web Services support many of the same messaging
patterns as AMQP, are language and platform independent, and can also
be used to achieve interoperable messaging if all parties agree on the
communication protocol and on a given WS-I profile. AMQP is smaller in
scope and more narrowly focused on messaging per se; it is designed to
be as simple as possible while still providing robust and complete
support for messaging. An AMQP server would probably be an excellent
basis for implementing a SOAP server. Unlike SOAP, AMQP message
headers and basic routing information are not contained in XML. This
allows more efficient processing, since XML parsing is slow compared
to the speed with which routing decisions are made in high-performance
messaging systems, and it also cleanly separates message content from
envelope information.[6] Another
difference is that XML is just one of the formats supported by AMQP,
and messages can be in any desired format (but the XML Exchange was
designed for XML messages). Another advantage of AMQP is that there is
just one specification, and only one way to claim conformance, so
interoperability does not require agreeing on specific protocols. This
is simpler and more interoperable than the SOAP family of
specifications [WSActivity] [Oasis]
[WS-I], which specify basic messaging functionality in
a variety of unrelated and overlapping specifications, from different
organizations, while other organizations specify profiles that can be
used for interoperability.
Much of what was said in the previous paragraph also applies to
ebXML. AMQP would be an excellent technology for implementing ebXML
messaging, and can be used as a bridging technology between ebXML
systems and other systems. But AMQP does not attempt to address
anything beyond messaging.
Similarly, an Enterprise Service Bus generally refers to a more
complex system build on top of an enterprise messaging system. AMQP is
such an enterprise messaging system. But XML-based routing is a
prominent feature in some ESB systems, and the XML Exchange provides
this feature, inegrated into an AMQP server.

Summary
AMQP provides a coherent, simple architecture for high
performance, reliable messaging that is interoperable across
implementations and supports most common messaging paradigms. Apache
Qpid is a multi-platform, multi-language implementation of AMQP.

The Qpid XML Exchange provides XML-based routing in an AMQP server,
using XQuery to express routing criteria based on message content and
message properties.

Together, they provide the simplicity of REST
together with the broad support for enterprise messaging that SOAP
aspires to achieve. They provide a solid foundation for mission
critical XML messaging applications, and vastly simplify the task of
writing XML messaging software.

Bibliography
[Bosak]
XML, Java, and the future of the Web Jon Bosak, Sun Microsystems. Last revised 1997.03.10.
http://www.ibiblio.org/pub/sun-info/standards/xml/why/xmlapps.htm

[Fielding]
Architectural Styles and the Design of Network-based Software
Architectures. Roy Thomas Fielding, 2000. DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY
in Information and Computer Science. University of California, Irvine.
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

[Vinoski]
"Advanced Message Queuing Protocol", Steve Vinoski. IEEE Internet Computing, vol. 10, no. 6, 2006, pp. 87-89.
http://steve.vinoski.net/pdf/IEEE-Advanced_Message_Queuing_Protocol.pdf

[AMQP]
AMQP: A General-Purpose Middleware Standard. Copyright Cisco Systems,
Credit Suisse, Deutsche Börse Systems, Envoy Technologies,
Inc.,Goldman Sachs, IONA Technologies PLC, iMatix Corporation
sprl., JPMorgan Chase Bank Inc. N.A, Novell, Rabbit Technologies Ltd.,
Red Hat, Inc., TWIST Process Innovations ltd, and 29West Inc. 2006.
https://jira.amqp.org/confluence/download/attachments/720900/amqp.0-10.pdf?version=1

[Qpid]
Apache Qpid Project.
http://cwiki.apache.org/qpid/

[MRG]
Red Hat Enterprise MRG. http://www.redhat.com/mrg/.

[MRGTutorial]
Red Hat Enterprise MRG: MRG Messaging Tutorial. Available from http://www.redhat.com/mrg/resources/.

[XQueryREST]
An XQuery Servlet for RESTful Data Services,
Jonathan Robie.
http://2006.xmlconference.org/proceedings/87/presentation.html

[Soap1]
SOAP Version 1.2 Part 1: Messaging Framework (Second Edition).
W3C Recommendation 27 April 2007.
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/

[Soap2]
SOAP Version 1.2 Part 2: Adjuncts (Second Edition).
W3C Recommendation 27 April 2007.
http://www.w3.org/TR/2007/REC-soap12-part2-20070427/

[WSActivity]
W3C Web Services Activity.
http://www.w3.org/2002/ws/
Currently lists 15 W3C Recommendations for Web Services.

[Oasis]
OASIS. A full list of committees can be found at
http://www.oasis-open.org/committees/.

[WS-I]
Web Services Interoperability
Organization. http://wsi-org. Currently lists the
following profiles for interoperability: Basic Profile, Simple Soap
Binding Profile, Basic Security Profile, Reliable Secure Profile,
Kerberos Token Profile, REL Token Profile 1.0, SAML Token Profile.

[NWS]
National Weather Service, current observations in XML.
http://www.nws.noaa.gov/data/current_obs/

[JMS]
Java JMS. http://java.sun.com/products/jms/

[ebXML]
ebXML: Enabling a Global Electronic Market.
http://www.ebxml.org/

[ESBWiki]
Enterprise service bus.
From Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Enterprise_service_bus

[1] Cisco
Systems, Credit Suisse, Deutsche Börse Systems, Envoy Technologies,
Inc., Goldman Sachs, IONA Technologies PLC, iMatix Corporation sprl.,
JPMorgan Chase Bank Inc. N.A, Novell, Rabbit Technologies Ltd., Red
Hat, Inc., TWIST Process Innovations ltd, and 29West
Inc.
[2] At the time of writing, it is not
possible to be more specific about the standards
submission.
[3] For one
kind of exchange, the fanout exchange, a routing key is
optional
[4] The way the
routing key is used depends on the exchange type, and is discussed
later in this chapter
[5] Though not as simple as
REST!
[6] Message properties can be read
from messages in applications that want this information. An
application could easily model them as XML.

Balisage: The Markup Conference

The Apache Qpid XML Exchange
High speed, reliable enterprise messaging using open standards and open source
Jonathan Robie
Emerging Technologies
Red Hat

<jonathan.robie@redhat.com>
Jonathan Robie designed and implemented the Apache Qpid XML
Exchange. He is a member of the Emerging Technologies team at Red Hat.
Jonathan is one of the inventors of XQuery, and is an editor of XQuery
1.1 and several other XQuery specifications. He received an Infoworld
Innovator 2005 award for his work on XQuery.
Before joining Red Hat, Jonathan was the Program Manager for
DataDirect XQuery, and he has also worked on the architectural team
for three XML databases: Software AG's Tamino, Texcel, and POET's CMS.
He has also been an editor for specifications on the W3C XML Schema
and Document Object Model Working Groups.

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

