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Abstract
This paper describes an approach to encapsulate together an XML document and its
                history (i.e. the various significant states it adopted along its life cycle) into a
                single standalone XML document. Our proposal introduces an XML data model suited to
                capture versioning information combined with an operational model to handle such
                encapsulated data. We describe basic operators involved along the transformation
                process of the document/history pair, mainly designed around the principle of
                maintaining coherence properties. 
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   Stand-alone Encoding of Document History 
(or One Step Beyond XML Diff)

Introduction
XML being recognized today as the lingua franca of computerized information, some key
            basic functionalities become of universal interest and will predictably gain momentum in
            the upcoming XML related economy.
One of these functionalities is the computation of differences between two XML
            documents, and more generally, the management of the history of a given document. In
            particular, this functions as a cornerstone of any system aiming at offering long term
            preservation.
Today, such functionality is achieved through content management systems or databases.
            Models and operations are therefore hidden inside a black box, and up to the author's
            knowledge, no standard mechanism makes this information explicit and accessible to human
            users neither to external algorithms and processors.
Our proposal addresses this issue by associating a target document instance together
            with its history inside a standalone and consistent document, thus gaining strong
            potential for current or future interoperability.
The notion of history, when applied to a document,
            calls for a deeper understanding of the global context, intents and social processes
            underpinning the creation, evolution and maintenance of documents (see [pédauque03]). Hence, the relevant structure of a meaningful document history highly depends on the document typology and
            usages.
In addition, the criterion that founds any document history is the permanence of some
            key deep invariants (for a general, ontological, reflection around this line, see [pédauque05]). Those invariants define the identity of the document itself
            and their loss inevitably ends the versioning process and calls for a new creation
            cycle.
The method we describe in this paper takes into consideration the key points above,
            especially through a flexible calculus of difference descriptors, and through offering
            high level transformation operations that preserve the consistency of both the document
            instance and its whole history.

Overview
The target document (also called body hereafter),
            i.e. any XML document using any namespace, is encapsulated inside a dedicated packaging
            XML document. The body always consistently relates to a given state of its history (not
            necessarily the most recent one) thanks to a dedicated attribute that refers to a
            version label and makes this relation explicit. 
 The history itself is encoded as interrelated nodes (XML elements) and has the
            structure of a directed acyclic graph (DAG); each node of this graph models a versioning
            point, i.e. a particular significant state that the document reached during its lifetime
            and for which a version has been recorded. The meaning of any versioning point with
            respect to the document life cycle is application dependent, as discussed above, and the
            proposed approach abstracts over application semantics, just considering that a new
            version is built when some actor in the document life cycle decided it makes sense to do
            so. Arcs that connect the nodes are decorated with deltas, and these arcs model the
            transformation that allows changing the document from one versioning point to the other.
            Thus arcs are oriented. Deltas descriptors are combinations of low level operations on
            the document tree, mainly based on deletion and insertion of subtrees.
 Thanks to a set of transformations qualitatively described in this paper, it is
            possible to navigate inside the history of the document and to consistently extract any
            version of the document captured in the history graph. It is also possible to create new
            versioning points, new branches or to merge existing branches, all these operations
            producing novel consistent encapsulations of the target document.

Modelling Abstract Differencing Operations
Document model
 The encapsulating XML document can be represented (in an abstract way) as a tree
                like this: 
Figure 1: Abstract tree structure of the document history
x-version[x-bodyvi[d],x-history[…vi…]]


where d represent the target document and
                    vi a versioning point.
                The full syntax of our encapsulation is available through a RelaxNG Schema (see
                appendix). The examples Figure 26, Figure 27, Figure 28 and Figure 29 illustrate concretely the way we
                propose to encode the history graph (DAG) in XML, and the way delta operations are
                attached to transition arcs.

Diff Engine
We assume that a diff engine is able to operate as a black box function. Its
                abstract signature could be for instance: 
Figure 2: Abstracting over diff operation
	
                            diff(config, d, d’) 	 → 	 Δ 



with config being some input information used to configure the processor (e.g.
                filter to apply, mode commutative/non-commutative,…). The notation Δ represents a
                set of basic delta operations, formally described hereafter.

Abstracting over Delta Operations
Figure 3: Syntax of delta operations
	Δ	::= 	 { } 	no operation
	
                        	
                        	| { δ1 … δi } 	commutative snapshots
	
                        	
                        	| Δ ; Δ 	sequences
	δ	::= 	 insert (pp, A)	subtree insertion
	
                        	
                        	| insert-attr(pp/@nm, A)	attribute insertion
	
                        	
                        	| delete(p)	subtree deletion



The delta operation use paths, noted p, to
                designate the tree location where the modification should be applied. Those paths
                are describe by the following grammar (i is a
                positive integer, nm an attribute name, pp denotes "pure paths"):
Figure 4: Syntax of path description
	p 	::=	pp | pp/@nm
	pp 	::=	i/pp | i



These paths are interpreted as relative to the root of the encapsulated document,
                and can be easily translated as XPath expressions. For example, 1/2/1 is translated
                into *[1]/*[2]/*[1], and 1/3/@id into *[1]/*[3]/@id [1]. 
Each delta belonging to a snapshot must comply with a structural constraint that
                ensures orthogonality (thus making the snapshot indeed commutative). In particular,
                it is enough to verify that two paths in a snapshot do not designate sibling trees,
                and one path does not designate a sibling tree of the parent node designated by the
                other path. We assume that this constraint is part of the well-formedness condition
                assured for all definitions [2].
The semantics of delta operations expresses changes that occur on the operand (an
                XML tree) ; we note this transformation of d into
                    d’ by applying Δ as follows: 
Figure 5: Transformation by Delta application
	
                        	d › Δ › d’



More precisely, the previous notation is a logical assertion saying that a
                well-formed document d is changed into a
                well-formed document d’ after application of the
                well-formed Δ operation.
Formally, for all subtree A, path p, documents d and
                    d’, deltas Δi and δi, the transformations verify the following
                abstract properties: 
Figure 6: Abstract properties of delta transformations
	(a-seq) 	 d › Δ1;Δ2 › d’	 ⇔ 	 ∃ d’’ , d › Δ1 › d’’ ⋀ d’’›
                            Δ2 › d’ 	
                        
	(a-snap) 	 d › { δ1 ... δi} › d’	 ⇔ 	 d › {δπ1} ; {
                                    δπi} › d’	for any permutation π defined over the sequence of indexes [1,…,i]
	(a-void) 	 d › { } › d’	 ⇔ 	 d ≈ d’	
                        
	(a-ins) 	 d › { insert(pp,A)} › d’	 ⇒ 	
                            get(d',pp)≈A ⋀ invar(d,d',pp,f)	 with f = ζ(pp)
	(a-ins-@) 	 d › { insert-attr(pp/@nm,A)} › d’	 ⇒ 	
                            get(d',pp/@nm) = A ⋀ invar(d,d',pp/@nm)	
                        
	(a-del) 	 d › { delete(pp)} › d’	 ⇒ 	
                            get(d',pp)≈get(d,pp ⊕ f) ⋀ invar(d,d',pp,-f)	 with f = ζ(pp)
	(a-del-@) 	 d › { delete(pp/@nm)} › d’	 ⇒ 	
                            get(d',pp/@nm) = ε	
                        



Note that the definition of insert operator makes
                use of the function get, which extracts the subtree
                rooted at a given location p, as well as a path
                addition function ⊕ and a so called fingerprint extraction ζ . The invar operator
                deals with locality of the transformation (see Invariance Property Fig Figure 11 and associated explanations). Moreover, ≈ (the
                equivalence of trees) is defined extensionally using quantification of paths, and is
                insensitive to attribute order, according to path definition.
Figure 7: Tree equivalence
	d ≈ d’ 	 ⇔ 	 ∀ p, get(d,p) = get(d’,p)

Path based, extensional equivalence over
                    trees


The path addition is defined over pure paths (paths designating element nodes
                only, noted pp), can deal with operands of various
                depth and is commutative: 

                Figure 8: Path addition
	i/pp 	 ⊕ 	j/pp’ 	=	 (i + j)/(pp ⊕ pp’)
	i/pp 	 ⊕ 	 j	=	 (i + j)/pp
	i 	 ⊕ 	 j	=	 (i + j)




            
Also fingerprints capture some structural information, and more precisely, the
                depth level of a path:
Figure 9: Fingerprint computation
	ζ(i/pp)	 = 	0/ζ(pp)
	ζ(i)	 = 	1



Thus ζ (1/2/3) = 0/0/1 and 1/2/3 ⊕ ζ(1/2/3) = 1/2/4 and 1/2/3/2 ⊕ ζ(1/2/3) =
                1/2/4/2
The property (a-snap) holds for all permutations
                over indexes. It simply means that the set of deltas must be commutative with
                respect to their sequential application. In other words, all basic deltas of a
                snapshot are pairwise orthogonal.
The property (a-del) involves a minus operator
                over paths. This one is easily defined as inverting all integers found in the path.
Figure 10: Path inversion
	-(i/pp)	 = 	(-i)/-(pp)
	-(i)	 = 	-i



The invar property used in (a-ins), (a-ins-@) and
                (a-del) expresses that other parts of the tree are not modified by the operation.
                This is defined as follows:
Figure 11: Invariance property
	invar(d, d’, pp/@nm)	 ≡ 	∀ nm' [ get(d, pp/@nm’) = get(d’, pp/@nm’) ]
	invar(d, d’, pp, f)	 ≡ 	∀ p' [ 
                                	p' ≪ pp 	 ⇒ 	get(d, p’) = get(d’,p’)
	⋀	
                                        	
                                        
	 pp ≪ p'	 ⇒	get(d, p’) = get(d’,p’ ⊕ f) 


                            
 ] 



 The relation ≪ is a strict total order over (pure) paths, which is sound with
                respect to the standard total order over document nodes as defined by the XML
                document model.
Figure 12: Strict total order on paths
 for all i, j integers, pp, pp' pure paths, 
Table I
	
                        	
                        	
                        	
                        	 i < j 	 i = j 	 i > j 
	 i/pp	≪	 j/pp'	
                        	 true 	 pp ≪ pp' 	 false 
	 i	≪	 j/pp'	
                        	 true 	 false 	 false 
	 i/pp	≪	 j	
                        	 true 	 false 	 false 
	 i	≪	 j	
                        	 true 	 false 	 false 



The intuitive notion of path prefix relation captures the idea of tree embedding
Figure 13: Path prefix relation
	pp1 ≺ pp2	 iff 	 ∃ pp | pp1 = pp2/pp



We now define the notion of path orthogonality as a binary boolean operator that
                captures the notion that a path is not a subpath of another (or equivalently, a
                subtree is not included into another subtree)
Figure 14: Path orthogonality
	 pp1 ⊥ pp2
                        	 iff 	 not [ pp1 ≺ pp2 ⋁
                                pp2 ≺ pp1] 



Extension of basic vocabulary
In order to ease understanding and increase the generality of descriptions, we
                    propose now to extend the vocabulary through definitions based on the
                    fundamental operations described above: move,
                        copy and replace
                    [3]. 
Figure 15: Definition of Additional Operators
	pp2 ≪ pp1	 ⇒ 	d › { move(pp1,
                                pp2) } › d’ 	 ⇔ 	d › { insert
                                    (pp2,get(d, pp1))};{delete(pp1 ⊕
                                    ζ(pp2)) } › d’
	pp1 ≪ pp2	 ⇒ 	d › { move(pp1,
                                pp2) } › d’ 	 ⇔ 	d › { insert
                                    (pp2,get(d, pp1))};{delete(pp1) } ›
                            d’
	pp1 ⊥ pp2	 ⇒ 	d › { copy(pp1,
                                pp2) } › d’ 	 ⇔ 	d › { insert
                                    (pp2,get(d, pp1)) } › d’
	
                            	
                            	d › { replace(pp,A) } › d’ 	 ⇔ 	d › { insert (pp,A)};{delete(pp ⊕ ζ(pp)) } › d’
	
                            	
                            	d › { replace(pp/@nm,A) } › d’ 	 ⇔ 	d › {delete(pp/@nm) }; { insert-attr(pp/@nm,A)} › d’



Note that move and copy operations are only defined for orthogonal paths[4].

Inversion of basic operations and snapshots
Inverting a delta (i.e. computing the changes that will exactly bring the
                    operand in the previous state) requires knowing the original operand on which
                    changes will be applied.
The inversion function is inductively defined as follows:
Figure 16: Inversion Function ∘
	
                            	
                            	
                                ∘{ } 	 = 	 { } 
	 d › {δ1 ... δi} › d’	 ⇒ 	
                                ∘{δ1 ...
                                    δi} 	 = 	 {∘δ1 ...
                                    ∘δi}
                            
	 d › Δ1;Δ2 › d’	 ⇒ 	
                                ∘(Δ1;Δ2) 	 = 	
                                ∘(Δ2);∘(Δ1) 
	 d › {delete(pp)} › d’	 ⇒ 	
                                ∘(delete(pp)) 	 = 	
                                insert(pp,get(d,pp)) 
	 d › {delete(pp/@nm)} › d’	 ⇒ 	
                                ∘(delete(pp/@nm)) 	 = 	
                                insert-attr(pp/@nm,get(d,pp/@nm)) 
	 d › {insert(pp,A)} › d’	 ⇒ 	
                                ∘(insert(pp,A)) 	 = 	
                                delete(pp) 
	 d › {insert-attr(pp/@nm,A)} › d’	 ⇒ 	
                                ∘(insert-attr(pp/@nm,A)) 	 = 	
                                delete(pp/@nm) 



Delta inversion is characterized by the following soundness property:
Figure 17: Proposition 1
	d › Δ › d’ 	 ⇒ 	 d’ › ∘Δ › d

Inversion of well-formed delta operations over
                            well-formed documents produces a well-formed reverse tree
                            transformations



                    Proof : See appendix Appendix A
                
The inversion of deltas is an important functionality which allows navigating
                    in the history graph. Moreover, it provides a more compact representation of
                    changes, especially when successive versions represent documents whose content
                    tends to increase incrementally (corresponds to the construction phase inside a
                    standard document life-cycle).
Indeed, in such cases, subgraphs of the form [5]
	vi	→insert(p,A)	vj	→insert(p',B)	[vk]

can be rewritten using delta inversion as:
	vi	←delete(p)	vj	←delete(p')	[vk]

This transformation is beneficial because the subtrees A and B are redundantly
                    stored: once inside the history and once inside the encapsulated instance
                    itself. In case the focus is set to a non-terminal versioning point (e.g.
                        vj ), we also may have
	vi	←delete(p)	[vj]	→insert(p',B)	vk

which is still quite meaningful as the subtree B is only stored once inside
                    the delta transition (indeed, the encapsulated document, consistent with focused
                    version vj, does not comprise the B subtree (see examples
                    3 et 4 below to grasp more concretely the point).
Note that inverting the operands of a diff operation should also lead to
                    reversed deltas [6]:
Figure 18: Strong soundness of delta inversion
	diff(c, d, d’)=Δ 	 ⇒ 	
                                diff(c, d’, d) = ∘(Δ)



A weaker version of this property (see Figure 19 below)
                    requires defining an equivalence relation over deltas. This relation is based on
                    the effect of delta application rather than its syntactic structure.
Figure 19: Weak soundness of delta inversion
	diff(c, d, d’)=Δ 	 ⇒ 	
                                diff(c, d’, d) ≈ ∘(Δ)



Figure 20: Equivalence of deltas 
	Δ ≈ Δ' 	 ⇔ 	
                                
                                    	∀ d, d', d'' 	
                                            	
                                            
	d › Δ › d' ⋀ d › Δ' › d''	 ⇒ 	d' ≈ d''


                                

                            



In the general case, it is much more interesting (from the performance point
                    of view) to compute inversion on deltas rather than to perform a reversed
                diff.



Fundamental Operations over Encapsulated Documents 
Creation of a history from an initial XML document
This operation has the following abstract signature:
Figure 21: Initial Encapsulation
	create-history(d) 	→	 x-version[x-body v0
                            [d], x-history[v0]]



This reflects that the document is encapsulated, and that an initial versioning
                point v0 is created inside
                the history. The link that relates the embedded document with the consistent
                versioning point is inserted in the x-body
            subtree.

Versioning
The operation requires two operands: the encapsulated document and another variant
                of the document which is to be considered as the novel versioning point. What is
                returned is a novel encapsulated document including a new versioning point, a
                (consistent) link inside the body part, and a transition from the previous
                versioning point to the new one. This transition expresses the delta operations
                abstracted from the diff engine outputs.
Figure 22: Version Creation
	create-version(x-version[x-body
                                vi
                            [d], x-history[...
                                vi ...]], d') 	 → 	 x-version[ x-body
                                vj
                            [d], x-history[... vi →
                            Δ
                            vj ]]
	
                        	 with 	
                            diff(c,d,d') = Δ




Extraction
Unfolds the embedded document. This is useful to work on the target document,
                update or change it.
Figure 23: Version Extraction
	extract( x-version[x-body
                                vi
                            [d], x-history[...vi...]] ) 	 → 	 d 




Focusing
This operation allows modifying the embedded document d in order to be compliant to a given version stored in the history.
                This requires first building the path that connects the current versioning point
                    vi to the novel
                    vj and second, applying
                all deltas to obtain the new embedded document d'
Figure 24: Version Focusing
	focus(x-version[x-bodyvi[d],
                                x-history[...vi...]],
                            vj) 	 → 	 x-version[ x-body
                                vj
                            [d'], x-history[... vj ...]]
	
                        	 with 	 vi →
                            Δi ... →
                                Δjvj and
                            d › Δi ; ... ; Δj › d’
                        



Note that in the connection path, some vertices could have the reversed form
                    vn ←Δn
                    vm requiring the computation of inverse delta (indeed,
                the connection graph is a DAG admitting branching). Note also that we assume that
                the algorithm is able to choose a path when several possibilities are present in the
                graph (it may decide which is the optimal path with respect to performance criteria
                based on standard algorithm based on simple metrics).

Merging branches
This operation requires two operands: the embedded document and another existing
                versioning point. An algorithm creates a novel versioning point and two transitions
                that relate original versioning points to the new one. The idea is to perform a
                merge with maximal preservation (no deletion operation in the respective deltas).
                However, conflicts may arise, and can be signaled thanks to a dedicated annotation
                inside the target document (this annotation is based on foreign namespace which
                cannot conflict with namespaces used by target document)
Figure 25: Version Merging
	merge(x-version[x-bodyvi[d],
                                x-history[...vi...]],
                            vj) 	 → 	 x-version[ x-bodyvk[d'],
                            x-history[... vi
                                →Δa vk ,
                            vj
                                →Δb vk ]]
	
                        	 with 	 dvi ›
                            Δa › d’ and
                            dvj ›
                            Δb › d’ 



In the above formula, Δa represents the concatenation of
                (possibly reversed) deltas that allows to reach the new (merged) version starting
                from version vi, and similarly for Δa
                and vj .


Encoding Graphs of Deltas in XML
Each versioning point is captured using a dedicated element (e.g. version) associated with an id attribute that uniquely
            identifies it. Our convention uses a naming scheme of the form v0…
                v3 for instance. Names for diverging branches use a dot, e.g. v1.1, v1.2.
Each version element contains a sequence of delta
            elements which capture the transition from this versioning point to another versioning
            point. This information is conveyed by an attribute (e.g. fwd for forward links and bwd for backward
            links). Moreover, a delta contains a non order-significant sequence of delta operations,
            which captures the so-called snapshot. Several delta
            elements are interpreted as sequences of snapshots (corresponds to the
            Δ1 ; Δ2 syntactic form, where
                Δi= {…}).
Each delta operation is described using a dedicated element name according to its
            semantics (insert, insert-attr …). The path information
            may be concisely encoded, e.g. through an “ipath” attribute. Copies of subtrees may be
            expressed through a “copy” attribute attached to the delta element. When such an
            attribute is not defined, an extensive definition of the subtree is expected as the
            content of the operation.
The example 1 below is a target document we want to track
Figure 26: The Original Document

        <html xmlns="http://www.w3c.org/1999/xhtml">
            <!-- XHTML 1.0 -->
            <head>
                <title>New Testament (Matthew, chapter 2)</title>
            </head>
            <body>
                <p class="verse" number="1">
                Now when Jesus was born in Bethlehem of Judaea in the days of Herod the king,
                behold, there came wise men from the east to Jerusalem,
                </p>
            </body>
        </html>
           
The original (target) document to be encoded using our method



After applying the create-history operation, the document of figure Figure 27 below is created.
Figure 27: First encapsulation


      <x-version id="xhtml-1.0" xmlns="XEROX::XRCE::DS:X-Version">
        <x-body version=”v0”>
            <html xmlns="http://www.w3c.org/1999/xhtml">
            <!-- XHTML 1.0 -->
            <head>
                <title>New Testament (Matthew, chapter 2)</title>
            </head>
            <body>
                <p class="verse" number="1">
                Now when Jesus was born in Bethlehem of Judaea in the days of Herod the king,
                behold, there came wise men from the east to Jerusalem,
                </p>                
            </body>
            </html>
         </x-body>
       <x-history >
         <version id=”v0”/>
       </x-history>
     </x-version>

            
A first version (labeled v0) has been created ; note that the attribute
                    “version” of element x-body points to the right versioning point inside the
                    x-history subtree.



In the following example, we assume three distinct versioning points have been
            created. 
Figure 28: A focused history

                <x-version id="xhtml-1.0" xmlns="XEROX::XRCE::DS:X-Version">
                    <x-body version=”v1”>
                        <html xmlns="http://www.w3c.org/1999/xhtml">
                            <!-- XHTML 1.0 -->
                            <head>
                                <title>New Testament (Matthew, chapter 2)</title>
                            </head>
                            <body>
                                <p class="verse" number="1">
                                Now when Jesus was born in Bethlehem of Judaea in the days of Herod the king,
                                behold, there came wise men from the east to Jerusalem,
                                </p>
                                <p class="verse" number="2">
                                Saying, Where is he that is born King of the Jews? For we have seen his star in 
                                the east, and are come to worship him.
                                </p>
                            </body>
                        </html>
                    </x-body>
                    <x-history start=”v0” end=”v2”>
                        <version id=”v0” />
                        <version id=”v1”>
                            <delta bwd=”v0”>
                                <delete ipath=”1/2/2”/>
                            </delta >
                            <delta fwd=”v2”>
                                <insert ipath=”1/2/3”>
                                    <p class="verse" number="3">
                                    When Herod the king had heard these things, he was troubled, and all 
                                    Jerusalem with him.
                                    </p>
                                </insert >
                            </delta >
                        </version >
                        <version id=”v2” />
                    </x-history>
                </x-version>
                
            
Three different versioning points have been created. The current version is v1 (cf
                attribute version of x-body element). As the versioning mode is “focused”, we do have
                backward oriented delta to the previous version, and forward oriented delta to the
                following version (to the latest one in this example).


The following example illustrate how the same information can be encoded differently,
            featuring different properties.
Figure 29: The same document (see Figure 28) in "linear mode"


    <x-version id="xhtml-1.0" xmlns="XEROX::XRCE::DS:X-Version">
        <x-body version=”v1”>
            <html xmlns="http://www.w3c.org/1999/xhtml">
            <!-- XHTML 1.0 -->
            <head>
                <title>New Testament (Matthew, chapter 2)</title>
            </head>
            <body>
                <p class="verse" number="1">
                Now when Jesus was born in Bethlehem of Judaea in the days of Herod the king,
                behold, there came wise men from the east to Jerusalem,
                </p>
                <p class="verse" number="2">
                Saying, Where is he that is born King of the Jews? For we have seen his star in 
                the east, and are come to worship him.
                </p>
            </body>
            </html>
        </x-body>
        <x-history start=”v0” end=”v2”>
            <version id=”v0” >
                <delta fwd=”v1”>
                    <insert ipath=”1/2/2”>
                    <p class="verse" number="2">
                    Saying, Where is he that is born King of the Jews? For we have seen his star in 
                    the east, and are come to worship him.
                    </p>
                    </insert >
                </delta >
            </version >
            <version id=”v1”>
                <delta fwd=”v2”>
                    <insert ipath=”1/2/3”>
                        <p class="verse" number="3">
                        When Herod the king had heard these things, he was troubled, and all 
                        Jerusalem with him.
                        </p>
                    </insert >
                </delta >
            </version >
            <version id=”v2” />
        </x-history>
    </x-version>                

            
We do have a forward oriented delta from v0 to
                    v1, and a forward oriented delta from v1 to v2. Note that the
                whole history can be read in compliance with the evolution order, from the beginning
                up to the end. However, in that case, we have information redundancy as a subtree
                (verse number 2) is present both in the body and in the history.


We propose a particular optimisation that could be applied in linear mode: redundant
            trees are eliminated tanks to an explicit copy instruction using an XPath expression to
            designate the subtree (thus the XPath selection refers to the focused version).
            
                <delta fwd="v1">
                    <insert ipath=”1/2/2”>
                        <p class="verse" number="2">
                        Saying, Where is he that is born King of the Jews? For we have seen his star 
                        in the east, and are come to worship him.
                        </p>
                    </insert >                
                </delta>                 
            

            In the case of figure Figure 29, the node "insert", child of the forward
            delta to v1, is suppressed from the history and its parent is changed into the
            expression below:
            
                <delta fwd="v1">
                    <insert ipath=”1/2/2” copy=”/html[1]/body[1]/p[2]”/>    
                </delta>                 
            

This optimization applies only to versions belonging to past
                history, but makes a lot of sense when the evolution of document
            instances is best captured through using linear mode and comprises many incremental
            additions.

State of the Art
 XML diff operations are basically used to realize two fundamental operations on tree
            structured documents: comparison and merging. Therefore tree based diff algorithms are
            central to solve various important problems related to XML document management and
            editing processes ([Chawathe96]), among which: 
	checking modifications with respect to a reference document, typically, the
                    last version stored inside a repository or a file system (version management
                        [Chien00])

	synchronizing variants, that is, detection of changes that occurred
                    concurrently on two copies of a reference document, detecting potential
                    conflicts ([LaFontaine02]

	merging variants, which is about fusing two variants into a unique document
                    integrating modifications of both instances (this may imply solving potential
                    conflicts when the underlying document management system applies a weak control
                    policy)

	recovering anterior state(s) of a document


An abundant literature exists on this topic, including recent and excellent synthetic
            work on an old topic, linear differencing ([Khanna07]). Most work covers
            :
	
                    Algorithmic complexity of the differencing operation,
                        either for ordered or unordered tree models.
                
The problem was first approached as a particular case of string oriented diff
                    computation (see [Khanna07] for a point on most recent
                    algorithms in this area), implying computing an adequate linearization of the
                    XML trees. Zhang and Shasha described a fast algorithm in 1989 for computing
                    tree edit distance [Zha89] improving previous work conducted in
                    1979. Still the runtime and space complexity was higher than quadratic on
                    sequential architectures, but could drop to quadratic levels on parallel
                    architectures. In [Wang03] an algorithm for unordered tree was
                    presented with a polynomial complexity for optimal differences, whereas previous
                    works established a NP-complete complexity for general cases. A survey (still of
                    interest 14 years after) and a comparative study on the topic can be found in
                        [Bille95] and [Cobe02]. Most recent
                    algorithms for ordered diff computation are described in [Lind06], [Rönnau08], [Rönnau09].

	
                    Optimality of editing scripts (also called
                    deltas)
                
The very notion of optimality is somehow controversial, because bound to
                    execution models one could consider either as over simplistic or too specific.
                    Of course execution models are needed to justify underlying cost functions
                    associated with deltas application. However, such an approach intrinsically
                    restricts the application field or the area of proposed results. In addition,
                    usages and document types deeply impact the structure of delta and thus the
                    runtime performance of algorithms. As a consequence, diff algorithms should be
                    chosen and parameterized on the basis of document type and related
                activities.

	
                    Delta models and use of diff operations inside storage
                        architectures (typically databases).
                
In [Martinez02], a versioning graph is proposed based on XLink
                    designation mechanism. But in this proposal, the graph relates two separate
                    documents that may exist in independent storage infrastructure. Hence there is
                    no notion of encapsulation and explicit consistency. In [Arevalo09], an application is proposed that offers online
                    versioning services for XML documents. However, there is no notion of history
                    encapsulation, and the history itself cannot be exported or organized into an
                    explicit form (see [Arevalo09b] for an online demo).


 A recent paper [Rönnau08] proposes reversible deltas using a
            straightforward mechanism as deletion operation conveys explicitly the deleted subtree
            (this could quickly lead to enormous overhead, especially in the perspective of storing
            the whole history). The authors focus on algorithmic and speed performance issues of a
            novel diff algorithm using a bottom-up approach (and also precomputed hash codes on a
            sliding window of adjacent nodes.)
Most work conducted on this area focused on related algorithm performance, time and
            space complexity of the diff operation and also optimality of generated deltas, but
            little attention has been paid to tools and models to make use of these in efficient
            ways. From the practical point of view, no work considered the necessity and applicative
            interest of abstracting over deltas and related operation models.
Recently, the XQuery Update working group from W3C (see [XQueryUp])
            published a candidate recommendation proposing to enrich XQuery with mechanisms intended
            to modify XML documents. This impressive work largely focused on expressive power and
            consistent integration of the new constructs to the existing language. The patching
            operations rely on "insert", "delete", "rename" and "replace" , using XPath to designate
            the locations in the XML tree ; an innovative "transform" operator allows for combining
            copy with on-the-fly modifications. One major difficulty was to deal with the extra
            power raised by the selection semantic model of XPath, i.e sequences of nodes. As a
            consequence, many runtime error may occur depending on the evaluation of selectors and
            the semantics of the delta operation. Additionally the insert operator of the language
            is particularly powerful since it can make explicit positional constraints ("first/last
            position", "before/after A") whereas when implicit, positional constraints are
            interpreted so that global ordering constraint are optimally satisfied (this remain a
            bit unclear how far this can be hard). 
The transformation model of XQUpdate relies on a kind of transactional framework,
            where changes are stored in a list of "pending modifications" only applied after calling
            a dedicated primitive upd:applyUpdates. This is a pragmatic solution to the problem of
            path relocation (and variable scope validity!), but is a nightmare regarding static
            analysis. Therefore it will be much more realistic to use the XQUpdate interpreter as a
            patch engine (i.e generating XQUpdate code from our descriptions), than considering  an
            XQUpdate program as a description of differences. 

Conclusion
The main contribution of this work is to propose a universal XML data structure and
            related transformations which allow abstracting from underlying storage systems and from
            any execution model associated with the computation of XML versioning information. 
This is in favor of long term preservation of XML documents, infrastructure and vendor
            independence, and open the way to interoperable processing of XML versioning
            information. 
The method targets generic XML documents, and makes use of a particular namespace to
            embed any XML document (whatever vocabulary it may use) without any change in its
            content and tag/attribute set. The history is encoded using a specific vocabulary that
            captures change operations in a formal and universal way, so that any XML diff enabled
            processor can generate suitable deltas. Based on the properties of this change
            description language, we propose a set of high level operators which allows exploiting
            the historical information in order to navigate inside the history, compute new version
            in the current branch, create new branches or suppress intermediate versioning points. 
Various information may be attached to the versioning points, such as user meta
            information, universal date/time of the creation of the versioning point, additional
            data required to optimize or ameliorate the computation (hash code, digest number,...),
            which are not central to this contribution but could substantially enhance any of its
            application.
The problem with existing diff related approaches is that the description model and
            the transformation model are identical. In other words, they use the same objects both
            to describe operationally and declaratively the differences between trees. We outline in
            our proposal a calculus that formally allows making a distinction between modification
            descriptors and modification operations. This calculus allows modeling "standard"
            processing of deltas and allows transforming descriptions in order to gain compactness
            or efficiency. We are not aware of any equivalent proposal.
The two transformation structures we described can lead to two broad classes of delta
            interpretations:
	Each modification step transforms the tree, so that the paths used inside
                    subsequent deltas should be defined on the modified tree. This model is used
                    inside database systems and DOM-like in memory tree processors (especially [XUpdate], [XQueryUp]). 

	All modification steps are defined on the same reference tree, and all
                    modifications are realized in one global step. Thus the paths always refer to
                    the same tree operand and consequently, delta sequences are more easily
                    understood by a human reader, because they do not have to maintain the cognitive
                    load of mentally propagating tree modifications to paths. From a computational
                    point of view, this model is well adapted to stream based processing pipes in
                    which each operation can be performed concurrently (e.g. on a multi core
                    processor). As this approach doesn't need building a tree in memory, it is
                    particularly indicated for large and very large document processing. 


The delta model we propose as foundational for history encoding integrates those two
            transformation models, in the sense that both can be expressed explicitly. The first one
            is captured by sequences of singleton snapshots whereas the second may involve snapshots
            including several deltas.
We identified 4 key issues when addressing the challenge of encapsulating document
            history into a stand alone XML instance: mastering the potentially big data volume,
            usability of the history model (human vs machine), flexibility of the history
            representation and abstracting over diff operations (i.e. not being dependent of a
            particular diff algorithm/engine behavior). The method described in this paper addresses
            these four issues at various levels. We believe our approach therefore constitutes a
            significant contribution having a realistic applicability level, though the data volume
            issue would still require large scale experiments.
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Appendix A. Proof of proposition Figure 17
Global structure: 
We do a structural induction over Δ. Each sub-case is associated with a corresponding
            well-formedness hypothesis; we use these together with the definitions of inversion. We
            show here the case for the Δ1;Δ2
            composition:
	Goal : 	d › Δ1;Δ2 › d’ 	 ⇒ 	 d’ › ∘(
                                    Δ1;Δ2 ) › d


We introduce the left hand as a new hypothesis H and we get the new goal 
	 d’ › ∘(
                                Δ1;Δ2 ) › d

By applying the definition of inversion (thanks to H), we get 
	 d’ › ∘Δ2 ;
                                ∘Δ1 › d

The we apply the property (a-seq)
	 ∃ dd , d’ › ∘Δ2
                            › dd ⋀ dd › ∘Δ1
                            › d

We apply again the (a-seq) property to hypothesis H, and get a
                    particularisation for intermediate tree d''. Thus we choose d'' as an evidence
                    for the existence of dd, and get 
	 d’ › ∘Δ2 › d''
                            ⋀ d'' › ∘Δ1 ›
                        d

Now we split the goal in two subgoals and apply the induction hypothesis to
                    both.



Appendix B. An RelaxNG schema (compact syntax ) capturing our model

            
                
default namespace xversion = "XRCE::DS::X-Version"
datatypes xsd = "http://www.w3.org/2001/XMLSchema-datatypes"

start =  x-version

anyElement = element * - xversion:* { anyAttribute*, anyElement*} | text
anyAttribute = attribute * { text}

x-version = element x-version { 
    element x-version-body { 
        attribute ref {V-REF}, 
        attribute xml:space {"preserve" | "ignore"}?,
        SUBTREE
        }+,
    element x-version-history {
        attribute first {list {V-REF+}},
        attribute last {list {V-REF+}},
        # the version history encodes a DAG (Directed Acyclic Graph)
        version*
    }    
}

    
version = element version {
    attribute id { V-REF},
        
    # allows zero or more
    attribute conflicts {xsd:nonNegativeInteger}?, 
    a-time?,
    delta*
    }

a-target=
    # this attribute defines a "one-step" next version 
    attribute to {V-REF}  


delta = element delta {  a-target,   (rename | insert | append | move | copy | delete | replace)* }

a-here= 
    # the "here" attribute designates the insertion point (existing stuff is to be shift to right after insertion)
    attribute here {IPath}
    
    
insert=
    # "insert" only applies to elements, text, comment and PI
    element insert {
    a-here,
    # the subtree to be inserted is here (but skipped thanks to a NVDL rule)
    SUBTREE
    }

append=
    # "append" applies to everything including attributes
    # for elements, text, comments, PI, the item is appended at the end of the sequence of children
    element append {
    a-here,
    # the "attribute" attribute is used to specify attribute insertion; it must have the "QName=Value" syntactic structure 
    ((attribute attribute {A-DEF}?, empty) | SUBTREE)
    }

copy= element copy {
    a-what, a-here,
    attribute append {flag}?
    }
    
move= element move {
    a-what, a-here,
    attribute append {flag}?
    }

delete= element delete { a-what, SUBTREE }
replace= element replace { a-what, SUBTREE }

rename= 
    # works for elements, attributes, and PI as well
    # the "as" attribute is a qualified name (that is, may refer to a given namespace through a declared prefix
    element rename {  a-what,    attribute as {token}}


SUBTREE=anyElement | conflict

conflict=element conflict { item+ }
item = element item { attribute ref {V-REF}, anyElement }

attribute-conflict =element attribute-conflict { attribute ref {V-REF}, A-DEF}
tree-conflict = element tree-conflict { attribute ref {V-REF}, A-DEF}

V-REF= xsd:string { pattern="v\d+(\.\d+)*" }

A-DEF=string


flag = "yes" | "no"

a-what = attribute what {XPath}
a-time = attribute time {xsd:dateTime}

XPath = xsd:string
IPath = xsd:string { pattern="1(/\d+)*(/@([\c-[:]]+:)?[\c-[:]]+)?" }
                
            

        

Appendix C. an ISO Schematron schema Schematron

            
                
<?xml version="1.0" encoding="UTF-8"?>
<sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron" xml:lang="en" queryBinding="xslt2">
    <sch:ns uri="XRCE::DS::X-Version" prefix="xv"/>
    <sch:pattern >
        <sch:let name="versions" value="/*[1]/*[2]/xv:version"/>
        <sch:let name="versions-id" value="for $i in $versions/@id return normalize-space($i)"/>
        <sch:let name="Nversions-id" value="distinct-values($versions-id)"/>

        <sch:let name="history" value="/*[1]/xv:x-version-history[1]"/>
        <sch:let name="starting-vector" value="tokenize(normalize-space($history/@first),'\s')"/>
        <sch:let name="ending-vector" value="tokenize(normalize-space($history/@last),'\s')"/>
        <sch:let name="Nstarting-vector" value="distinct-values($starting-vector)"/>
        <sch:let name="Nending-vector" value="distinct-values($ending-vector)"/>
        
        
        <sch:rule context="/*[1]/xv:x-version-history[1]">
            <sch:assert test="count($versions-id) ge count($Nversions-id)">Every version element must have an unique id attribute</sch:assert>
            
            <sch:assert test="count($starting-vector) eq count($Nstarting-vector)">"first" attribute should refer to each relevant version only once</sch:assert>
            <sch:assert test="count($ending-vector) eq count($Nending-vector)">"last" attribute should refer to each relevant version only once</sch:assert>
            
            <sch:assert test="every $i in $Nstarting-vector satisfies index-of($Nversions-id,$i) gt 0 ">
                the "first" attribute should point to existing version(s) (cf 
                "<sch:value-of select="string-join($Nstarting-vector,'/')"/>" versus "<sch:value-of select="string-join($Nversions-id,'/')"/>"
                )
            </sch:assert>
            <sch:assert test="every $i in $Nending-vector satisfies index-of($Nversions-id,$i) gt 0 ">
                the "last" attribute should point to existing version(s) (cf 
                "<sch:value-of select="string-join($Nending-vector,'/')"/>" versus "<sch:value-of select="string-join($Nversions-id,'/')"/>"
                )
            </sch:assert>
        </sch:rule>
        <sch:rule context="xv:version">
            <sch:report test="count(index-of($versions-id,normalize-space(@id))) gt 1">
                The "id" attribute must be unique ("<sch:value-of select="@id"/>")
            </sch:report> 
            <sch:let name="my-id" value="@id"/>
            <sch:assert test="(count(../xv:version/xv:delta[@to=$my-id]) gt 0) or (index-of($Nstarting-vector,$my-id) gt 0)">
                missing back link to anterior version (version "<sch:value-of select="@id"/>")
            </sch:assert>
            <sch:assert test="(count(xv:delta[@to]) gt 0) or (index-of($Nending-vector,$my-id) gt 0)">
                missing link to posterior version (version "<sch:value-of select="@id"/>")
            </sch:assert>
        </sch:rule>
        <sch:rule context="xv:delta">
            <sch:assert test="index-of($Nversions-id,@to) gt 0">
                The link to version "<sch:value-of select="@to"/>" is dangling (no corresponding version found in the whole history)
            </sch:assert> 
            <sch:let name="my-dest" value="@to"/>
            <sch:report test="count(preceding-sibling::xv:delta[@to=$my-dest]) gt 0" >
                Delta must be unique for one target version ("<sch:value-of select="@to"/>")
            </sch:report>
        </sch:rule>
        <sch:rule context="xv:conflict">
            <sch:let name="all-item-refs" value="for $i in xv:item/@ref return normalize-space($i)"/>
            <sch:assert test="count(distinct-values($all-item-refs)) eq count($all-item-refs)">
                Conflicting items must be uniquely defined for a given version 
            </sch:assert>
        </sch:rule>
        <sch:rule context="xv:item">
            <sch:assert test="index-of($Nversions-id,@ref) gt 0">
                The reference to version "<sch:value-of select="@ref"/>" is dangling (no corresponding version found in the whole history)
            </sch:assert>
        </sch:rule>
    </sch:pattern>
</sch:schema>
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[1] the XPath translation of 1/2/1 could also
                        be node()[1]/node()[2]/node()[1] in order
                        to consider all possible nodes as allowed by the XML document tree
                    model.
[2] Actually the calculus can be refined in such a way that this condition can
                        be relaxed thanks to a particular rewriting of conflicting deltas. This
                        suppose a particular semantic interpretation of conflicting
                    information.
[3] These operations are known to be non-trivial to compute by a diff
                            engine, can be non optimal, and are actually rarely produced for this
                            reason. However, other sources of delta computation such as smart
                            versioning oriented editors can produce very useful move and copy delta
                            operations.
[4]  A theorem establishes that pp1 ⊥
                                pp2 ⇔ pp1≪
                                pp2 ⋁ pp2 ≪
                                pp1
                        
[5] focus node vk is by convention identified
                            through surrounding brackets [.]
[6] Such an abstract property could be hardly met by a "black box" diff
                            operator, from the implementation point of view. However, we investigate
                            if a delta normalization procedure could reduce those cases, so that the
                            abstract property of Figure 18 would be always
                            verified. 
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