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Abstract
By first transforming the octets (bytes) of XML texts into eight parallel bit
            streams, the SIMD features of commodity processors can be exploited for parallel
            processing of blocks of 128 input bytes at a time. Established transcoding and parsing
            techniques are reviewed followed by new techniques including parsing with bitstream
            addition. Further opportunities are discussed in light of expected advances in CPU
            architecture and compiler technology. Implications for various APIs and information
            models are presented as well opportunities for collaborative open-source
         development.
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   Parallel Bit Stream Technology as a Foundation for XML Parsing Performance

Introduction
 While particular XML applications may benefit from special-purpose hardware such as XML
         chips [Leventhal and Lemoine 2009] or appliances [Salz, Achilles and Maze 2009], the bulk
         of the world's XML processing workload will continue to be handled by XML software stacks
         on commodity processors. Exploiting the SIMD capabilities of such processors such as the
         SSE instructions of x86 chips, parallel bit stream technology offers the potential of
         dramatic improvement over byte-at-a-time processing for a variety of XML processing tasks.
         Character set issues such as Unicode validation and transcoding [Cameron 2007], normalization of line breaks and white space and XML character validation can be
         handled fully in parallel using this representation. Lexical item streams, such as the bit
         stream marking the positions of opening angle brackets, can also be formed in parallel.
         Bit-scan instructions of commodity processors may then be used on lexical item streams to
         implement rapid single-instruction scanning across variable-length multi-byte text blocks
         as in the Parabix XML parser [Cameron, Herdy and Lin 2008]. Overall, these techniques may be
         combined to yield end-to-end performance that may be 1.5X to 15X faster than alternatives
            [Herdy, Burggraf and Cameron 2008].
Continued research in parallel bit stream techniques as well as more conventional
         application of SIMD techniques in XML processing offers further prospects for improvement
         of core XML components as well as for tackling performance-critical tasks further up the
         stack. A newly prototyped technique for parallel tag parsing using bitstream addition is
         expected to improve parsing performance even beyond that achieved using sequential bit
         scans. Several techniques for improved symbol table performance are being investigated,
         including parallel hash value calculation and length-based sorting using the cheap length
         determination afforded by bit scans. To deliver the benefits of parallel bit stream
         technology to the Java world, we are developing Array Set Model (ASM) representations of
         XML Infoset and other XML information models for efficient transmission across the JNI
         boundary.
Amplifying these software advances, continuing hardware advances in commodity processors
         increase the relative advantage of parallel bit stream techniques over traditional
         byte-at-a-time processors. For example, the Intel Core architecture improved SSE processing
         to give superscalar execution of bitwise logic operations (3 instructions per cycle vs. 1
         in Pentium 4). Upcoming 256-bit AVX technology extends the register set and replaces
         destructive two-operand instructions with a nondestructive three-operand form. General
         purpose programming on graphic processing units (GPGPU) such as the upcoming 512-bit
         Larrabee processor may also be useful for XML applications using parallel bit streams. New
         instruction set architectures may also offer dramatic improvements in core algorithms.
         Using the relatively simple extensions to support the principle of inductive doubling, a 3X
         improvement in several core parallel bit stream algorithms may be achieved [Cameron and Lin 2009]. Other possibilities include direct implementation of parallel
         extract and parallel deposit (pex/pdep) instructions [Hilewitz and Lee 2006], and
         bit-level interleave operations as in Larrabee, each of which would have important
         application to parallel bit stream processing.
Further prospects for XML performance improvement arise from leveraging the
         intraregister parallelism of parallel bit stream technology to exploit the interchip
         parallelism of multicore computing. Parallel bit stream techniques can support multicore
         parallelism in both data partitioning and task partitioning models. For example, the
         datasection partitioning approach of Wu, Zhang, Yu and Li may be used to partition blocks
         for speculative parallel parsing on separate cores followed by a postprocessing step to
         join partial S-trees [Wu et al. 2008].
In our view, the established and expected performance advantages of parallel bit stream
         technology over traditional byte-at-a-time processing are so compelling that parallel bit
         stream technology should ultimately form the foundation of every high-performance XML
         software stack. We envision a common high-performance XML kernel that may be customized to
         a variety of processor architectures and that supports a wide range of existing and new XML
         APIs. Widespread deployment of this technology should greatly benefit the XML community in
         addressing both the deserved and undeserved criticism of XML on performance grounds. A
         further benefit of improved performance is a substantial greening of XML technologies.
To complement our research program investigating fundamental algorithms and issues in
         high-performance XML processing, our work also involves development of open source software
         implementing these algorithms, with a goal of full conformance to relevant specifications.
         From the research perspective, this approach is valuable in ensuring that the full
         complexity of required XML processing is addressed in reporting and assessing processing
         results. However, our goal is also to use this open source software as a basis of
         technology transfer. A Simon Fraser University spin-off company, called International
         Characters, Inc., has been created to commercialize the results of this work using a
         patent-based open source model.
To date, we have not yet been successful in establishing a broader community of
         participation with our open source code base. Within open-source communities, there is
         often a general antipathy towards software patents; this may limit engagement with our
         technology, even though it has been dedicated for free use in open source. 
A further complication is the inherent difficulty of SIMD programming in general, and
         parallel bit stream programming in particular. Considerable work is required with each new
         algorithmic technique being investigated as well as in retargetting our techniques for each
         new development in SIMD and multicore processor technologies. To address these concerns, we
         have increasingly shifted the emphasis of our research program towards compiler technology
         capable of generating parallel bit stream code from higher-level specifications.

A Catalog of Parallel Bit Streams for XML
Introduction
In this section, we introduce the fundamental concepts of parallel bit stream
            technology and present a comprehensive catalog of parallel bit streams for use in XML
            processing. In presenting this catalog, the focus is on the specification of the bit
            streams as data streams in one-to-one correspondence with the character code units of an
            input XML stream. The goal is to define these bit streams in the abstract without
            initially considering memory layouts, register widths or other issues related to
            particular target architectures. In cataloging these techniques, we also hope to convey
            a sense of the breadth of applications of parallel bit stream technology to XML
            processing tasks. 

Basis Bit Streams
Given a byte-oriented text stream represented in UTF-8, for example, we define a
            transform representation of this text consisting of a set of eight parallel bit streams
            for the individual bits of each byte. Thus, the Bit0 stream is the stream
            of bits consisting of bit 0 of each byte in the input byte stream, Bit1 is
            the bit stream consisting of bit 1 of each byte in the input stream and so on. The set
            of streams Bit0 through Bit7 are known as the basis
               streams of the parallel bit stream representation. The following table
            shows an example XML character stream together with its representation as a set of 8
            basis streams. Table I
XML Character Stream Transposition.

	Input Data	
                        <
                     	
                        t
                     	
                        a
                     	
                        g
                     	
                        /
                     	
                        >
                     
	ASCII	
                        00111100
                     	
                        01110100
                     	
                        01100001
                     	
                        01100111
                     	
                        00101111
                     	
                        00111110
                     
	Bit0	
                        0
                     	
                        0
                     	
                        0
                     	
                        0
                     	
                        0
                     	
                        0
                     
	Bit1	
                        0
                     	
                        1
                     	
                        1
                     	
                        1
                     	
                        0
                     	
                        0
                     
	Bit2	
                        1
                     	
                        1
                     	
                        1
                     	
                        1
                     	
                        1
                     	
                        1
                     
	Bit3	
                        1
                     	
                        1
                     	
                        0
                     	
                        0
                     	
                        0
                     	
                        1
                     
	Bit4	
                        1
                     	
                        0
                     	
                        0
                     	
                        0
                     	
                        1
                     	
                        1
                     
	Bit5	
                        1
                     	
                        1
                     	
                        0
                     	
                        1
                     	
                        1
                     	
                        1
                     
	Bit6	
                        0
                     	
                        0
                     	
                        0
                     	
                        1
                     	
                        1
                     	
                        1
                     
	Bit7	
                        0
                     	
                        0
                     	
                        1
                     	
                        1
                     	
                        1
                     	
                        0
                     


         
 Depending on the features of a particular processor architecture, there are a number
            of algorithms for transposition to parallel bit stream form. Several of these algorithms
            employ a three-stage structure. In the first stage, the input byte stream is divided
            into a pair of half-length streams consisting of four bits for each byte, for example,
            one stream for the high nybble of each byte and another for the low nybble of each byte.
            In the second stage, these streams of four bits per byte are each divided into streams
            consisting of two bits per original byte, for example streams for the
            Bit0/Bit1, Bit2/Bit3, Bit4/Bit5, and
               Bit6/Bit7 pairs. In the final stage, the streams are further subdivided
            in the individual bit streams. 
 Using SIMD capabilities, this process is quite efficient, with an amortized cost of
            1.1 CPU cycles per input byte on Intel Core 2 with SSE, or 0.6 CPU cycles per input byte
            on Power PC G4 with Altivec. With future advances in processor technology, this
            transposition overhead is expected to reduce, possibly taking advantage of upcoming
            parallel extract (pex) instructions on Intel technology. In the ideal, only 24
            instructions are needed to transform a block of 128 input bytes using 128-bit SSE
            registers using the inductive doubling instruction set architecture, representing an
            overhead of less than 0.2 instructions per input byte. 

General Streams
This section describes bit streams which support basic processing operations.
Deletion Mask Streams
DelMask (deletion mask) streams marks character code unit positions for deletion.
               Since the deletion operation is dependency free across many stages of XML processing,
               it is possible to simply mark and record deletion positions as deletion mask streams for future processing. A single
               invocation of a SIMD based parallel deletion algorithm can then perform the deletion of
               positions accumulated across a number of stages through a bitwise ORing of deletion
               masks. For example, deletion arises in the replacement of predefined entities with a
               single character, such as in the replacement of the &amp; entity, with the
               & character. Deletion also arises in XML
               end-of-line handling, and CDATA section delimeter processing. Several algorithms to
               delete bits at positions marked by DelMask are possible [Cameron 2008]. 
The following table provides an example of generating a DelMask in the context of
               bit stream based parsing of well-formed character references and predefined entities.
               The result is the generation of a DelMask stream. Table II
DelMask Stream Generation

	Input Data	
                           &gt; &#13; &#x0a;
                        
	GenRefs	
                           _11______________
                        
	DecRefs	
                           _______11________
                        
	HexRefs	
                           ______________11_
                        
	DelMask	
                           111__1111__11111_
                        
	ErrorFlag	
                           _________________
                        


            

Error Flag Streams 
Error flag streams indicates the character code unit positions of syntactical
               errors. XML processing examples which benefit from the marking of error positions
               include UTF-8 character sequence validation and XML parsing [Cameron 2008].
The following table provides an example of using bit streams to parse character
               references and predefined entities which fail to meet the XML 1.0 well-formedness
               constraints. The result is the generation of an error flag stream that marks the
               positions of mal-formed decimal and hexical character references respectively. Table III
Error Flag Stream Generation

	Input Data	
                           &gt; &#, &#x; 
                        
	GenRefs	
                           _11___________
                        
	DecRefs	
                           ______________
                        
	HexRefs	
                           ______________
                        
	DelMask	
                           111__11__111__
                        
	ErrorFlag	
                           _______1____1_
                        


            


Lexical Item Streams
Lexical item streams differ from traditional streams of tokens in that they are bit
            streams that mark the positions of tokens, whitespace or delimiters. Additional bit
            streams, such as the reference streams and callout streams, are subsequently constructed
            based on the information held within the set of lexical items streams. Differentiation
            between the actual tokens that may occur at a particular point (e.g., the different XML
            tokens that begin “<”) may be performed using multicharacter recognizers on the
            bytestream representation [Cameron, Herdy and Lin 2008].
A key role of lexical item streams in XML parsing is to facilitate fast scanning
            operations. For example, a left angle bracket lexical item stream may be formed to
            identify those character code unit positions at which a “<” character occurs.
            Hardware register bit scan operations may then be used by the XML parser on the left
            angle bracket stream to efficiently identify the position of the next “<”. Based
            on the capabilities of current commodity processors, a single register bit scan
            operation may effectively scan up to 64 byte positions with a single instruction.
Overall, the construction of the full set of lexical item stream computations
            requires approximately 1.0 CPU cycles per byte when implemented for 128 positions at a
            time using 128-bit SSE registers on Intel Core2 processors [Cameron, Herdy and Lin 2008].
            The following table defines the core lexical item streams defined by the Parabix XML
            parser.

            Table IV
Lexical item stream descriptions.

	 LAngle 	 Marks the position of any left angle bracket character.
	 RAngle 	 Marks the position of any right angle bracket character.
	 LBracket 	 Marks the position of any left square bracker character.
	 RBracket 	 Marks the position of any right square bracket
                     character.
	 Exclam 	 Marks the position of any exclamation mark character.
	 QMark 	 Marks the position of any question mark character.
	 Hyphen 	 Marks the position of any hyphen character.
	 Equals 	 Marks the position of any equal sign character.
	 SQuote 	 Marks the position of any single quote character.
	 DQuote 	 Marks the position of any double quote character.
	 Slash 	 Marks the position of any forward slash character
	 NameScan 	 Marks the position of any XML name character.
	 WS 	 Marks the position of any XML 1.0 whitespace character.
	 PI_start 	 Marks the position of the start of any processing instruction
                        at the '?' character position.
	 PI_end 	 Marks the position of any end of any processing instruction
                        at the '>' character position.
	 CtCD_start 	 Marks the position of the start of any comment or CDATA
                        section at the '!' character position.
	 EndTag_start 	 Marks the position of any end tag at the '/' character
                        position.
	 CD_end 	 Marks the position of the end of any CDATA section at the '>'
                        character position. 
	 DoubleHyphen 	 Marks the position of any double hyphen character.
	 RefStart 	 Marks the position of any ampersand character.
	 Hash 	 Marks the position of any hash character.
	 x 	 Marks the position of any 'x' character.
	 Digit 	 Marks the position of any digit.
	 Hex 	 Marks the position of any hexidecimal character.
	 Semicolon 	 Marks the position of any semicolon character.


         
 The following illustrates a number of the lexical item streams. 

            Table V
Lexical Item Streams

	Input Data	
                        <tag><tag> text &lt;
                           &#x3e; </tag></tag>
                     
	LAngle	
                        1____1______________________1_____1_____
                     
	RAngle	
                        ____1____1_______________________1_____1
                     
	WS	
                        __________1____1____1______1____________
                     
	RefStart	
                        ________________1____1__________________
                     
	Hex	
                        __1____1____1___________11_____1_____1__
                     
	Semicolon	
                        ___________________1______1_____________
                     
	Slash	
                        _____________________________1_____1____
                     


         

UTF-8 Byte Classification, Scope and Validation Streams
 An XML parser must accept the UTF-8 encoding of Unicode [XML 1.0].
            It is a fatal error if an XML document determined to be in UTF-8 contains byte sequences
            that are not legal in that encoding. UTF-8 byte classification, scope, XML character
            validation and error flag bit streams are defined to validate UTF-8 byte sequences and
            support transcoding to UTF-16.
UTF-8 Byte Classification Streams
UTF-8 byte classification bit streams classify UTF-8 bytes based on their role in
               forming single and multibyte sequences. The u8Prefix and u8Suffix bit streams
               identify bytes that represent, respectively, prefix or suffix bytes of multibyte
               UTF-8 sequences. The u8UniByte bit stream identifies those bytes that may be
               considered single-byte sequences. The u8Prefix2, u8Prefix3, and u8Prefix4 refine the
               u8Prefix respectively indicating prefixes of two, three or four byte
            sequences respectively.

UTF-8 Scope Streams
 Scope streams represent expectations established by UTF-8 prefix bytes. For
               example, the u8Scope22 bit stream represents the positions at which the second byte of a
               two-byte sequence is expected based on the occurrence of a two-byte prefix in the
               immediately preceding position. The u8scope32, u8Scope33, u8Scope42, u8scope43, and
               u8Scope44 complete the set of UTF-8 scope streams.
 The following example demonstrates the UTF-8 character encoding validation
               process using parallel bit stream techniques. The result of this validation process
               is an error flag stream identifying the positions at which errors occur.

               Table VI
UTF-8 Scope Streams

	Input Data	A Text in Farsi: ى ك  م ت ن  ف ا ر س ى
	High Nybbles	
                           42567726624677632D8DBDBDAD82D8DAD82D8D8
                        
	Low Nybbles	
                           10458409E061239A099838187910968A9509399
                        
	u8Unibyte	
                           11111111111111111__________1______1____
                           
                        
	u8Prefix	
                           _________________1_1_1_1_1__1_1_1__1_1_
                        
	u8Suffix	
                           __________________1_1_1_1_1__1_1_1__1_1
                        
	u8Prefix2	
                           _________________1_1_1_1_1__1_1_1__1_1_
                        
	u8Scope22	
                           __________________1_1_1_1_1__1_1_1__1_1
                           
                        
	ErrorFlag	
                           _______________________________________
                        


               

            

UTF-8 Validation Streams
 Proper formation of UTF-8 byte sequences requires that the correct number of
               suffix bytes always follow a UTF-8 prefix byte, and that certain illegal byte
               combinations are ruled out. For example, sequences beginning with the prefix bytes
               0xF5 through 0xFF are illegal as they would represent code point values above 10FFFF.
               In addition, there are constraints on the first suffix byte following certain special
               prefixes, namely that a suffix following the prefix 0xE0 must fall in the range
               0xA0–0xBF, a suffix following the prefix 0xED must fall in the range 0x80–0x9F, a
               suffix following the prefix 0xF0 must fall in the range 0x90–0xBF and a suffix
               following the prefix 0xF4 must fall in the range 0x80–0x8F. The task of ensuring that
               each of these constraints hold is known as UTF-8 validation. The bit streams xE0,
               xED, xF0, xF4, xA0_xBF, x80_x9F, x90_xBF, and x80_x8F are constructed to flag the
               aforementioned UTF-8 validation errors. The result of UTF-8 validation is a UTF-8
               error flag bit stream contructed as the ORing of a series of UTF-8 validation tests.
            

XML Character Validation Streams
The UTF-8 character sequences 0xEF 0xBF 0xBF and
                  0xEF 0xBF 0xBE correspond to the Unicode code points 0xFFFE
               and 0xFFFF respectively. In XML 1.0, 0xFFFE and 0xFFFF represent characters outside
               the legal XML character ranges. As such, bit streams which mark 0xEF, 0xBF, and 0xBE
               character are constructed to flag illegal UTF-8 character sequences. 

UTF-8 to UTF-16 Transcoding
UTF-8 is often preferred for storage and data exchange, it is suitable for
               processing, but it is significantly more complex to process than UTF-16 [Unicode]. As such, XML documents are typically encoded in UTF-8 for
               serialization and transport, and subsequently transcoded to UTF-16 for processing
               with programming languages such as Java and C#. Following the parallel bit stream
               methods developed for the u8u16 transcoder, a high-performance standalone UTF-8 to
               UTF-16 transcoder [Cameron 2008], transcoding to UTF-16 may be achieved by
               computing a series of 16 bit streams. One stream for each of the individual bits of a
               UTF-16 code unit. 
The bit streams for UTF-16 are conveniently divided into groups: the eight streams
               u16Hi0, u16Hi1, ..., u16Hi7 for the high byte of each UTF-16 code unit and the eight
               streams u16Lo1, ..., u16Lo7 for the low byte. Upon conversion of the parallel bit
               stream data back to byte streams, eight sequential byte streams U16h0, U16h1, ...,
               U16Hi7 are used for the high byte of each UTF-16 code unit, while U16Lo0, U16Lo1,...,
               U16Lo7 are used for the corresponding low byte. Interleaving these streams then
               produces the full UTF-16 doublebyte stream.

UTF-8 Indexed UTF-16 Streams
UTF-16 bit streams are initially defined in UTF-8 indexed form. That is, with sets
               of bits in one-to-one correspondence with UTF-8 bytes. However, only one set of
               UTF-16 bits is required for encoding two or three-byte UTF-8 sequences and only two
               sets are required for surrogate pairs corresponding to four-byte UTF-8 sequences. The
               u8LastByte (u8UniByte , u8Scope22 , u8Scope33 , and u8Scope44 ) and u8Scope42 streams
               mark the positions at which the correct UTF-16 bits are computed. The bit sets at
               other positions must be deleted to compress the streams to the UTF-16 indexed form.
            


Control Character Streams
The control character bit streams marks ASCII control characters in the range
            0x00-0x1F. Additional control character bit streams mark the tab, carriage return, line
            feed, and space character. In addition, a bit stream to mark carriage return line
            combinations is also constructed. Presently, control character bit streams support the
            operations of XML 1.0 character validation and XML end-of-line handling.
XML Character Validation
Legal characters in XML are the tab, carriage return, and line feed characters,
               together with all Unicode characters and excluding the surrogate blocks, as well as hexadecimal OxFFFE and
               OxFFFF [XML 1.0]. The x00_x1F bit stream is constructed and used in
               combination with the additional control character bit streams to flags the positions
               of illegal control characters.

XML 1.0 End-of-line Handling
In XML 1.0 the two-character sequence CR LF (carriage return, line feed) as well as
               any CR character not followed by a LF character must be converted to a single LF
               character [XML 1.0].
By defining carriage return, line feed, and carriage return line feed bit streams,
               dentoted CR, LF and CRLF respectively, end-of-line normalization processing can be
               performed in parallel using only a small number of logical and shift operations.
The following example demonstrates the generation of the CRLF deletion mask. In
               this example, the position of all CR characters followed by LF characters are marked
               for deletion. Isolated carriage returns are then replaced with LF characters.
               Completion of this process satisfies the XML 1.0 end-of-line handling requirements.
               For clarity, this example encodes input data carriage returns as
               C characters, whereas line feed characters are shown as
                  L characters.

               Table VII
XML 1.0 End-of-line Handling

	Input Data	
                           first line C second line CL third line L one more C nothing
                           left
                        
	CR	
                           -----------1-------------1------------------------1-------------
                        
	LF	
                           --------------------------1------------1------------------------
                        
	DelMask	
                           --------------------------1-------------------------------------
                        



            


Call Out Streams
 Call out bit streams mark the extents of XML markup structures such as comments,
            processing instruction and CDATA sections as well as physical structures such as character and
            entity references and general references.  Call out streams are also formed for logical markup structures such
            start tags, end tags and empty element tags. 
Comment, Processing Instruction and CDATA Section Call Out Streams
Comments, processing instructions and CDATA sections call out streams, Ct_Span,
               PI_Span and CD_Span respectively, define sections of an XML document which 
               contain markup that is not interpreted by an XML processor. As such, the union of
               Ct_Span, PI_Span and CD_Span streams defines the regions of non-interpreteable markup. 
               The stream formed by this union is termed the CtCDPI_Mask.
The following tables provides an example of constructing the CtCDPI_Mask. 
Table VIII
CtCDPI Mask Generation

	Input Data	<?php?> <!-- example --> <![CDATA[ shift: a<<1 ]]>
	CD_Span	___________________________1111111111111111111111_
	Ct_Span	___________111111111111___________________________
	PI_Span	_11111____________________________________________
	CtCDPI_Mask	_111111__111111111111111__111111111111111111111111
	ErrorFlag	__________________________________________________

 With the removal of all non-interpreteable markup, several phases of parallel bit
               stream based SIMD operations may follow operating on up to 128 byte positions on
               current commondity processors and assured of XML markup relevancy. For
               example, with the extents identification of comments, processing instructions and
               CDATA sections, XML names may be identified and length sorted for efficient symbol
               table construction. 
 As an aside, comments and CDATA sections must first be validated to ensure
               that comments do not contain "--" sequences and that CDATA sections do not contain illegal
               "]]>" sequences prior to ignorable markup stream generation.

Reference Call Out Streams
The reference call out streams are the GenRefs, DecRefs, and HexRefs streams. This
               subset of the call out streams marks the extents of all but the closing semicolon of
               general and character references.
Predefined character
               (&lt;,&gt;,&amp;,&apos;,&quot;) and numeric character
               references (&#nnnn;, &#xhhhh;) must be replaced by a single character
                  [XML 1.0]. As previously shown, this subset of call out streams enables the construction of a DelMask for
               references.

Tag Call Out Streams
Whereas sequential bit scans over lexical item streams form the basis of XML
               parsing, in the current Parabix parser a new method of parallel parsing has been
               developed and prototyped using the concept of bitstream addition. Fundamental to this
               method is the concept of a cursor stream, a bit stream marking
               the positions of multiple parallel parses currently in process. 
The results of parallel parsing using the bit stream addition technique produces a
               set of tag call out bit streams. These streams mark the extents of each start tag,
               end tag and empty element tag. Within tags, additional streams mark start
               and end positions for tag names, as well as attribute names and values. An error flag
               stream marks the positions of any syntactic errors encountered during parsing.
 The set of tag call out streams consists of the ElemNames, AttNames, AttVals, Tags,
               EmptyTagEnds and EndTags bit streams. The following example demonstrates the bit
               stream output produced which from parallel parsing using bit stream addition. 
Table IX
Tag Call Out Streams

	Input Data	
                        <root><t1>text</t1><t2
                           a1='foo' a2 =
                           'fie'>more</t2><tag3
                           att3='b'/></root>
                     
	ElemNames	
                        _1111__11___________11_______________________________1111__________________
                     
	AttNames	
                        _______________________11_______11________________________1111_____________
                     
	AttrVals	
                        __________________________11111______11111_____________________111_________
                     
	EmptyTagEnds	
                        ___________________________________________________________________1_______
                     
	EndTags	
                        _______________111______________________________111__________________11111_
                     
	Start/EmptyTags	
                        _1111__11___________1111111111111111111111___________11111111111111________
                     
	ErrorFlag	
                        ___________________________________________________________________________
                     




SIMD Beyond Bitstreams: Names and Numbers
Whereas the fundamental innovation of our work is the use of SIMD technology in
         implementing parallel bit streams for XML, there are also important ways in which more
         traditional byte-oriented SIMD operations can be useful in accelerating other aspects of
         XML processing.
Name Lookup
Efficient symbol table mechanisms for looking up element and attribute names is
            important for almost all XML processing applications. It is also an important technique
            merely for assessing well-formedness of an XML document; rather than validating the
            character-by-character composition of each occurrence of an XML name as it is
            encountered, it is more efficient to validate all but the first occurrence by first
            determining whether the name already exists in a table of prevalidated names.
The first symbol table mechanism deployed in the Parabix parser simply used the
            hashmaps of the C++ standard template library, without deploying any SIMD technology.
            However, with the overhead of character validation, transcoding and parsing dramatically
            reduced by parallel bit stream technology, we found that symbol lookups then accounted
            for about half of the remaining execution time in a statistics gathering application
               [Cameron, Herdy and Lin 2008]. Thus, symbol table processing was identified as a major
            target for further performance improvement. 
 Our first effort to improve symbol table performance was to employ the splash tables
            with cuckoo hashing as described by Ross [Ross 2006], using SIMD
            technology for parallel bucket processing. Although this technique did turn out to have
            the advantage of virtually constant-time performance even for very large vocabularies,
            it was not particularly helpful for the relatively small vocabularies typically found in
            XML document processing. 
 However, a second approach has been found to be quite useful, taking advantage of
            parallel bit streams for cheap determination of symbol length. In essence, the length of
            a name can be determined very cheaply using a single bit scan operation. This then makes
            it possible to use length-sorted symbol table processing, as follows. First, the
            occurrences of all names are stored in arrays indexed by length. Then the length-sorted
            arrays may each be inserted into the symbol table in turn. The advantage of this is that
            a separate loop may be written for each length. Length sorting makes for very efficient
            name processing. For example hash value computations and name comparisons can be made by
            loading multibyte values and performing appropriate shifting and masking operations,
            without the need for a byte-at-a-time loop. In initial experiments, this length-sorting
            approach was found to reduce symbol lookup cost by a factor of two. 
 Current research includes the application of SIMD technology to further enhance the
            performance of length-sorted lookup. We have identified a promising technique for
            parallel processing of multiple name occurrences using a parallel trie lookup technique.
            Given an array of occurrences of names of a particular length, the first one, two or
            four bytes of each name are gathered and stored in a linear array. SIMD techniques are
            then used to compare these prefixes with the possible prefixes for the current position
            within the trie. In general, a very small number of possibilities exist for each trie
            node, allowing for fast linear search through all possibilities. Typically, the
            parallelism is expected to exceed the number of possibilities to search through at each
            node. With length-sorting to separate the top-level trie into many small subtries, we
            expect only a single step of symbol lookup to be needed in most practical instances. 
The gather step of this algorithm is actually a common technique in SIMD processing.
            Instruction set support for gather operations is a likely future direction for SIMD
            technology.

Numeric Processing
 Many XML applications involve numeric data fields as attribute values or element
            content. Although most current XML APIs uniformly return information to applications in
            the form of character strings, it is reasonable to consider direct API support for
            numeric conversions within a high-performance XML engine. With string to numeric
            conversion such a common need, why leave it to application programmers? 
 High-performance string to numeric conversion using SIMD operations also can
            considerably outperform the byte-at-a-time loops that most application programmers or
            libraries might employ. A first step is reduction of ASCII bytes to corresponding
            decimal nybbles using a SIMD packing operation. Then an inductive doubling algorithm
            using SIMD operations may be employed. First, 16 sets of adjacent nybble values in the
            range 0-9 can be combined in just a few SIMD operations to 16 byte values in the range
            0-99. Then 8 sets of byte values may similarly be combined with further SIMD processing
            to produce doublebyte values in the range 0-9999. Further combination of doublebyte
            values into 32-bit integers and so on can also be performed using SIMD operations. 
 Using appropriate gather operations to bring numeric strings into appropriate array
            structures, an XML engine could offer high-performance numeric conversion services to
            XML application programmers. We expect this to be an important direction for our future
            work, particularly in support of APIs that focus on direct conversion of XML data into
            business objects. 


APIs and Parallel Bit Streams
The ILAX Streaming API
The In-Line API for XML (ILAX) is the base API provided with the Parabix parser. It
            is intended for low-level extensions compiled right into the engine, with minimum
            possible overhead. It is similar to streaming event-based APIs such as SAX, but
            implemented by inline substitution rather than using callbacks. In essence, an extension
            programmer provides method bodies for event-processing methods declared internal to the
            Parabix parsing engine, compiling the event processing code directly with the core code
            of the engine. 
 Although ILAX can be used directly for application programming, its primary use is
            for implementing engine extensions that support higher-level APIs. For example, the
            implementation of C or C++ based streaming APIs based on the Expat [Expat] or general SAX models can be quite directly implemented. C/C++ DOM
            or other tree-based APIs can also be fairly directly implemented. However, delivering
            Parabix performance to Java-based XML applications is challenging due to the
            considerable overhead of crossing the Java Native Interface (JNI) boundary. This issue
            is addressed with the Array Set Model (ASM) concept discussed in the following section. 
 With the recent development of parallel parsing using bitstream addition, it is
            likely that the underlying ILAX interface of Parabix will change. In essence, ILAX
            suffers the drawback of all event-based interfaces: they are fundamentally sequential in
            number. As research continues, we expect efficient parallel methods building on parallel
            bit stream foundations to move up the stack of XML processing requirements. Artificially
            imposing sequential processing is thus expected to constrain further advances in XML
            performance. 

Efficient XML in Java Using Array Set Models
 In our GML-to-SVG case study, we identified the lack of high-performance XML
            processing solutions for Java to be of particular interest. Java byte code does not
            provide access to the SIMD capabilities of the underlying machine architecture. Java
            just-in-time compilers might be capable of using some SIMD facilities, but there is no
            real prospect of conventional compiler technology translating byte-at-a-time algorithms
            into parallel bit stream code. So the primary vehicle for delivering high-performance
            XML processing is to call native parallel bit stream code written in C through JNI
            capabilities. 
However, each JNI call is expensive, so it is desirable to minimize the number of
            calls and get as much work done during each call as possible. This mitigates against
            direct implementation of streaming APIs in Java through one-to-one mappings to an
            underlying streaming API in C. Instead, we have concentrated on gathering information on
            the C side into data structures that can then be passed to the Java side. However, using
            either C pointer-based structures or C++ objects is problematic because these are
            difficult to interpret on the Java side and are not amenable to Java's automatic storage
            management system. Similarly, Java objects cannot be conveniently created on the C side.
            However, it is possible to transfer arrays of simple data values (bytes or integers)
            between C and Java, so that makes a reasonable focus for bulk data communication between
            C and Java. 
Array Set Models are array-based representations of information
            representing an XML document in accord with XML InfoSet [XML Infoset] or
            other XML data models relevant to particular APIs. As well as providing a mechanism for
            efficient bulk data communication across the JNI boundary, ASMs potentially have a
            number of other benefits in high-performance XML processing. 	Prefetching. Commodity processors commonly support hardware and/or software
                     prefetching to ensure that data is available in a processor cache when it is
                     needed. In general, prefetching is most effective in conjunction with the
                     continuous sequential memory access patterns associated with array
                  processing.

	DMA. Some processing environments provide Direct Memory Access (DMA)
                     controllers for block data movement in parallel with computation. For example,
                     the Cell Broadband Engine uses DMA controllers to move the data to and from the
                     local stores of the synergistic processing units. Arrays of contiguous data
                     elements are well suited to bulk data movement using DMA.

	SIMD. Single Instruction Multiple Data (SIMD) capabilities of modern
                     processor instruction sets allow simultaneous application of particular
                     instructions to sets of elements from parallel arrays. For effective use of
                     SIMD capabilities, an SoA (Structure of Arrays) model is preferrable to an AoS
                     (Array of Structures) model. 

	Multicore processors. Array-oriented processing can enable the effective
                     distribution of work to the individual cores of a multicore system in two
                     distinct ways. First, provided that sequential dependencies can be minimized or
                     eliminated, large arrays can be divided into separate segments to be processed
                     in parallel on each core. Second, pipeline parallelism can be used to implement
                     efficient multipass processing with each pass consisting of a processing kernel
                     with array-based input and array-based output. 

	Streaming buffers for large XML documents. In the event that an XML document
                     is larger than can be reasonably represented entirely within processor memory,
                     a buffer-based streaming model can be applied to work through a document using
                     sliding windows over arrays of elements stored in document order. 



         
Saxon-B TinyTree Example
As a first example of the ASM concept, current work includes a proof-of-concept to
               deliver a high-performance replacement for building the TinyTree data structure used
               in Saxon-B 6.5.5, an open-source XSLT 2.0 processor written in Java [Saxon]. Although XSLT stylesheets may be cached for performance, the
               caching of source XML documents is typically not possible. A new TinyTree object to
               represent the XML source document is thus commonly constructed with each new query so
               that the overall performance of simple queries on large source XML documents is
               highly dependent on TinyTree build time. Indeed, in a study of Saxon-SA, the
               commercial version of Saxon, query time was shown to be dominated by TinyTree build
               time [Kay 2008]. Similar performance results are demonstrable for the
               Saxon-B XSLT processor as well. 
 The Saxon-B processor studied is a pure Java solution, converting a SAX (Simple
               API for XML) event stream into the TinyTree Java object using the efficient Aelfred
               XML parser [Ælfred]. The TinyTree structure is itself an
               array-based structure mapping well suited to the ASM concept. It consists of six
               parallel arrays of integers indexed on node number and containing one entry for each
               node in the source document, with the exception of attribute and namespace nodes
                  [Saxon]. Four of the arrays respectively provide node kind, name
               code, depth, and next sibling information for each node, while the two others are
               overloaded for different purposes based on node kind value. For example, in the
               context of a text node , one of the overloaded arrays holds the text buffer offset
               value whereas the other holds the text buffer length value. Attributes and namespaces
               are represented using similiar parallel array of values. The stored TinyTree values
               are primarily primitive Java types, however, object types such as Java Strings and
               Java StringBuffers are also used to hold attribute values and comment values
               respectively. 
 In addition to the TinyTree object, Saxon-B maintains a NamePool object which
               represents a collection of XML name triplets. Each triplet is composed of a Namespace
               URI, a Namespace prefix and a local name and encoded as an integer value known as a
               namecode. Namecodes permit efficient name search and look-up using integer
               comparison. Namecodes may also be subsequently decoded to recover namespace and local
               name information. 
 Using the Parabix ILAX interface, a high-performance reimplementation of TinyTree
               and NamePool data structures was built to compare with the Saxon-B implementation. In
               fact, two functionally equivalent versions of the ASM java class were constructed. An
               initial version was constructed based on a set of primitive Java arrays constructed
               and allocated in the Java heap space via JNI New<PrimitiveType>Array
               method call. In this version, the JVM garbage collector is aware of all memory
               allocated in the native code. However, in this approach, large array copy operations
               limited overall performance to approximately a 2X gain over the Saxon-B build time. 
To further address the performance penalty imposed by copying large array values,
               a second version of the ASM Java object was constructed based on natively backed
               Direct Memory Byte Buffers [Hitchens 2002]. In this version the JVM garbage
               collector is unaware any native memory resources backing the Direct Memory Byte
               Buffers. Large JNI-based copy operations are avoided; however, system memory must be
               explicitly deallocated via a Java native method call. Using this approach, our
               preliminary results show an approximate total 2.5X gain over Saxon-B build time.
            



Compiler Technology
 An important focus of our recent work is on the development of compiler technology to
         automatically generate the low-level SIMD code necessary to implement bit stream processing
         given suitable high-level specifications. This has several potential benefits. First, it
         can eliminate the tedious and error-prone programming of bit stream operations in terms of
         register-at-a-time SIMD operations. Second, compilation technology can automatically employ
         a variety of performance improvement techniques that are difficult to apply manually. These
         include algorithms for instruction scheduling and register allocation as well as
         optimization techniques for common subexpression expression elimination and register
         rematerialization among others. Third, compiler technology makes it easier to make changes
         to the low-level code for reasons of perfective or adaptive maintenance.
Beyond these reasons, compiler technology also offers the opportunity for retargetting
         the generation of code to accommodate different processor architectures and API
         requirements. Strategies for efficient parallel bit stream code can vary considerably
         depending on processor resources such as the number of registers available, the particular
         instruction set architecture supported, the size of L1 and L2 data caches, the number of
         available cores and so on. Separate implementation of custom code for each processor
         architecture would thus be likely to be prohibitively expensive, prone to errors and
         inconsistencies and difficult to maintain. Using compilation technology, however, the idea
         would be to implement a variety of processor-specific back-ends all using a common front
         end based on parallel bit streams. 
Character Class Compiler
The first compiler component that we have implemented is a character class compiler,
            capable of generation all the bit stream logic necessary to produce a set of lexical
            item streams each corresponding to some particular set of characters to be recognized.
            By taking advantage of common patterns between characters within classes, and special
            optimization logic for recognizing character-class ranges, our existing compiler is able
            to generate well-optimized code for complex sets of character classes involving numbers
            of special characters as well as characters within specific sets of ranges. 

Regular Expression Compilation
Based on the character class compiler, we are currently investigating the
            construction of a regular expression compiler that can implement bit-stream based
            parallel regular-expression matching similar to that describe previously for parallel
            parsing by bistream addition. This compiler works with the assumption that bitstream
            regular-expression definitions are deterministic; no backtracking is permitted with the
            parallel bit stream representation. In XML applications, this compiler is primarily
            intended to enforce regular-expression constraints on string datatype specifications
            found in XML schema. 

Unbounded Bit Stream Compilation
The Catalog of XML Bit Streams presented earlier consist of a set of abstract,
            unbounded bit streams, each in one-to-one correspondence with input bytes of a text
            file. Determining how these bit streams are implemented using fixed-width SIMD
            registers, and possibly processed in fixed-length buffers that represent some multiple
            of the register width is a source of considerable programming complexity. The general
            goal of our compilation strategy in this case is to allow operations to be programmed in
            terms of unbounded bit streams and then automatically reduced to efficient low-level
            code with the application of a systematic code generation strategy for handling block
            and buffer boundary crossing. This is work currently in progress. 


Conclusion
Parallel bit stream technology offers the opportunity to dramatically speed up the core
         XML processing components used to implement virtually any XML API. Character validation and
         transcoding, whitespace processing, and parsing up to including the full validation of tag
         syntax can be handled fully in parallel using bit stream methods. Bit streams to mark the
         positions of all element names, attribute names and attribute values can also be produced,
         followed by fast bit scan operations to generate position and length values. Beyond bit
         streams, byte-oriented SIMD processing of names and numerals can also accelerate
         performance beyond sequential byte-at-a-time methods. 
Advances in processor architecture are likely to further amplify the performance of
         parallel bit stream technology over traditional byte-at-a-time processing over the next
         decade. Improvements to SIMD register width, register complement and operation format can
         all result in further gains. New SIMD instruction set features such as inductive doubling
         support, parallel extract and deposit instructions, bit interleaving and scatter/gather
         capabilities should also result in significant speed-ups. Leveraging the intraregister
         parallelism of parallel bit stream technology within SIMD registers to take of intrachip
         parallelism on multicore processors should accelerate processing further. 
Technology transfer using a patent-based open-source business model is a further goal of
         our work with a view to widespread deployment of parallel bit stream technology in XML
         processing stacks implementing a variety of APIs. The feasibility of substantial
         performance improvement in replacement of technology implementing existing APIs has been
         demonstrated even in complex software architectures involving delivery of performance
         benefits across the JNI boundary. We are seeking to accelerate these deployment efforts
         both through the development of compiler technology to reliably apply these methods to a
         variety of architectures as well as to identify interested collaborators using open-source
         or commercial models. 
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