[image: Balisage logo]Balisage: The Markup Conference

Programming Application Logic for RESTful Services Using XML Technologies
Cornelia Davis
Senior Technologist
EMC Corporation

<cornelia.davis@emc.com>

Balisage: The Markup Conference 2011
August 2 - 5, 2011

Copyright © 2011 EMC Corporation. All rights reserved.

How to cite this paper
Davis, Cornelia. "Programming Application Logic for RESTful Services Using XML Technologies." Presented at: Balisage: The Markup Conference 2011, Montréal, Canada, August 2 - 5, 2011. In Proceedings of Balisage: The Markup Conference 2011.
 Balisage Series on Markup Technologies vol. 7 (2011). https://doi.org/10.4242/BalisageVol7.Davis01.

Abstract
XRX, XForms on the client, RESTful services and XQuery on the server, introduced a
 development paradigm that could avoid the use to procedural code in the
 implementation of RESTful services. With the standardization of XProc, the XML
 pipelining language, and the availability of several XProc engines, we have an even
 more powerful mechanism for RESTful services construction. In this paper we briefly
 introduce an XML REST Framework that allows a developer to define resources and
 provide an XML-centric implementation. Then the main focus of the paper is on how
 XQuery, XSLT and XProc together form a powerful set of tools with which RESTful
 services can be developed, effectively redifining XRX to stand for XForms, RESTful
 services and XProc on the server. We illustrate the benefits each technology brings
 to this service construction by incrementally building up a RESTful service for a
 patient medical records registry.

Balisage: The Markup Conference

 Programming Application Logic for RESTful Services Using XML Technologies

 Table of Contents

 	Title Page

 	Introduction

 	Integrated Health Exchange

 	The REST Architectural Style

 	The XML REST Framework

 	The RESTful Service Interface

 	Starting with XQuery

 	XSLT

 	XProc – the XML Pipelining Language
 	Getting More Sophisticated

 	Multi-part Responses

 	XProc and Transactions

 	Binding HTTP Processing to the XML-Centric Implementation

 	Conclusions
 	Limitations

 	Future Work

 	[Section title missing in source]

 	About the Author

 Programming Application Logic for RESTful Services Using XML Technologies

Introduction
The term XRX XRX , stands for XForms XForms on the client, RESTful services and XQuery XQuery
 on the server. At its core it is a design approach that uses XML as the model for the
 application entities, and other XML technologies, specifically XForms and XQuery, for
 the application UI and for interface to the persistence layer, respectively. At the
 extreme, XRX can be seen as a no-transformation approach, where resource representations
 accepted and served by RESTful services closely match the form stored in an XML
 database; that is, there is no difference between the logical model for entities and the
 physical one. While our work has been inspired by XRX, and we embrace the notion of
 XML-centric implementations, we have found that RESTful services require transformations
 and other sophisticated operations that are not particularly well suited to an XQuery
 implementation alone.
First, RESTful services must serve resource representations that are hyperlink rich,
 containing links to related resources as well as to URLs that can drive application
 state. These links are generated only when the resource representation is served and
 they reflect runtime and deployment contexts such as host names. As such, these links
 must be added to the content that is retrieved from the XML database, and while XQuery
 is clearly the right technology for database access, it is, at best, awkward when used
 to insert these hyperlinks.
Another key tenet of the REST architectural style is content negotiation, the ability
 for a service to accommodate various formats for the data they serve. For example, a
 resource representation may be served in some simple XML format (that may indeed closely
 resemble that which is stored in the database), and it may alternatively serve an Atom Atom
 entry. Those well versed in the XML-technology stack would likely agree that this is a
 task ideally suited to XSLT XSLT.
When we begin to address the implementation details of our RESTful services we see
 common patterns, such as the need to assign identifiers to new resources and the need to
 return from the service values beyond the resource representation. We have found it
 rather easy to implement these patterns using XProc XProc.
It is these RESTful services requirements that have driven us to an interpretation of
 XRX that stands for XForms on the client, RESTful services and XProc on the server. Our
 work has focused on the RESTful services implementation with little attention given to
 the XForms or other consumer-side user interface.
In this paper we will show the value that various XML technologies bring to the
 implementation of RESTful services, with a focus on XProc, XQuery and XSLT. We will
 demonstrate each of their strengths by incrementally building up a simple service
 implementation that is a part of a larger set of services that implement a patient
 medical records registry. This implementation was taken to the IHE Connectathon IHEConnect event in January 2011 where EMC received certification. That
 is, the use case presented in this paper is real.
After briefly introducing the IHE XDS IHEXDS registry usecase,
 outlining the key principles of REST and also briefly introducing an XML REST Framework
 we have constructed, we spend the bulk of the remainder of the paper squarely in the XML
 space. We begin by establishing the base implementation which uses XQuery to write
 resource data to the persistence layer, an XML database. We then address the hyperlink
 constraint of RESTful services with the construction of an XSLT and build a simple XProc
 pipeline to sequence these operations. This solution does not yet address the
 generation of identifiers or construction of data elements beyond the resource
 representation, which we then add. Finally we bind all of the pieces together within
 Spring Framework Spring configurations.
While we have found some prior work on XML-centric application development Wilde, we have found little that addresses how the XML technology stack
 addresses the unique needs of RESTful service construction. This is the focus of this
 piece.

Integrated Health Exchange
Integrating the Healthcare Enterprise (IHE) IHE is a consortium that
 develops interoperability standards for health care delivery systems. They publish
 specifications that address how a wide range of devices and systems should communicate,
 allowing them to be easily connected in a variety of settings. It is in one of these
 specifications that they define interfaces that medical records registries and
 repositories must provide in order to be easily connected to document suppliers and
 consumers. A Cross-Enterprise Document Sharing (XDS) repository stores documents that
 make up a patient medical record including such things as images (e.g. x-rays, CT
 scans), text files (e.g. doctors notes) and documents of any other format. An XDS
 registry augments this content both by associating metadata with the documents stored in
 the repository and by establishing additional organizational structures, such as folder
 hierarchies, around that content. The solution we describe in this paper is a portion of
 the document registry implementation which earned EMC a certification at the IHE
 Connectathon event in January 2011.
The abstractions defined by the IHE for an XDS registry include the
 following:
	A document entry holds metadata for a
 single document.

	A folder is a container that may hold
 multiple document entries.

	An association captures a binary,
 unidirectional relationship between document entries, folders, submission sets
 and other associations.

	A submission set represents a
 collection of document entries, folders and associations that together form a
 set that, when written to the registry, must be handled atomically.

While submission sets are written as a whole, the individual parts of a submission
 set may be consumed in different combinations. For example, within a single submission
 set, a folder may have been created and a document entry placed therein, however, the
 document entry may be accessed independently or even in combination with other document
 entries that arrived in different submission sets.
It is the atomicity requirements on the writing of submission sets, and the
 granular consumption model, that contribute to making the XDS registry RESTful services
 an interesting case-study. We will examine the implementation of the service for
 creating submission sets in detail in the subsequent sections of this paper. This is
 relatively complex operation that may involve the assignment of identifiers,
 necessitates validation of some of the input XML against both other portions of the
 submission set as well as to content already existing in the database, and requires that
 the submission set be decomposed for storage in the database.

The REST Architectural Style
Roy Fielding was one of a group of individuals who developed the architecture of the
 World Wide Web and in 2000 he formalized the key architectural principles in his PhD
 dissertation IHE, coining the term REpresentational State Transfer
 (REST). The REST architectural style is characterized by the following four key
 tenets:
	Identification and addressability of
 resources: All interesting bits of information are identified
 with URIs and are usually accessed via URL.

	The uniform interface: Interaction with
 resources is through a standardized set of operations, with well understood and
 agreed upon semantics.

	Manipulation of resources through
 representations: Clients are not operating directly on resources,
 rather resource representations are transfered between the server and the
 client.

	Hypermedia constraint: Resource
 representations include hyperlinks that can be used to drive application state
 transitions.

Each of these principles has played an important role in the success of the World Wide
 Web. Resource centricity and the hierarchical, global address space of URLs provides for
 limitless scale by allowing resources to be continually added to the domain of discourse
 while maintaining linear scale through the use of DNS and a cache-rich infrastructure.
 Having a uniform interface allows the layered web to perform optimizations as a part of
 a resource operation. For example, because the HTTP PUT operation is idempotent (meaning
 it can be executed 1 or more times with the same result), an actor in the web
 infrastructure may perform automatic retries on PUT operations that may have failed to complete. The transfer of resource
 representations between the client and server allows those interactions to be entirely
 stateless, further providing scale-out characteristics. And having hyperlink-rich
 resource representations not only provides a means for relationships between resources
 to be presented, it also supports the construction of less-brittle interfaces and looser
 coupling between clients and servers.

The XML REST Framework
We have produced a framework that allows a developer to create a set of RESTful
 services with most of the implementation achieved using XML-based technologies. We have
 found these technologies to be very effective at addressing many requirements specific
 to RESTful services. XQuery is used to persist resource state into an XML database.
 Content negotiation is straight-forward via the declarative, XSLT programming model, and
 resource hyperlinks are generated using the same declarative approach. Common patterns
 for resource operations are effectively captured in XProc pipelines and processing of
 composite resources is also well accomplished using this XML pipelining approach.
The only portion of the implementation not done with an XML-based technology is the
 interface to the RESTful service. Here we have elected to use Plain Old Java Objects
 (POJOs), annotated with information about resource URLs and the uniform interface. We
 chose to keep this part of a RESTful service implementation in Java primarily for two
 reasons. First, while there is a technology, Servlex Servlex, that
 does provide a capability for producing web applications with only XML technologies, we
 were concerned that the uptake of the EXPath Webapp EXPath Webapp approach
 has been slow and the community activity is marginal. And more importantly, having
 RESTful services executing within an environment such as the Spring Framework allows
 additional services (such as security) to be wrapped around the core RESTful services we
 implement; it was unclear how the Servlex technology could be leveraged within
 Spring.
Figure 1 depicts the basic construction of RESTful services using our
 framework.
Figure 1
[image:]
XML-Centric Services Implementation

 In the next sections I cover each of the blocks shown in this figure.

The RESTful Service Interface
Because we are specifically addressing RESTful services implementations, we must
 address more than just the construction and delivery of XML data. In particular, we
 must be able to accept HTTP requests [1] , parse URLs, read and write headers and return errors appropriately.
 Because several frameworks addressing these HTTP-specific needs, such as Spring MVC
 Spring MVC, Apache CXF Apache CXF and Jersey Jersey, are already in widespread use, we embrace those and offer an
 extended framework that allows an XML-centric implementation to be wired in. These
 RESTful services frameworks share common development paradigms where REST resources are
 implemented as Java classes, operations on the resource are implemented with class
 methods, and annotations are used to express RESTful service specifics such as URI
 templates and uniform interface operations. The following code snippet shows the
 skeleton Java class for the submission sets resource, with a method that will fulfill
 the POST operation; this is the operation we will use to create new submission sets.
 package com.emc.cto.healthcare;

 // … imports omitted for brevity

 @Controller
 @RequestMapping("/submissionsets")
 public class SubmissionSets {

 @RequestMapping(method = RequestMethod.POST)
 @ResponseStatus(HttpStatus.CREATED)
 public String addPatient(HttpServletRequest request,
 HttpServletResponse response,
 Model model) throws XProcException, IOException, URISyntaxException, TransformerException {

 …

 }

 public SubmissionSets() {		
 }

}

It is within this method that we will invoke the XML-based services implementation.
 In a later section we will see exactly how the XProc pipeline, which forms the core of
 the implementation, is bound into this service dispatcher class.

Starting with XQuery
 XQuery serves the role of interfacing with the solution’s persistence layer, the XML
 database. Each resource operation of the RESTful service will require one or more
 XQueries to map the logical to the physical model. Figure 2 shows a table representing
 the logical model at left, a pictorial view of the physical database model on the right
 and shading that indicates how the logical resources are mapped to physical ones.
Figure 2
[image:]
Logical to Physical Mapping

The darker shaded objects in the tree structure represent folders and the lighter
 shaded objects represent XML documents. The yellow and blue shadings show a
 correspondence between entities in the logical model and the physical model. Note that
 the submission set resource maps to many entities in the physical model, whereas
 document entry resource mappings are far more constrained.
For this first stage of the implementation we will assume that the submission set
 coming in is entirely valid and has identifiers properly set for each of the elements
 within it. The following shows an excerpt of the resource representation supplied to a
 POST operation.
 <?xml version="1.0" encoding="UTF-8"?>
<CompoundSubmissionSet>
 <SubmissionSet>
 <comments>
 <lang>en-US</lang>
 <charset>UTF-8</charset>
 <value>Annual physical</value>
 </comments>
 <entryUuid>0324990a-00a4-4b3f-be6d-0a98267d1d28</entryUuid>
 <patientId>
 <id>RED7020</id>
 <assigningAuthority>
 <universalId>1.3.6.1.4.1.21367.13.20.1000</universalId>
 <universalIdType>ISO</universalIdType>
 </assigningAuthority>
 </patientId>
 <title>
 <lang>en-US</lang>
 <charset>UTF-8</charset>
 <value>Physical</value>
 </title>
 ... additional submission set fields
 </SubmissionSet>
 <folders />
 <documentEntries>
 <DocumentEntry>
 <entryUuid>788ccf31-f9fe-409a-91c4-8983e1c8ae14</entryUuid>
 <patientId>
 <id>RED7020</id>
 <assigningAuthority>
 <universalId>1.3.6.1.4.1.21367.13.20.1000</universalId>
 <universalIdType>ISO</universalIdType>
 </assigningAuthority>
 </patientId>
 <title>
 <lang>en-US</lang>
 <charset>UTF-8</charset>
 <value>Physical</value>
 </title>
 ... additional document entry fields
 </DocumentEntry>
 </documentEntries>
 <associations>
 <Association>
 <targetUuid>788ccf31-f9fe-409a-91c4-8983e1c8ae14</targetUuid>
 <sourceUuid>0324990a-00a4-4b3f-be6d-0a98267d1d28</sourceUuid>
 <associationType>HAS_MEMBER</associationType>
 <label>ORIGINAL</label>
 <entryUuid>cb297ac4-22f7-4303-81f5-76bb0befd8cc</entryUuid>
 </Association>
 </associations>
</CompoundSubmissionSet>

In the XQuery, then, we fundamentally do two things: we split this larger XML document
 into several smaller ones and write each of those to the database. The following XQuery
 code shows this implementation.
 declare variable $input external;

declare updating function local:storeSubmissionset($elem as element()) {
 let $docFileName := concat("/SubmissionSets/", data($elem/entryUuid), ".xml")
 return if (doc-available($docFileName))
 then replace node doc($docFileName)/SubmissionSet with $elem
 else xhive:insert-document($docFileName, document{$elem})
};

declare updating function local:updateTime($folder as element()) {
 let $time := replace(substring-before(xs:string(adjust-dateTime-to-timezone(current-dateTime(),xs:dayTimeDuration("-PT0H"))),"."), "[-:T]", "")
 return <Folder>{$folder/*[name() != "lastUpdateTime"]} <lastUpdateTime>{$time}</lastUpdateTime></Folder>
};
declare updating function local:storeFolders($elem as element()) {
 for $folderRaw in $elem/Folder
 let $folder := local:updateTime($folderRaw)
 let $docFileName := concat("/Folders/", data($folder/entryUuid), ".xml")
 return if (doc-available($docFileName))
 then replace node doc($docFileName)/Folder with $folder
 else xhive:insert-document($docFileName, document{$folder})
};

declare updating function local:storeDocEntries($elem as element(), $assocs as element()) {
 for $entry in $elem/DocumentEntry
 let $entryUuid := normalize-space(data($entry/entryUuid))
 let $docFileName := concat("/DocumentEntries/", $entryUuid, ".xml")
 let $assoc := $assocs/Association[sourceUuid = $entryUuid and (associationType='TRANSFORM_AND_REPLACE' or associationType='REPLACE')]
 let $oldDocUuid := normalize-space(data($assoc/targetUuid))
 return if (doc-available($docFileName))
 then replace node doc($docFileName)/DocumentEntry with $entry
 else (
 xhive:insert-document($docFileName, document{$entry}),
 if ($oldDocUuid)
 then
 replace value of node doc("DocumentEntries")/DocumentEntry[entryUuid=$oldDocUuid]/availabilityStatus
 with "DEPRECATED"
 else ())
};

declare updating function local:storeAssociations($elem as element()) {
 let $time := replace(substring-before(xs:string(adjust-dateTime-to-timezone(current-dateTime(),xs:dayTimeDuration("-PT0H"))),"."), "[-:T]", "")
 let $res := for $association in $elem/Association
 let $docFileName := concat("/Associations/", data($association/entryUuid), ".xml")
 let $sourceFileName := concat(normalize-space(data($association/sourceUuid)),".xml")
 return (if (doc-available($docFileName))
 then replace node doc($docFileName)/Association with $association
 else xhive:insert-document($docFileName, document{$association}),
 (: if new doc placed into existing folder, update the lastUpdateTime of that folder :)
 if (doc-available(concat("/Folders/", $sourceFileName)))
 then replace value of node doc(concat("/Folders/", $sourceFileName))/Folder/lastUpdateTime with $time
 else (),
 (: if the new doc replaces another we need to create an assoc between the new doc and all of the folders
 that the orignal doc is in :)
 if ($association/associationType = "REPLACE")
 then local:addAssocsForReplacementDocToFolders($association)
 else ()
)
return $res
};

declare updating function local:addAssocsForReplacementDocToFolders($association as element()) {
 let $orgDocUuid := normalize-space(data($association/targetUuid))
 let $newDocUuid := normalize-space(data($association/sourceUuid))
 let $newAssocs := for $assoc in doc("Associations")/Association[targetUuid=$orgDocUuid and associationType = "HAS_MEMBER"]
 let $folder := doc("Folders")/Folder[entryUuid=$assoc/sourceUuid]
 let $newAssoc := if ($folder)
 then <Association><targetUuid>{$newDocUuid}</targetUuid>
 <sourceUuid>{normalize-space(data($folder/entryUuid))}</sourceUuid>
 <associationType>HAS_MEMBER</associationType>
 <entryUuid>{xs:string(uuid:random-uuid())}</entryUuid></Association>
 else ()
 return $newAssoc
return local:storeAssociations(<associations>{$newAssocs}</associations>)
};

let $compoundsubmissionset := if (not(empty(.)))
 then .
 else xhive:parse($input)
return (local:storeSubmissionset($compoundsubmissionset/CompoundSubmissionSet/SubmissionSet),
 local:storeFolders($compoundsubmissionset/CompoundSubmissionSet/folders),
 local:storeDocEntries($compoundsubmissionset/CompoundSubmissionSet/documentEntries,$compoundsubmissionset/CompoundSubmissionSet/associations),
 local:storeAssociations($compoundsubmissionset/CompoundSubmissionSet/associations),
 $compoundsubmissionset/CompoundSubmissionSet)

This implementation is relatively crisp and XQuery serves the needs rather well,
 however there are RESTful service requirements that this implementation has not yet
 met.
Notice that the XQuery responds with XML that represents the resource that has been
 newly created. This forms the basis of the resource representation that will be
 returned by the RESTful service, however, it is not yet complete. The hypermedia
 constraint in RESTful services Hypermedia Constraint requires that resource
 representations contain hyperlinks to other resources, as well as hyperlinks that can
 otherwise drive the state of the application. In the case of a submission set, for
 example, the representation should contain links to the documents and folders comprising
 it.
While it is possible to achieve this augmentation of the XML using XQuery, we prefer
 XSLT for two primary reasons. First, implementations of RESTful services using the
 approaches described in this piece, follow a Model-View-Controller pattern and we
 intentionally have the XML returned from the XQuery represent the application model
 objects. The hyperlinks presented in a resource representation are the responsibility of
 the controller portion of the implementation, so having hyperlinks inserted as a part of
 the XQuery that interacts with the database would conflate the responsibilities of the
 model and the controller. Of course, a separate XQuery could be used for hyperlink
 insertion, yet this brings us to the second reason for a different choice, and that is
 simply that we prefer the declarative approach that XSLT affords.

XSLT
Inserting hyperlinks into an XML document involves two things; one must define the
 points of insertion and then express what is to be inserted, and the
 <xsl:template> is ideally suited to the task. Our XML REST Framework aims to make
 this task easy, even for the non-XSLT expert, by providing a simple XSLT template that
 traverses the document tree seeking those points of insertion, and by providing samples
 of the <xsl:template> definitions that insert links.
The following code snippet shows the simple recursive template that simply copies
 each of the source nodes into the result tree and applies a template with an
 “insert-here” mode at each element node.
 <?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions" xmlns:xdt="http://www.w3.org/2005/xpath-datatypes"
 xmlns:pat="http://www.emc.com/cto/PMR" xmlns:atom="http://www.w3.org/2005/Atom">
 <xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes" />

 <!--
 The templates in this xslt simply traverse the input XML and for each element apply any insertion templates
 that are defined for the particular type of object
 -->

 <xsl:template match="*">
 <xsl:copy>
 <!-- bring all attributes over -->
 <xsl:apply-templates select="@*" />
 <!-- insert any hyperlinks -->
 <xsl:apply-templates select="." mode="inserthere" />
 <xsl:apply-templates select="node()" />
 </xsl:copy>
 </xsl:template>

 <xsl:template match="@*">
 <xsl:copy />
 </xsl:template>

 <xsl:template match="text()" mode="inserthere" />

</xsl:stylesheet>

The RESTful services developer then need only define the <xsl:template> definitions for the elements that
 should have child link nodes inserted. The following stylesheet inserts hyperlinks into the submission
 set resource representation that is returned from the creation (POST) operation.<xsl:stylesheet version="2.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:fn="http://www.w3.org/2005/xpath-functions" xmlns:xdt="http://www.w3.org/2005/xpath-datatypes"
 xmlns:atom="http://www.w3.org/2005/Atom"
 xmlns:functx="http://www.functx.com" exclude-result-prefixes="xs xsl fn xdt functx">
 <xsl:import href="classpath:insertHyperlinks.xslt" />
 <xsl:import href="classpath:utils.xslt" />
 <xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes" />

 <xsl:param name="baseURL" />

 <!--
 This XSLT defines insertion templates that will be driven by the
 imported stylesheet
 -->

 <xsl:template match="SubmissionSet" mode="inserthere">
 <atom:link rel="self">
 <xsl:attribute name="href"><xsl:value-of
 select="concat($baseURL,'/',entryUuid)" /></xsl:attribute>
 </atom:link>
 <xsl:apply-templates select="/CompoundSubmissionSet/documentEntries/DocumentEntry" mode="inserthere" />
 <xsl:apply-templates select="/CompoundSubmissionSet/folders/Folder" mode="inserthere" />
 </xsl:template>

 <xsl:template match="DocumentEntry" mode="inserthere">
 <atom:link rel="document">
 <xsl:attribute name="href"><xsl:value-of
 select="concat(functx:substring-before-last($baseURL,'/'),'/documents/',entryUuid)" /></xsl:attribute>
 </atom:link>
 </xsl:template>

 <xsl:template match="Folder" mode="inserthere">
 <atom:link rel="folder">
 <xsl:attribute name="href"><xsl:value-of
 select="concat(functx:substring-before-last($baseURL,'/'),'/folders/',entryUuid)" /></xsl:attribute>
 </atom:link>
 </xsl:template>

 <xsl:template match="CompoundSubmissionSet">
 <xsl:apply-templates select="SubmissionSet"/>
 </xsl:template>

 <xsl:template match="folders"/>
 <xsl:template match="documentEntries"/>
 <xsl:template match="associations"/>

</xsl:stylesheet>

Another type of translation that is often needed for RESTful services provides support
 for additional media types. In general, the media type for the content returned from an
 XQuery will be application/xml or text/xml, and this may be directly returned by the
 RESTful service. Other XML formats, such as application/atom+xml, are also in widespread
 use and therefore a RESTful services framework that makes it easy to perform such a
 transformation is valuable. Just as with the insertion of hyperlinks, such
 transformations are well executed with an XSLT stylesheet. Note that JSON is gaining
 popularity as a media type for resource representations. Our recommendation is to keep
 the application model entities in XML and perform the transformation to JSON, again, via
 XSLT transformation, at the outer edge of that implementation.
At this point we have seen the value in XQuery to interface with the underlying XML
 database, and XSLT for the insertion of hyperlinks and support for alternate media
 types. The next question to answer, then, is how to tie these two things
 together.

XProc – the XML Pipelining Language
In May 2010 the XML Processing Model Working Group of the World Wide Web
 Consortium standardized XProc, an XML Pipelining language. XProc is a high-level
 programming language in which XML processing steps are wired together in such a way that
 the outputs of one step are routed to the inputs of another step; all content flowing
 between steps is XML. An XProc Engine executes a pipeline, accepting external inputs
 and producing zero or more outputs. The XProc language includes several dozen processing
 steps that when used together allow for sophisticated capabilities to be implemented
 with very few lines of code.
Before looking at some of these more complex examples, let us first look at a very
 simple pipeline that ties together the two solution components we previously
 discussed – the XQuery for database access and the XSLT for hyperlink insertion.
 Figure 3 shows a pictorial representation of this pipeline.
Figure 3
[image:]
Base Resource-creation Pipeline

In this case where we are creating a submission set, the source document passed into
 the pipeline is the submission set representation. A second input to the pipeline is
 the base URL, a parameter that reflects the deployment particulars of the service (such
 as hostname), is used in the later XSLT step. The source document is passed into the
 XQuery, which, as we saw above, splits the input document and writes several XML
 documents to the XML database; the XQuery step produces an XML document as the
 response. The XSLT step then accepts the result from the XQuery, as well as the base
 URL that was passed into the pipeline, and generates a hyperlink rich XML document on
 the output.
Getting More Sophisticated
Recall that earlier we made some simplifying assumptions; one being that the XML
 document supplied to the XQuery would be valid, including having identifiers already
 assigned to the various portions of the submission set. While the IHE specifications
 do require that all recorded document entries, folders, submission sets and
 associations have UUIDs assigned, they allow for a case where the registry receives
 a submission set containing only locally scoped identifiers (within the submission
 set). In this case, the registry implementation responsible for assigning UUIDs. The
 following shows and example of such a resource
 representation.<?xml version="1.0" encoding="UTF-8"?>
<CompoundSubmissionSet>
 <SubmissionSet>
 <comments>
 <lang>en-US</lang>
 <charset>UTF-8</charset>
 <value>Annual physical</value>
 </comments>
 <entryUuid>SubmissionSet01</entryUuid>
 ... additional submission set fields
 </SubmissionSet>
 <folders />
 <documentEntries>
 <DocumentEntry>
 <entryUuid>Document01</entryUuid>
 ... additional document entry fields
 </DocumentEntry>
 </documentEntries>
 <associations>
 <Association>
 <targetUuid>Document01</targetUuid>
 <sourceUuid>SubmissionSet01</sourceUuid>
 <associationType>HAS_MEMBER</associationType>
 <label>ORIGINAL</label>
 <entryUuid>Association01</entryUuid>
 </Association>
 </associations>
</CompoundSubmissionSet>

In our implementation we use XProc to replace the local identifiers with UUIDs and
 to do so we need only loop over each of the non-UUID identifiers and invoke the UUID
 XProc step. Our main XProc pipeline will now include a step which performs this
 insertion, and the output, which fulfills that validity constraint, will be wired to
 the XQuery step. The following XProc step definition shows the recursive application
 of the UUID step.
 <p:declare-step name="main"
 xmlns:p="http://www.w3.org/ns/xproc"
 xmlns:c="http://www.w3.org/ns/xproc-step"
 xmlns:emc="http://www.emc.com/cto/xds"
 type="emc:replaceNonUuids"
 version="1.0">
 <p:input port='source'/>
 <p:output port='result' primary='true'/>

 <p:choose name="processUuids">
 <p:xpath-context>
 <p:pipe step="main" port="source"/>
 </p:xpath-context>
 <p:variable name="nonUuid" select="//entryUuid[not(contains(.,'-')) and (position() = 1)]/text()">
 <p:pipe step="main" port="source"/>
 </p:variable>
 <p:when test="$nonUuid">
 <p:uuid name="uuid">
 <p:with-option
 name="match"
 select='concat("//*[(name(.)='entryUuid' or name(.)='targetUuid' or name(.)='sourceUuid')and .='",
 $nonUuid,
 "']/text()")'/>
 <p:input port="source">
 <p:pipe step="main" port="source"/>
 </p:input>
 </p:uuid>
 <emc:replaceNonUuids>
 <p:input port="source">
 <p:pipe step="uuid" port="result"/>
 </p:input>
 </emc:replaceNonUuids>
 </p:when>
 <p:otherwise>
 <p:identity>
 <p:input port="source">
 <p:pipe step="main" port="source"/>
 </p:input>
 </p:identity>
 </p:otherwise>
 </p:choose>
</p:declare-step>

Figure 4 shows how this step is wired into the original pipeline.
Figure 4
[image:]
Pipeline Augmented with Content Enrichment Step

To complete the pipeline for the submission set creation operation we also include
 some additional validation steps (which, for brevity, we will not show here), as
 well as some steps that produce a multi-part response.

Multi-part Responses
Because we are implementing our RESTful services almost exclusively in XProc pipelines, those
 pipelines must accommodate the need to generate more than just a single result. For
 example, a best practice in RESTful services is that resource creation operations
 return not only the resource representation, but also a URL to the newly created
 resource; this URL is to be returned in the HTTP Location header. Furthermore,
 RESTful services MUST respond with a status code indicating success or failure, and
 since that outcome is largely determined in the XProc pipeline, that status
 information must similarly be returned.
Fortunately, XProc provides for multi-part responses with multiple output ports,
 where any output port can carry more than one value. We implement the pipelines for
 our RESTful services in a consistent manner, providing three output ports: the
 primary contains the resource representation, another called “headers” contains
 key/value pairs and one called “error” outputs an XML document that carries
 information on any errors that occurred during the processing of the pipeline. The
 following is the final implementation of our submission set creation pipeline,
 including error handling and the creation of the location
 header.<p:declare-step name="main"
 xmlns:p="http://www.w3.org/ns/xproc"
 xmlns:c="http://www.w3.org/ns/xproc-step"
 xmlns:emc="http://www.emc.com/cto/xds"
 version="1.0">
 <p:input port="source"/>
 <p:input port='xqueryscript' />
 <p:input port="stylesheet"/>
 <p:input port="stylesheetParameters" kind="parameter"/>
 <p:input port="xqueryParameters" kind="parameter"/>
 <p:output port='result' sequence='true' primary='true'>
 <p:pipe step='checkXquery' port='result'/>
 </p:output>
 <p:output port='error' sequence="true">
 <p:pipe step='checkXquery' port='error' />
 </p:output>
 <p:output port='headers' sequence="true">
 <p:pipe step='checkXquery' port='headers' />
 </p:output>
 <p:import href="classpath:replaceNonUuids.xpl"/>

 <!-- This pipeline will assign identifiers whereever needed and then will
 execute the xquery against the source passed in. Finally, it will
 take the result and enhance it with hyperlinks to related resources.
 The xquery and xslt are both passed into the pipeline. -->

 <!-- Replace local identifiers with uuids. -->
 <emc:replaceNonUuids name="replaceNonUuids">
 <p:input port="source">
 <p:pipe step="main" port="source"/>
 </p:input>
 </emc:replaceNonUuids>

 <!-- execute xQuery against the input source -->
 <p:xquery name="xquery">
 <p:input port='source'>
 <p:pipe step="replaceNonUuids" port="result" />
 </p:input>
 <p:input port="query">
 <p:pipe step="main" port="xqueryscript" />
 </p:input>
 <p:input port="parameters">
 <p:pipe step='main' port='xqueryParameters'/>
 </p:input>
 </p:xquery>

 <!-- check the result of the xQuery to make sure there was no error -->
 <p:choose name="checkXquery">
 <p:variable name="error" select="/error/code">
 <p:pipe step="xquery" port="result" />
 </p:variable>
 <!-- in case of error, return error xml out of pipeline -->
 <p:when test="$error">
 <p:output port="error">
 <p:pipe step="genError" port="result" />
 </p:output>
 <p:output port="result" sequence='true' primary="true">
 <p:empty />
 </p:output>
 <p:output port="headers" sequence='true'>
 <p:empty/>
 </p:output>
 <p:string-replace name="genError" match="/error/code/text()">
 <p:input port="source">
 <p:inline>
 <error><code>err</code><description>description</description></error>
 </p:inline>
 </p:input>
 <p:with-option name='replace' select="$error" />
 </p:string-replace>
 </p:when>
 <p:otherwise>
 <p:output port="error" sequence="true">
 <p:empty />
 </p:output>
 <p:output port="result" sequence='true' primary="true">
 <p:pipe step="xslt" port="result"/>
 </p:output>
 <p:output port="headers" sequence='true'>
 <p:pipe step="locXML" port="result"/>
 </p:output>
 <!-- insert hyperlinks -->
 <p:xslt name="xslt">
 <p:input port='source'>
 <p:pipe step='xquery' port='result'/>
 </p:input>
 <p:input port='stylesheet'>
 <p:pipe step='main' port='stylesheet'/>
 </p:input>
 <p:input port='parameters'>
 <p:pipe step='main' port='stylesheetParameters'/>
 </p:input>
 </p:xslt>

 <!-- generate the URL for the newly created resource -->
 <p:variable name="baseU" select="/c:param-set/c:param[@name='baseURL']/@value">
 <p:pipe step="main" port="stylesheetParameters"/>
 </p:variable>
 <p:string-replace name="locXML" match="/Location/text()">
 <p:input port="source">
 <p:inline>
 <Location>here</Location>
 </p:inline>
 </p:input>
 <p:with-option name='replace' select="concat('"',$baseU, '/', //entryUuid/text(),'"')">
 <p:pipe step='xslt' port='result'/>
 </p:with-option>
 </p:string-replace>

 </p:otherwise>
 </p:choose>
</p:declare-step>

XProc’s support for multiple outputs is a good fit for the requirements of RESTful
 services and avoids having the developer design a multi-part model
 themselves.

XProc and Transactions
One might note that while in our current implementation we have split our
 submission set into more fine-grained parts within the XQuery, that we could also
 have done so in the XProc pipeline. Doing the split as a step in the XProc pipeline
 could result in greater reuse of portions of the implementation and code that is
 easier to produce and maintain. But then what would come of our requirement for
 atomicity in the construction of the submission set, if pipeline were to execute
 several updating XQuery steps?
Fortunately, the Xproc engine that we are using in house provides transaction
 boundaries at the start and end of a pipeline. This allows us to construct
 pipelines that execute multiple XQueries, yet have them succeed or fail as one
 single unit. This powerful capability is quite welcome in the construction of
 RESTful services where compound resources are common.

Binding HTTP Processing to the XML-Centric Implementation
At this point we’ve seen how an XProc pipeline allows us wire up a set of steps to
 provide the core implementation of our RESTful services. The XProc pipeline accepts
 inputs and returns a multi-part response, including what can be thought of as a body,
 headers and error/status information. What remains is how an XProc pipeline is bound to
 the Java classes we’ve created for each of our resources, as well as how to bind
 portions of the HTTP request/response to the pipeline inputs/outputs.
To bind an XProc pipeline to a resource (Java) method we inject the XProc pipeline
 into the method via a Spring configuration. Each method in the Java class will have an
 XMLProcessingContext object associated with it, which encapsulates the pipeline as well
 as any design time bindings to the pipeline. To understand why design time bindings are
 valuable, consider that the pipeline for most GET operations will be very similar; an
 XQuery will be used to obtain XML from the database and an XSLT will be applied to those
 results. The only thing that differs from one GET operation to another is the specific
 XQuery and the specific XSLT stylesheet; hence, we will parameterize a single GET
 pipeline with those values and reuse that pipeline over many resource implementations.
 The following excerpt from a Spring configuration file shows the injection of XQueries
 and XSLTs into the XMLProcessingContext for the createSubmissionSet operation, and the
 injection of that XMLProcessingContext into the resource
 class.<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-3.0.xsd">

 <!-- other bean definitions omitted for brevity -->

 <!-- Patients and Patient Resource -->
 <bean id="Patients" class="com.emc.cto.healthcare.SubmissionSets">
 <property name="addSubmissionSet" ref="addSubmissionSetXMLProcessingContext" />
 </bean>

 <bean id="addSubmissionSetXMLProcessingContext" class="com.emc.cto.xproc.XProcXMLProcessingContext">
 <property name="xprocPool" ref="xprocPool" />
 <property name="pipelineSource"><value>classpath:xqueryXsltUuid.xpl</value></property>
 <property name="inputs">
 <map>
 <entry key="xqueryscript" value="classpath:registerObjectsMinimal.xq" />
 <entry key="stylesheet" value="classpath:hyperlinksSubmissionSet.xslt" />
 </map>
 </property>
 <property name="options"><map/></property>
 <property name="parameters"><map/></property>
 </bean>

</beans>

Finally, we must bind additional XProc parameters at run time, using the Java-based
 framework to access parts of the HTTP request and supplying those values to the pipeline
 in the Java method. Following the execution of the pipeline the results are mapped back
 to the HTTP response. This is done by our framework in a Spring MVC view that knows how
 to convert the multi-part pipeline output into an HTTP response; this relieves the
 services developer of these concerns. The following code shows the full implementation
 of the method corresponding to the POST operation on the submission sets
 resource.@RequestMapping(method = RequestMethod.POST)
@ResponseStatus(HttpStatus.CREATED)
public String addPatient(HttpServletRequest request,
 HttpServletResponse response,
 Model model) throws XProcException, IOException, URISyntaxException, TransformerException {
 try {
 PipelineInputCache pi = new PipelineInputCache();

 // supply http body as the source for the resource Create pipeline
 pi.setInputPort("source", request.getInputStream());

 // supply current resource URL as the base URL to craft hyperlinks
 String baseUrl = request.getRequestURL().toString();
 if (baseUrl.endsWith("/"))
 baseUrl = baseUrl.substring(0, baseUrl.length()-2);
 pi.addParameter("stylesheetParameters", new QName("baseURL"), baseUrl);

 PipelineOutput output = m_addSubmissionSet.executeOn(pi);

 model.addAttribute("pipelineOutput", output);
 return "pipelineOutput";
 } finally {
 ;
 }
}

Conclusions
Our experience implementing an XDS Registry using the XML REST Framework shows that
 the XML Technology stack not only provides capabilities adequate for implementation of
 sophisticated RESTful web services, but also results in an elegant solution that is
 arguably easier to construct and maintain than a purely Java-based counterpart. We have
 not done any quantitative analysis comparing developer productivity between the two
 approaches, or comparing the use of our framework to other XRX-based approaches, however
 we do have some anecdotal evidence that supports this claim. In one instance, a
 development team was able to complete the work for two project sprints within the time
 frame of a single sprint; they credited the XML-centric approach to RESTful services
 construction for that acceleration. Some work has been done by Syntactica to quantify
 the productivity gains of an XRX-based approach XRX Value.
While there is clearly some overlap between the capabilities in XQuery, XSLT and
 XProc, there is a clean mapping from requirements on RESTful services to the tools that
 best address them. Limiting an XQuery to interactions with the database results in
 queries that are simple to write and unit test, and effectively encapsulates the logic
 that creates application model objects (XML structures). The controller portion of our
 implementation is implemented with XProc pipelines and XSLT stylesheets. With its
 mechanism for identifying insertion points, and a powerful language for expressing what
 should be inserted, XSLT is ideally suited to perform hyperlink insertion. It is also
 the de facto standard for doing XML to XML[2] transformations. The new XProc standard which defines a high level language
 for wiring together a set of XML-centric steps, provides a means for addressing many of
 the requirements presented by RESTful services: implementations of compound resources, a
 multi-part data model and a large set of out of the box XML processing steps.
One of the most significant, positive results of our work has been that with the
 availability of our XML REST Framework we have enabled developers to more readily
 understand the important elements of RESTful services. Rather than simply providing
 guidance in the form of a reference architecture, providing a set of tools and
 samples along with that guidance has proven very effective.
Limitations
We have employed our XML REST Framework in several projects within EMC with a good
 deal of success. The biggest barrier, however, continues to be a reluctance by
 developers to embrace XML as the development model. The XML-based approach that we
 espouse in this paper, while quite powerful, still suffers from a lack of tooling and,
 even more importantly, a learning curve issue. Most developers are quite familiar with
 Java programming approaches, IDEs, testing frameworks, and so on, and have limited
 experience with the XQuery and XSLT. Most have never heard of XProc. While the XProc
 processing model is powerful and conceptually allows pipelines to be easily expressed,
 the syntax is unwieldy and will turn most developers completely off. It would behoove
 us in the XML community to address these issues to expand the utilization of XML
 technologies in such development scenarios.
One of the things we have found most useful in this XML-centric approach to RESTful
 service construction is the use of XProc to operate on compound resources. We noted in
 a section above that the XProc implementation we are using in our work creates
 transaction boundaries at the beginning and end of a pipeline. This feature does not
 exist in all XProc engines, limiting the generality of the approach we describe
 here.

Future Work
Our work in this area continues. We are exploring the use of XProc as the core engine in
 the View portion of a Spring MVC implementation. We are exploring the use of finite
 state machines (FSM) to model application flows and are building an engine that
 interprets these FSMs, inserting hyperlinks in the resource representations. We are also
 investigating how other elements of RESTful service implementations (such as feed paging
 and eTag eTags support) can be integrated into the framework so as to
 continue lessening the load on the services developer.

The XML REST Framework is available, along with a sample application, from the EMC
 Developer Network XMLRESTFW. The distribution includes
 all source code.

Bibliography
[XRX] McCreary, Dan. XRX: Simple, Elegant, Disruptive. May 2008. http://www.oreillynet.com/xml/blog/2008/05/xrx_a_simple_elegant_disruptiv_1.html.
[XForms] Boyer, John M., XForms 1.1. October 2009. http://www.w3.org/TR/xforms11/.
[XQuery] Boag, Scott, et. al. XQuery 1.0: An XML Query Language (Second Edition). December 2010. http://www.w3.org/TR/xquery/.
[XSLT] Kay, Michael. XSL Transforamtions (XSLT) Version 2.0. January 2007. http://www.w3.org/TR/xslt20/.
[Atom] Nottingham, M. and R. Sayre. The Atom Syndication Format. December 2005. http://tools.ietf.org/html/rfc4287.
[XProc] Walsh, Norman, Alex Milowski and Henry S. Tompson. XProc: An XML Pipeline Language. May 2010. http://www.w3.org/TR/xproc/.
[IHEConnect] IHE Connectathon. http://www.ihe.net/Connectathon/.
[IHEXDS] IHE Cross Enterprise Document Sharing (XDS). http://www.ihe.net/Profiles/index.cfm#IT.
[Spring] Johnson, R., et. al. Spring Framework Reference Documentation 3.0. 2004-2010. http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/.
[Wilde] Wilde, Erik. XML-Centric Application Development. February 2006. http://dret.net/netdret/docs/wilde-tikrep242.pdf.
[IHE] Integrating the Healthcare Enterprise Technical Frameworks. http://www.ihe.net/Technical_Framework/.
[IHE] Fielding, Roy Thomas, Architectural Styles and the Design of Network-based Software Architectures. 2000. http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.
[Servlex] Servlex: an implementation of the EXPath Webapps frameworkhttp://code.google.com/p/servlex/.
[EXPath Webapp] EXPath Webapp. http://expath.org/wiki/Webapp.
[Spring MVC] Haines, Steven. Mastering Spring MVC. April 2009. http://www.javaworld.com/javaworld/jw-04-2009/jw-04-springmvc.html.
[Apache CXF] Apache CXF: An Open Source Services Framework. http://cxf.apache.org/.
[Jersey] Glassfish: Jersey. http://jersey.java.net/.
[Hypermedia Constraint] Fielding, Roy. REST APIs must be hypertext-driven. Blog post, October 2008. http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven.
[eTags] Hypertext Transfer Protocol -- HTTP/1.1 - ETag Section. June 1999. http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.19.
[XRX Value] Syntactica Solutions for XRX Developers. http://www.syntactica.com/solutions/xrx.xq.
[XMLRESTFW] Davis, Cornelia, XML REST Framework: Spring MVC and XProc. https://community.emc.com/docs/DOC-10494.

[1] Note that while REST is an architectural style that does not require HTTP, in
 practice most RESTful services are offered over HTTP and we will focus on those
 here.
[2] Note that JSON resource representations are increasingly popular. The
 approach we describe in this paper does not preclude such representations and
 XSLT is also an excellent choice for XML to JSON transformations.

Balisage: The Markup Conference

Programming Application Logic for RESTful Services Using XML Technologies
Cornelia Davis
Senior Technologist
EMC Corporation

<cornelia.davis@emc.com>
Cornelia Davis is a Senior Technologist in the Architecture group of the
 Office of the CTO, focusing RESTful Service Oriented Architectures. Areas of
 expertise include XML and Atom, and she frequent speaker on RESTful SOA.
 Cornelia holds a B.S. and an M.S. in Computer Science from California State
 University, Northridge.

Balisage: The Markup Conference

content/images/Davis01-004.jpg
Source XML
document

source

source *

replaceNonUuids

source *

XQuery

source v

XSLT

ResultXhL
document

*pareme[ers

Base URL

parameters

)

content/images/Davis01-003.jpg
Source XML Base URL
docurment
source parameters

source * *parsme{ers

XSLT

ResultXML
docurment

content/images/Davis01-002.jpg
Logical Model

Resource URI Template Uniform IF
Submission Isubmissionsets GET
Sets POST
Submission Isubmissionsets/{ssid} | GET
Set PUT
DELETE
Documents Idocuments GET
POST
Document Idocuments/{did} GET
1 Physical Model
[[[|
SubSets Documents Folders Associations
Qsl.xml dLxml fL.xml al.xml
—
ss2.xml d2.xml f2.xml

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Davis01-001.jpg
XProc Pipeline

core services implementation

POJO

for RESTful Service
“declaration”

XSLT

for hyperlink
insertion and media

XQuery

interface to the

XProc pipeline steps

