[image: Balisage logo]Balisage: The Markup Conference

Using Atom Categorization to Build Dynamic Applications
R. Alexander Milowski
Appolux, Inc.

<alex@milowski.com>

Balisage: The Markup Conference 2008
August 12 - 15, 2008

Copyright © 2008 R. Alexander Milowski

How to cite this paper
Milowski, R. Alexander. "Using Atom Categorization to Build Dynamic Applications." Presented at: Balisage: The Markup Conference 2008, Montréal, Canada, August 12 - 15, 2008. In Proceedings of Balisage: The Markup Conference 2008.
 Balisage Series on Markup Technologies vol. 1 (2008). https://doi.org/10.4242/BalisageVol1.Milowski01.

Abstract
Atom feeds provide the ability to categorize both the feed and its
 entries. This categorization provides a simple and easy way for feed authors
 to associated terms and semantics to their feed contents. By using this
 categorization, authors can keep their information organized while
 re-purposing them to build dynamic web applications.

Balisage: The Markup Conference

 Using Atom Categorization to Build Dynamic Applications

 Table of Contents

 	Title Page

 	Lists, Stacks, and Piles

 	Getting Organized with Atom Feeds
 	Term Categorization in Atom

 	Graphical Models for Terms

 	Querying to Build Lists

 	Building Applications from Atom Feeds
 	Architecture Overview

 	An Example

 	Conclusion

 	About the Author

 Using Atom Categorization to Build Dynamic Applications

Lists, Stacks, and Piles
If you could see my desk at home or my office, you'd probably find
 it a horrific disorganized disaster with post-it notes on the desktop and
 monitor, stacks of papers and other items, and giant pile at one end. On
 the other hand, I see it as disorganized ordered mess. I know where to
 find what I need and there is a system of lists, stacks, and piles.
The post-it notes contain lists of things I need to do, information
 from "recent queries", reminders on one sort or another, and they are all
 ordered and carefully placed on my desk as to their importance. In
 relation to these lists, I have stacks of bills, papers, and other urgent items
 that need to be filed, where each stack has its purpose
 or category. Finally, I have giant pile of things that were
 formally in stacks. For some reason or another, they've expired but need
 to be filed. Someday I'll get around to that filing and make that giant
 pile not so giant anymore.
It shouldn't surprise you to find that my computers are similarly
 organized. It is easy to recognize the stacks of documents shuttered into
 folders by their relationship to each other or my stacks of photos or
 videos from my camera. My desktop has become a giant "pile of things
 downloaded" overtime and the whole computer is somewhat of a giant pile of
 information I've retained.
I've come to realized that this isn't going to change. What I need
 is for software and applications to adjust themselves to my way of storing
 information. Not finding what I needed and discovering the usefulness of
 Atom feeds, I created the open-source atomojo [atomojo] project to serve my "disorganized ordered
 mess" nature and store my information.
What I discovered was that even though I'm a software developer and
 work with things are often tightly controlled and highly structured, much
 of the information I produce or interact with--media, information bits,
 documents of all kinds--tends to be loosely organized into "stacks" rather
 than tightly controlled "lists". This is especially true when it comes to
 media coming from personal interactions, family, vacations and other
 things not related to business.
In fact, I'd say that the immense popularity of web search and the
 introduction of desktop search trends well with the idea that people
 generate stacks and piles of information that are loosely grouped
 together. I'd go even further to say that a "list" is a rare thing and can
 be hard to develop.
Let's then face the fact that people don't produce lists
 as much as they produce stacks and piles. Producing organized and
 structured information takes time and so we just shove our media, documents, and other
 information into the nearest stack (or pile) that looks appropriate. We do
 that with a slightly dishonest hope that we'll come back to it later and
 "get organized."
In the end, this information should be the basis for the
 applications and communications that we share with others on the Internet.
 It could drive our websites, our picture galleries, and our commerce
 engines if we only had a way to get it organized. Thus, my messy desk led
 me to believe that if I got organized I could build better dynamic
 applications.

Getting Organized with Atom Feeds
Atom feeds are like stacks of objects. There is an order to the
 stack from the first entry to the last. You often have to sort through the
 entries from first to last to find what you want. But the feed has a
 purpose and so there is a loose relationship between each entry.
While certain information resources have processable content, many
 others are not so easily searched. That is, an image is difficult to
 search against without human interaction unless there are annotations. As
 a result, the metadata encoded in the feed entry is very
 important.
With the recent invention of the Atom Publishing Protocol
 (AtomPub) [apprfc], creation and manipulation
 of both entries and their associated metadata is relatively easy. As such,
 rather than shoving that picture from your last vacation into the nearest
 folder, you can tuck it away nicely into a Atom feed. The consequence is
 the natural next step is to author some metadata.
Entries have a rich vocabulary with which you can annotate your
 resources. Just by looking at the entry you can learn about the author,
 titles, summaries, and many other aspects. This enhances the
 ability to retrieve that object later.
Term Categorization in Atom
One of the interesting parts of the Atom vocabulary is the
 category element associated with both feeds and entries.
 This element has two important attributes called
 scheme and
 term. The scheme attribute is
 an URI value that qualifies or scopes the term
 attribute's value. The element itself can contain any content--text or
 elements--but none is defined by the Atom Syndication Format [atomrfc].
If you concatenate the scheme and term
 attribute values and assume a default for when the scheme
 attribute is omitted, the result is a URI. This
 value can be interpreted as a leaf term in some unnamed ontology
 that labels the entry or feed with that term. As the
 category element may contain content, a value can be
 associated with the term.
This interpretation means that for each category
 element you get a RDF [rdf] triple. This
 triple is constructed such that the subject is the entry or feed,
 the predicate is the term URI, and the object is the value of the
 element. When the category element is empty, the value
 defaults to rdf:nil.

Graphical Models for Terms
Each feed generates a simple graphical model using the unique
 id element values to represent the subjects in the triples.
 For example, given the feed in Figure 1,
 the graph in Figure 2 is generated using
 edge labels:
	E: http://www.atomojo.org/O/type/entry

	pets: http://www.atomojo.org/O/keywords/pets

	kind: http://www.atomojo.org/O/keywords/kind

	breed: http://www.atomojo.org/O/keywords/breed

	color: http://www.atomojo.org/O/keywords/color

	name: http://www.atomojo.org/O/keywords/name

Figure 1: Example Feed

<feed xmlns='http://www.w3.org/2005/Atom'>
<title>Pets</title> <id>id:feed:1</id>
<updated>2008-07-10T15:45:26-07:00</updated>
<category term='pets'/>

<entry>
<title>My Cat</title>
<id>id:entry:1</id>
<updated>2008-07-10T15:45:26-07:00</updated>
<category term='pet'/>
<category term='kind'>cat</category>
<category term='color'>tan/tiger</category>
<category term='name'>bruno</category>
<content type='image/png' src='bruno.png'/>
</entry>

<entry>
<title>My Dog</title>
<id>id:entry:2</id>
<updated>2008-07-10T15:40:17-07:00</updated>
<category term='pet'/>
<category term='kind'>dog</category>
<category term='breed'>siberian husky</category>
<category term='color'>white</category>
<category term='name'>hudson</category>
<content type='image/png' src='hudson.png'/>
</entry>

</feed>

Figure 2: Feed Graphical Model
[image:]

Querying to Build Lists
Being able to query your feeds becomes very important after enough
 content as been collected. That is, your feeds start to look a lot like
 an unorganized pile. Past a certain number, keeping track of just where
 something can be found gets to be very difficult.
While the Atom vocabulary provides many interesting elements (e.g.
 title) by which you might search, the entry and feed categorization
 provide a fine-grained set of information on which a query can be
 performed. Simple queries can be used to retrieve entries from feeds
 simply by pulling those entries who have certain terms.
We'd like a query that can:
	provide a set of terms for the basis of the query,

	allow comparison of any values associated with those
 terms,

	return the query result as a "reconstituted" feed.

Fortunately, SPARQL [sparql] has
 recently become a W3C recommendation and we can use this to query our
 pile of feeds.
For example, if we want to retrieve the feed with the keyword
 pets, we could query on the term
 http://www.atomojo.org/O/keywords/pets as shown in Figure 3.
Figure 3: Retrieve the pets feed

PREFIX k: <http://www.atomojo.org/O/keyword/>
SELECT ?e WHERE { ?e k:pets () . }

Similarly, we could restrict the query to return all pet entries
 as in Figure 4.
Figure 4: Retrieve all pets entries

PREFIX k: <http://www.atomojo.org/O/keyword/>
PREFIX t: <http://www.atomojo.org/O/type/>
SELECT ?e WHERE { ?e t:entry (); k:pet () . }

If we want to search by value, we could find the pet named
 'hudson' as in Figure 5.
Figure 5: Find Hudson

PREFIX k: <http://www.atomojo.org/O/keyword/>
SELECT ?e WHERE { ?e k:pet () ; k:name "hudson" .}

As a query language, SPARQL is sufficiently powerful to express
 many types of queries. If the graphical model of the feeds is extended
 to include properties from the atom feed vocabulary, queries can be
 formulated that mix categorization with the feed structure (e.g. find
 all pet entries whose title contains a certain word).
Since we are interested in feeds and entries, the real use of the
 query is to reconstitute the result into a feed. This can be done by
 a simple process using these rules:
	For each matching feed, return an entry that summarizes the
 feed, its categorization, and a single link of relation related
 that points to the feed's resource URI.

	For each matching entry, return the entry with the
 xml:base attribute set such that the link relations are
 preserved.

As a result of this process, the query result is just another feed
 that can be consumed by any Atom-enabled client.

Building Applications from Atom Feeds
Architecture Overview
With our ability to annotate and query arbitrary content as feed
 entries, we can now describe a dynamic application architecture show in
 Figure 6 that is based on atomojo's AtomPub and
 SPARQL abilities. On the far left is the application author who is
 responsible for loading content and configuring the application. On the
 far right is the end user of the application who is using a
 browser-based application presented by the system. In the middle is the
 web application server and atomojo server instances.
Figure 6: Atomojo-based Architecture
[image:]

The author's responsibility is not only to provide the content
 from the pile and appropriate annotations, but also to provide
 instructions through the same means. These instructions provide
 content layouts, rules for content organization, web content such as
 javascript code or CSS stylesheets, and even service components. While
 some of this content is the domain of a web programmer, much of it is
 just simple entries with categorizations as to how to build resources on
 the web application server.
The web application server performs several tasks:
	provides content proxies from the atomojo server to deliver
 content to the browser,

	loads and configures layouts for web pages that are to be
 built from atom feeds,

	loads and configures resources that are SPARQL queries to the
 atomojo server,

	loads custom application components for specialized
 services.

The configuration information is retrieved from the atomojo server
 by a series of SPARQL queries. These queries allow the configuration
 information to be stored anywhere the author prefers.

An Example
When the web application server periodically updates itself, it
 performs a set of queries against the atomojo server to retrieve
 configuration information. For example, to find all the layouts, the
 server uses the
 query shown in Figure 7. This query
 returns a set of entries that are the instructions for how each feeds is
 processed to produce a web page.
Figure 7: Query for All Layouts

PREFIX www: <http://www.atomojo.org/O/www/configuration/>
SELECT ?e WHERE { ?e www:layout () . }

A typical layout entry is a media resource entry that contains a
 script (e.g. XSLT) for transforming the feed on the server into
 appropriate web content. While the
 transformation as shown in Figure 8 produces HTML, nothing precludes generation of images or other
 non-XML media types.
Figure 8: A Layout Entry

<entry xmlns='http://www.w3.org/2005/Atom'>
<title>Default Layout</title>
<id>urn:uuid:18e4d0870ee46-4ff5-8895-bdd0ee0fb226</id>
<published>2008-07-18T11:22:06-07:00</published>
<updated>2008-07-18T11:42:06-07:00</update>
<category scheme='http://www.atomojo.org/O/www/configuration/'
 term='layout'/>
<category scheme='http://www.atomojo.org/O/www/configuration/layout/'
 term='media-type'>text/html</category>
<content src='default-layout.xsl' type='application/xslt+xml'/>
</entry>

The layouts are used by internal or custom components where the
 choice of layout is based on a
 number of matching criteria. These layout rules can be restricted to
 match by resource path or require that the feed being rendered to have
 certain terms (i.e. category elements). This allows the author to select
 the layout based on categorization rather than location in the atomojo
 server.
This approach has been used to configure the proxies, layouts,
 queries to the server, and application components as shown in
 Figure 9.
Figure 9: A Configuration Feed

<feed xmlns:app="http://www.w3.org/2007/app" xmlns="http://www.w3.org/2005/Atom" xml:base="./">
<id>urn:uuid:9a1ecf4e-2495-4a42-9b53-37b25dff731e</id>
<updated>2008-07-17T14:38:20-07:00</updated>
<title>Configuration</title>
<author><name>Alex Milowski</name></author>
<link href="" rel="edit"/>
<category scheme="http://www.atomojo.org/O/type/feed/" term="hidden"/>
<link href="" rel="self"/>

<entry>
<title type="text">default-layout.xsl</title>
<id>urn:uuid:18e4d087-ee46-4ff5-8895-bdd0ee0fb226</id>
<published>2008-07-18T11:22:09-07:00</published>
<updated>2008-07-18T11:22:09-07:00</updated>
<app:edited>2008-07-18T12:01:59-07:00</app:edited>
<link href="./_/18e4d087-ee46-4ff5-8895-bdd0ee0fb226" rel="edit"/>
<content type="application/xslt+xml" src="default-layout.xsl"/>
<category scheme="http://www.atomojo.org/O/www/configuration/"
 term="layout"/>
<category scheme="http://www.atomojo.org/O/www/configuration/layout/"
 term="media-type">text/html</category>
<link href="default-layout.xsl" rel="edit-media"/>
</entry>

<entry>
<published>2008-07-17T14:43:17-07:00</published>
<app:edited>2008-07-17T17:44:55-07:00</app:edited>
<updated>2008-07-17T14:43:17-07:00</updated>
<id>urn:uuid:f080d0ee-a1b2-4012-a916-b0d915ea2cc4</id>
<title type="text">Proxy</title>
<author><name>Alex Milowski</name></author>
<link href="./_/f080d0ee-a1b2-4012-a916-b0d915ea2cc4" rel="edit"/>
<category scheme="http://www.atomojo.org/O/www/configuration/"
 term="application"/>
<category scheme="http://www.atomojo.org/O/www/configuration/application/"
 term="match"/>
<category scheme="http://www.atomojo.org/O/www/configuration/application/"
 term="proxy">resources</category>
</entry>

<entry>
<published>2008-07-17T17:38:11-07:00</published>
<app:edited>2008-07-17T17:44:24-07:00</app:edited>
<updated>2008-07-17T17:38:11-07:00</updated>
<id>urn:uuid:115b3132-4a9f-432d-bf7d-e366803d286e</id>
<title type="text">Index</title>
<author><name>Alex Milowski</name></author>
<link href="./_/115b3132-4a9f-432d-bf7d-e366803d286e" rel="edit"/>
<category scheme="http://www.atomojo.org/O/www/configuration/"
 term="application"/>
<category scheme="http://www.atomojo.org/O/www/configuration/application/"
 term="class">org.atomojo.www.util.script.IndexApplication</category>
<category scheme="http://www.atomojo.org/O/www/configuration/application/"
 term="match">/{path}/</category>
<category scheme="http://www.atomojo.org/O/www/configuration/application/"
 term="match">/</category>
<category scheme="http://www.atomojo.org/O/www/configuration/application/match/"
 term="mode">exact</category>
</entry>

<entry>
<published>2008-07-18T13:28:51-07:00</published>
<app:edited>2008-07-18T13:28:51-07:00</app:edited>
<updated>2008-07-18T13:28:51-07:00</updated>
<id>urn:uuid:01ababd0-9c16-4f0f-a4a9-ffecfdecdaf3</id>
<title type="text">Software Index</title>
<author><name>Alex Milowski</name></author>
<category scheme="http://www.atomojo.org/O/www/configuration/"
 term="application"/>
<category scheme="http://www.atomojo.org/O/www/configuration/application/"
 term="class">org.atomojo.www.util.script.IndexApplication</category>
<category scheme="http://www.atomojo.org/O/www/configuration/application/"
 term="match">/software/</category>
<category scheme="http://www.atomojo.org/O/www/configuration/application/match/"
 term="mode">exact</category>
<category scheme="http://www.atomojo.org/O/www/configuration/application/"
 term="resource">software</category>
<link href="./_/01ababd0-9c16-4f0f-a4a9-ffecfdecdaf3" rel="edit"/>
</entry>

<entry>
<published>2008-07-18T13:26:49-07:00</published>
<app:edited>2008-07-18T13:26:49-07:00</app:edited>
<updated>2008-07-18T13:26:49-07:00</updated>
<id>urn:uuid:3b5319ba-2e8b-4b66-94bc-ecf01bac77f8</id>
<title type="text">Software Resource</title>
<author><name>Alex Milowski</name></author>
<link href="./_/3b5319ba-2e8b-4b66-94bc-ecf01bac77f8" rel="edit"/>
<category scheme="http://www.atomojo.org/O/www/configuration/"
 term="resource"/>
<category scheme="http://www.atomojo.org/O/www/configuration/resource/"
 term="name">software</category>
<category scheme="http://www.atomojo.org/O/www/configuration/resource/"
 term="relation">terms</category>
<category scheme="http://www.atomojo.org/O/www/configuration/resource/"
 term="media-type">application/sparql-query</category>
<category scheme="http://www.atomojo.org/O/www/configuration/resource/"
 term="query">
PREFIX k: <http://ww.atomojo.org/O/keyword/>
PREFIX t: <http://www.atomojo.org/O/type/>
SELECT ?e WHERE { ?e t:feed (); k:software () }
</category>
</entry>
</feed>

In Figure 9, the first entry
 is the layout, the second entry is a proxy for content, and the third is
 an application component that comes packaged with atomojo. This
 component is used to create index pages from feeds using the layouts and is typically
 mapped to index resources (e.g. ends with a forward slash). These
 mappings are shown in the match terms in the entries.
The last two entries are slightly different. Their purpose is to
 use the query facilities of the atomojo server to find all software
 projects on the web site and then present a listing. They do this by
 associating a query to a resource that is then called by another index
 component.
The last entry defines a query against the atomojo server for
 retrieving all those feeds that have a keyword of software. That
 resource is used by the index component defined by the preceding entry.
 These two entries together configure an index page at /software/ on
 the web site.

Conclusion
In Figure 9 in the last
 section, the last two entries achieved finding resources in our pile of
 information. An author can now put information about software in any feed
 they choose and, as long as it is
 annotated with a category element with a term value of software, it will
 show up on that software index page.
This is not remarkable. Plenty of software system exists that allow
 authored keywords to produce index information and then allow people to
 browse that information. What is interesting here is that we're using
 categorization and terms.
Any categorization--both formal and informal--can now be used to
 annotate information stored in the feeds. The annotations are not limited
 to keywords. Also, the combination of different terms and values can be
 used to create a very specific set of informaiton.
Similarly, the queries are not limited to simple retrieval
 exercises. The SPARQL queries can perform complex union and intersection
 operations as well as filtering on term values. As such, very specific
 data sets can be retrieved from the atomojo server.
As time goes by, queries can be developed to use whatever categorization
 evolves from the authors. These queries can be used to
 re-purpose that original content without much, if any, change to the
 feed metadata. The resulting feeds can then be associated with a web resource
 independent of how the author chose to organize the original entries and
 feeds. That is, I can create a disorganized pile of information and keep
 my website organized.

Bibliography
[atomojo] Milowski, R. "Atomojo" 2008
 http://code.google.com/p/atomojo/
[atomrfc] Nottingham, M. and Sayre R., "RFC 4287: The
 Atom Syndication Format", December 2005
 http://www.ietf.org/rfc/rfc4287.txt
[apprfc] Gregorio, J. and de hOra, B. "RFC 5023: The
 Atom Publishing Protocol", October 2007
 http://www.ietf.org/rfc/rfc5023.txt
[sparql] Prud'hommeaux, E. and Seaborne, A. "SPARQL
 Query Language for RDF", January 2008
 http://www.w3.org/TR/rdf-sparql-query/
[rdf] Hayes, P. "RDF Semantics", February 2004
 http://www.w3.org/TR/rdf-mt/

Balisage: The Markup Conference

Using Atom Categorization to Build Dynamic Applications
R. Milowski
Appolux, Inc.

<alex@milowski.com>
A long-time markup and web geek.

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Milowski01-002.png
browser
“mashog”

stomeio senver web app server

end user

content/images/Milowski01-001.png
ol

et
anitger

oruna

i

