[image: Balisage logo]Balisage: The Markup Conference

Parallel Bit Stream Technology as a Foundation for XML Parsing Performance
Rob Cameron
Professor of Computing Science
Simon Fraser University

<cameron@cs.sfu.ca>

Ken Herdy
Graduate Student, School of Computing Science
Simon Fraser University

<ksherdy@cs.sfu.ca>

Ehsan Amiri
Graduate Student, School of Computing Science
Simon Fraser University

<eamiri@cs.sfu.ca>

International Symposium on Processing XML Efficiently: Overcoming Limits on Space, Time, or Bandwidth
August 10, 2009

Copyright © 2009 Robert D. Cameron, Kenneth S. Herdy and Ehsan Amiri.
 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative
 Works 2.5 Canada License.

How to cite this paper
Cameron, Rob, Ken Herdy and Ehsan Amiri. "Parallel Bit Stream Technology as a Foundation for XML Parsing Performance." Presented at: International Symposium on Processing XML Efficiently: Overcoming Limits on Space, Time, or Bandwidth, Montréal, Canada, August 10, 2009. In Proceedings of the International Symposium on Processing XML Efficiently: Overcoming
 Limits on Space, Time, or Bandwidth.
 Balisage Series on Markup Technologies vol. 4 (2009). https://doi.org/10.4242/BalisageVol4.Cameron01.

Abstract
By first transforming the octets (bytes) of XML texts into eight parallel bit
 streams, the SIMD features of commodity processors can be exploited for parallel
 processing of blocks of 128 input bytes at a time. Established transcoding and parsing
 techniques are reviewed followed by new techniques including parsing with bitstream
 addition. Further opportunities are discussed in light of expected advances in CPU
 architecture and compiler technology. Implications for various APIs and information
 models are presented as well opportunities for collaborative open-source
 development.

Balisage: The Markup Conference

 Parallel Bit Stream Technology as a Foundation for XML Parsing Performance

 Table of Contents

 	Title Page

 	Introduction

 	A Catalog of Parallel Bit Streams for XML
 	Introduction

 	Basis Bit Streams

 	General Streams
 	Deletion Mask Streams

 	Error Flag Streams

 	Lexical Item Streams

 	UTF-8 Byte Classification, Scope and Validation Streams
 	UTF-8 Byte Classification Streams

 	UTF-8 Scope Streams

 	UTF-8 Validation Streams

 	XML Character Validation Streams

 	UTF-8 to UTF-16 Transcoding

 	UTF-8 Indexed UTF-16 Streams

 	Control Character Streams
 	XML Character Validation

 	XML 1.0 End-of-line Handling

 	Call Out Streams
 	Comment, Processing Instruction and CDATA Section Call Out Streams

 	Reference Call Out Streams

 	Tag Call Out Streams

 	SIMD Beyond Bitstreams: Names and Numbers
 	Name Lookup

 	Numeric Processing

 	APIs and Parallel Bit Streams
 	The ILAX Streaming API

 	Efficient XML in Java Using Array Set Models
 	Saxon-B TinyTree Example

 	Compiler Technology
 	Character Class Compiler

 	Regular Expression Compilation

 	Unbounded Bit Stream Compilation

 	Conclusion

 	Acknowledgments

 	About the Authors

 Parallel Bit Stream Technology as a Foundation for XML Parsing Performance

Introduction
 While particular XML applications may benefit from special-purpose hardware such as XML
 chips [Leventhal and Lemoine 2009] or appliances [Salz, Achilles and Maze 2009], the bulk
 of the world's XML processing workload will continue to be handled by XML software stacks
 on commodity processors. Exploiting the SIMD capabilities of such processors such as the
 SSE instructions of x86 chips, parallel bit stream technology offers the potential of
 dramatic improvement over byte-at-a-time processing for a variety of XML processing tasks.
 Character set issues such as Unicode validation and transcoding [Cameron 2007], normalization of line breaks and white space and XML character validation can be
 handled fully in parallel using this representation. Lexical item streams, such as the bit
 stream marking the positions of opening angle brackets, can also be formed in parallel.
 Bit-scan instructions of commodity processors may then be used on lexical item streams to
 implement rapid single-instruction scanning across variable-length multi-byte text blocks
 as in the Parabix XML parser [Cameron, Herdy and Lin 2008]. Overall, these techniques may be
 combined to yield end-to-end performance that may be 1.5X to 15X faster than alternatives
 [Herdy, Burggraf and Cameron 2008].
Continued research in parallel bit stream techniques as well as more conventional
 application of SIMD techniques in XML processing offers further prospects for improvement
 of core XML components as well as for tackling performance-critical tasks further up the
 stack. A newly prototyped technique for parallel tag parsing using bitstream addition is
 expected to improve parsing performance even beyond that achieved using sequential bit
 scans. Several techniques for improved symbol table performance are being investigated,
 including parallel hash value calculation and length-based sorting using the cheap length
 determination afforded by bit scans. To deliver the benefits of parallel bit stream
 technology to the Java world, we are developing Array Set Model (ASM) representations of
 XML Infoset and other XML information models for efficient transmission across the JNI
 boundary.
Amplifying these software advances, continuing hardware advances in commodity processors
 increase the relative advantage of parallel bit stream techniques over traditional
 byte-at-a-time processors. For example, the Intel Core architecture improved SSE processing
 to give superscalar execution of bitwise logic operations (3 instructions per cycle vs. 1
 in Pentium 4). Upcoming 256-bit AVX technology extends the register set and replaces
 destructive two-operand instructions with a nondestructive three-operand form. General
 purpose programming on graphic processing units (GPGPU) such as the upcoming 512-bit
 Larrabee processor may also be useful for XML applications using parallel bit streams. New
 instruction set architectures may also offer dramatic improvements in core algorithms.
 Using the relatively simple extensions to support the principle of inductive doubling, a 3X
 improvement in several core parallel bit stream algorithms may be achieved [Cameron and Lin 2009]. Other possibilities include direct implementation of parallel
 extract and parallel deposit (pex/pdep) instructions [Hilewitz and Lee 2006], and
 bit-level interleave operations as in Larrabee, each of which would have important
 application to parallel bit stream processing.
Further prospects for XML performance improvement arise from leveraging the
 intraregister parallelism of parallel bit stream technology to exploit the interchip
 parallelism of multicore computing. Parallel bit stream techniques can support multicore
 parallelism in both data partitioning and task partitioning models. For example, the
 datasection partitioning approach of Wu, Zhang, Yu and Li may be used to partition blocks
 for speculative parallel parsing on separate cores followed by a postprocessing step to
 join partial S-trees [Wu et al. 2008].
In our view, the established and expected performance advantages of parallel bit stream
 technology over traditional byte-at-a-time processing are so compelling that parallel bit
 stream technology should ultimately form the foundation of every high-performance XML
 software stack. We envision a common high-performance XML kernel that may be customized to
 a variety of processor architectures and that supports a wide range of existing and new XML
 APIs. Widespread deployment of this technology should greatly benefit the XML community in
 addressing both the deserved and undeserved criticism of XML on performance grounds. A
 further benefit of improved performance is a substantial greening of XML technologies.
To complement our research program investigating fundamental algorithms and issues in
 high-performance XML processing, our work also involves development of open source software
 implementing these algorithms, with a goal of full conformance to relevant specifications.
 From the research perspective, this approach is valuable in ensuring that the full
 complexity of required XML processing is addressed in reporting and assessing processing
 results. However, our goal is also to use this open source software as a basis of
 technology transfer. A Simon Fraser University spin-off company, called International
 Characters, Inc., has been created to commercialize the results of this work using a
 patent-based open source model.
To date, we have not yet been successful in establishing a broader community of
 participation with our open source code base. Within open-source communities, there is
 often a general antipathy towards software patents; this may limit engagement with our
 technology, even though it has been dedicated for free use in open source.
A further complication is the inherent difficulty of SIMD programming in general, and
 parallel bit stream programming in particular. Considerable work is required with each new
 algorithmic technique being investigated as well as in retargetting our techniques for each
 new development in SIMD and multicore processor technologies. To address these concerns, we
 have increasingly shifted the emphasis of our research program towards compiler technology
 capable of generating parallel bit stream code from higher-level specifications.

A Catalog of Parallel Bit Streams for XML
Introduction
In this section, we introduce the fundamental concepts of parallel bit stream
 technology and present a comprehensive catalog of parallel bit streams for use in XML
 processing. In presenting this catalog, the focus is on the specification of the bit
 streams as data streams in one-to-one correspondence with the character code units of an
 input XML stream. The goal is to define these bit streams in the abstract without
 initially considering memory layouts, register widths or other issues related to
 particular target architectures. In cataloging these techniques, we also hope to convey
 a sense of the breadth of applications of parallel bit stream technology to XML
 processing tasks.

Basis Bit Streams
Given a byte-oriented text stream represented in UTF-8, for example, we define a
 transform representation of this text consisting of a set of eight parallel bit streams
 for the individual bits of each byte. Thus, the Bit0 stream is the stream
 of bits consisting of bit 0 of each byte in the input byte stream, Bit1 is
 the bit stream consisting of bit 1 of each byte in the input stream and so on. The set
 of streams Bit0 through Bit7 are known as the basis
 streams of the parallel bit stream representation. The following table
 shows an example XML character stream together with its representation as a set of 8
 basis streams. Table I
XML Character Stream Transposition.

	Input Data	
 <
 	
 t
 	
 a
 	
 g
 	
 /
 	
 >

	ASCII	
 00111100
 	
 01110100
 	
 01100001
 	
 01100111
 	
 00101111
 	
 00111110

	Bit0	
 0
 	
 0
 	
 0
 	
 0
 	
 0
 	
 0

	Bit1	
 0
 	
 1
 	
 1
 	
 1
 	
 0
 	
 0

	Bit2	
 1
 	
 1
 	
 1
 	
 1
 	
 1
 	
 1

	Bit3	
 1
 	
 1
 	
 0
 	
 0
 	
 0
 	
 1

	Bit4	
 1
 	
 0
 	
 0
 	
 0
 	
 1
 	
 1

	Bit5	
 1
 	
 1
 	
 0
 	
 1
 	
 1
 	
 1

	Bit6	
 0
 	
 0
 	
 0
 	
 1
 	
 1
 	
 1

	Bit7	
 0
 	
 0
 	
 1
 	
 1
 	
 1
 	
 0

 Depending on the features of a particular processor architecture, there are a number
 of algorithms for transposition to parallel bit stream form. Several of these algorithms
 employ a three-stage structure. In the first stage, the input byte stream is divided
 into a pair of half-length streams consisting of four bits for each byte, for example,
 one stream for the high nybble of each byte and another for the low nybble of each byte.
 In the second stage, these streams of four bits per byte are each divided into streams
 consisting of two bits per original byte, for example streams for the
 Bit0/Bit1, Bit2/Bit3, Bit4/Bit5, and
 Bit6/Bit7 pairs. In the final stage, the streams are further subdivided
 in the individual bit streams.
 Using SIMD capabilities, this process is quite efficient, with an amortized cost of
 1.1 CPU cycles per input byte on Intel Core 2 with SSE, or 0.6 CPU cycles per input byte
 on Power PC G4 with Altivec. With future advances in processor technology, this
 transposition overhead is expected to reduce, possibly taking advantage of upcoming
 parallel extract (pex) instructions on Intel technology. In the ideal, only 24
 instructions are needed to transform a block of 128 input bytes using 128-bit SSE
 registers using the inductive doubling instruction set architecture, representing an
 overhead of less than 0.2 instructions per input byte.

General Streams
This section describes bit streams which support basic processing operations.
Deletion Mask Streams
DelMask (deletion mask) streams marks character code unit positions for deletion.
 Since the deletion operation is dependency free across many stages of XML processing,
 it is possible to simply mark and record deletion positions as deletion mask streams for future processing. A single
 invocation of a SIMD based parallel deletion algorithm can then perform the deletion of
 positions accumulated across a number of stages through a bitwise ORing of deletion
 masks. For example, deletion arises in the replacement of predefined entities with a
 single character, such as in the replacement of the & entity, with the
 & character. Deletion also arises in XML
 end-of-line handling, and CDATA section delimeter processing. Several algorithms to
 delete bits at positions marked by DelMask are possible [Cameron 2008].
The following table provides an example of generating a DelMask in the context of
 bit stream based parsing of well-formed character references and predefined entities.
 The result is the generation of a DelMask stream. Table II
DelMask Stream Generation

	Input Data	
 > 

	GenRefs	
 _11______________

	DecRefs	
 _______11________

	HexRefs	
 ______________11_

	DelMask	
 111__1111__11111_

	ErrorFlag	

Error Flag Streams
Error flag streams indicates the character code unit positions of syntactical
 errors. XML processing examples which benefit from the marking of error positions
 include UTF-8 character sequence validation and XML parsing [Cameron 2008].
The following table provides an example of using bit streams to parse character
 references and predefined entities which fail to meet the XML 1.0 well-formedness
 constraints. The result is the generation of an error flag stream that marks the
 positions of mal-formed decimal and hexical character references respectively. Table III
Error Flag Stream Generation

	Input Data	
 > &#, &#x;

	GenRefs	
 _11___________

	DecRefs	

	HexRefs	

	DelMask	
 111__11__111__

	ErrorFlag	
 _______1____1_

Lexical Item Streams
Lexical item streams differ from traditional streams of tokens in that they are bit
 streams that mark the positions of tokens, whitespace or delimiters. Additional bit
 streams, such as the reference streams and callout streams, are subsequently constructed
 based on the information held within the set of lexical items streams. Differentiation
 between the actual tokens that may occur at a particular point (e.g., the different XML
 tokens that begin “<”) may be performed using multicharacter recognizers on the
 bytestream representation [Cameron, Herdy and Lin 2008].
A key role of lexical item streams in XML parsing is to facilitate fast scanning
 operations. For example, a left angle bracket lexical item stream may be formed to
 identify those character code unit positions at which a “<” character occurs.
 Hardware register bit scan operations may then be used by the XML parser on the left
 angle bracket stream to efficiently identify the position of the next “<”. Based
 on the capabilities of current commodity processors, a single register bit scan
 operation may effectively scan up to 64 byte positions with a single instruction.
Overall, the construction of the full set of lexical item stream computations
 requires approximately 1.0 CPU cycles per byte when implemented for 128 positions at a
 time using 128-bit SSE registers on Intel Core2 processors [Cameron, Herdy and Lin 2008].
 The following table defines the core lexical item streams defined by the Parabix XML
 parser.

 Table IV
Lexical item stream descriptions.

	 LAngle 	 Marks the position of any left angle bracket character.
	 RAngle 	 Marks the position of any right angle bracket character.
	 LBracket 	 Marks the position of any left square bracker character.
	 RBracket 	 Marks the position of any right square bracket
 character.
	 Exclam 	 Marks the position of any exclamation mark character.
	 QMark 	 Marks the position of any question mark character.
	 Hyphen 	 Marks the position of any hyphen character.
	 Equals 	 Marks the position of any equal sign character.
	 SQuote 	 Marks the position of any single quote character.
	 DQuote 	 Marks the position of any double quote character.
	 Slash 	 Marks the position of any forward slash character
	 NameScan 	 Marks the position of any XML name character.
	 WS 	 Marks the position of any XML 1.0 whitespace character.
	 PI_start 	 Marks the position of the start of any processing instruction
 at the '?' character position.
	 PI_end 	 Marks the position of any end of any processing instruction
 at the '>' character position.
	 CtCD_start 	 Marks the position of the start of any comment or CDATA
 section at the '!' character position.
	 EndTag_start 	 Marks the position of any end tag at the '/' character
 position.
	 CD_end 	 Marks the position of the end of any CDATA section at the '>'
 character position.
	 DoubleHyphen 	 Marks the position of any double hyphen character.
	 RefStart 	 Marks the position of any ampersand character.
	 Hash 	 Marks the position of any hash character.
	 x 	 Marks the position of any 'x' character.
	 Digit 	 Marks the position of any digit.
	 Hex 	 Marks the position of any hexidecimal character.
	 Semicolon 	 Marks the position of any semicolon character.

 The following illustrates a number of the lexical item streams.

 Table V
Lexical Item Streams

	Input Data	
 <tag><tag> text <
 > </tag></tag>

	LAngle	
 1____1______________________1_____1_____

	RAngle	
 ____1____1_______________________1_____1

	WS	
 __________1____1____1______1____________

	RefStart	
 ________________1____1__________________

	Hex	
 __1____1____1___________11_____1_____1__

	Semicolon	
 ___________________1______1_____________

	Slash	
 _____________________________1_____1____

UTF-8 Byte Classification, Scope and Validation Streams
 An XML parser must accept the UTF-8 encoding of Unicode [XML 1.0].
 It is a fatal error if an XML document determined to be in UTF-8 contains byte sequences
 that are not legal in that encoding. UTF-8 byte classification, scope, XML character
 validation and error flag bit streams are defined to validate UTF-8 byte sequences and
 support transcoding to UTF-16.
UTF-8 Byte Classification Streams
UTF-8 byte classification bit streams classify UTF-8 bytes based on their role in
 forming single and multibyte sequences. The u8Prefix and u8Suffix bit streams
 identify bytes that represent, respectively, prefix or suffix bytes of multibyte
 UTF-8 sequences. The u8UniByte bit stream identifies those bytes that may be
 considered single-byte sequences. The u8Prefix2, u8Prefix3, and u8Prefix4 refine the
 u8Prefix respectively indicating prefixes of two, three or four byte
 sequences respectively.

UTF-8 Scope Streams
 Scope streams represent expectations established by UTF-8 prefix bytes. For
 example, the u8Scope22 bit stream represents the positions at which the second byte of a
 two-byte sequence is expected based on the occurrence of a two-byte prefix in the
 immediately preceding position. The u8scope32, u8Scope33, u8Scope42, u8scope43, and
 u8Scope44 complete the set of UTF-8 scope streams.
 The following example demonstrates the UTF-8 character encoding validation
 process using parallel bit stream techniques. The result of this validation process
 is an error flag stream identifying the positions at which errors occur.

 Table VI
UTF-8 Scope Streams

	Input Data	A Text in Farsi: ى ك م ت ن ف ا ر س ى
	High Nybbles	
 42567726624677632D8DBDBDAD82D8DAD82D8D8

	Low Nybbles	
 10458409E061239A099838187910968A9509399

	u8Unibyte	
 11111111111111111__________1______1____

	u8Prefix	
 _________________1_1_1_1_1__1_1_1__1_1_

	u8Suffix	
 __________________1_1_1_1_1__1_1_1__1_1

	u8Prefix2	
 _________________1_1_1_1_1__1_1_1__1_1_

	u8Scope22	
 __________________1_1_1_1_1__1_1_1__1_1

	ErrorFlag	

UTF-8 Validation Streams
 Proper formation of UTF-8 byte sequences requires that the correct number of
 suffix bytes always follow a UTF-8 prefix byte, and that certain illegal byte
 combinations are ruled out. For example, sequences beginning with the prefix bytes
 0xF5 through 0xFF are illegal as they would represent code point values above 10FFFF.
 In addition, there are constraints on the first suffix byte following certain special
 prefixes, namely that a suffix following the prefix 0xE0 must fall in the range
 0xA0–0xBF, a suffix following the prefix 0xED must fall in the range 0x80–0x9F, a
 suffix following the prefix 0xF0 must fall in the range 0x90–0xBF and a suffix
 following the prefix 0xF4 must fall in the range 0x80–0x8F. The task of ensuring that
 each of these constraints hold is known as UTF-8 validation. The bit streams xE0,
 xED, xF0, xF4, xA0_xBF, x80_x9F, x90_xBF, and x80_x8F are constructed to flag the
 aforementioned UTF-8 validation errors. The result of UTF-8 validation is a UTF-8
 error flag bit stream contructed as the ORing of a series of UTF-8 validation tests.

XML Character Validation Streams
The UTF-8 character sequences 0xEF 0xBF 0xBF and
 0xEF 0xBF 0xBE correspond to the Unicode code points 0xFFFE
 and 0xFFFF respectively. In XML 1.0, 0xFFFE and 0xFFFF represent characters outside
 the legal XML character ranges. As such, bit streams which mark 0xEF, 0xBF, and 0xBE
 character are constructed to flag illegal UTF-8 character sequences.

UTF-8 to UTF-16 Transcoding
UTF-8 is often preferred for storage and data exchange, it is suitable for
 processing, but it is significantly more complex to process than UTF-16 [Unicode]. As such, XML documents are typically encoded in UTF-8 for
 serialization and transport, and subsequently transcoded to UTF-16 for processing
 with programming languages such as Java and C#. Following the parallel bit stream
 methods developed for the u8u16 transcoder, a high-performance standalone UTF-8 to
 UTF-16 transcoder [Cameron 2008], transcoding to UTF-16 may be achieved by
 computing a series of 16 bit streams. One stream for each of the individual bits of a
 UTF-16 code unit.
The bit streams for UTF-16 are conveniently divided into groups: the eight streams
 u16Hi0, u16Hi1, ..., u16Hi7 for the high byte of each UTF-16 code unit and the eight
 streams u16Lo1, ..., u16Lo7 for the low byte. Upon conversion of the parallel bit
 stream data back to byte streams, eight sequential byte streams U16h0, U16h1, ...,
 U16Hi7 are used for the high byte of each UTF-16 code unit, while U16Lo0, U16Lo1,...,
 U16Lo7 are used for the corresponding low byte. Interleaving these streams then
 produces the full UTF-16 doublebyte stream.

UTF-8 Indexed UTF-16 Streams
UTF-16 bit streams are initially defined in UTF-8 indexed form. That is, with sets
 of bits in one-to-one correspondence with UTF-8 bytes. However, only one set of
 UTF-16 bits is required for encoding two or three-byte UTF-8 sequences and only two
 sets are required for surrogate pairs corresponding to four-byte UTF-8 sequences. The
 u8LastByte (u8UniByte , u8Scope22 , u8Scope33 , and u8Scope44) and u8Scope42 streams
 mark the positions at which the correct UTF-16 bits are computed. The bit sets at
 other positions must be deleted to compress the streams to the UTF-16 indexed form.

Control Character Streams
The control character bit streams marks ASCII control characters in the range
 0x00-0x1F. Additional control character bit streams mark the tab, carriage return, line
 feed, and space character. In addition, a bit stream to mark carriage return line
 combinations is also constructed. Presently, control character bit streams support the
 operations of XML 1.0 character validation and XML end-of-line handling.
XML Character Validation
Legal characters in XML are the tab, carriage return, and line feed characters,
 together with all Unicode characters and excluding the surrogate blocks, as well as hexadecimal OxFFFE and
 OxFFFF [XML 1.0]. The x00_x1F bit stream is constructed and used in
 combination with the additional control character bit streams to flags the positions
 of illegal control characters.

XML 1.0 End-of-line Handling
In XML 1.0 the two-character sequence CR LF (carriage return, line feed) as well as
 any CR character not followed by a LF character must be converted to a single LF
 character [XML 1.0].
By defining carriage return, line feed, and carriage return line feed bit streams,
 dentoted CR, LF and CRLF respectively, end-of-line normalization processing can be
 performed in parallel using only a small number of logical and shift operations.
The following example demonstrates the generation of the CRLF deletion mask. In
 this example, the position of all CR characters followed by LF characters are marked
 for deletion. Isolated carriage returns are then replaced with LF characters.
 Completion of this process satisfies the XML 1.0 end-of-line handling requirements.
 For clarity, this example encodes input data carriage returns as
 C characters, whereas line feed characters are shown as
 L characters.

 Table VII
XML 1.0 End-of-line Handling

	Input Data	
 first line C second line CL third line L one more C nothing
 left

	CR	
 -----------1-------------1------------------------1-------------

	LF	
 --------------------------1------------1------------------------

	DelMask	
 --------------------------1-------------------------------------

Call Out Streams
 Call out bit streams mark the extents of XML markup structures such as comments,
 processing instruction and CDATA sections as well as physical structures such as character and
 entity references and general references. Call out streams are also formed for logical markup structures such
 start tags, end tags and empty element tags.
Comment, Processing Instruction and CDATA Section Call Out Streams
Comments, processing instructions and CDATA sections call out streams, Ct_Span,
 PI_Span and CD_Span respectively, define sections of an XML document which
 contain markup that is not interpreted by an XML processor. As such, the union of
 Ct_Span, PI_Span and CD_Span streams defines the regions of non-interpreteable markup.
 The stream formed by this union is termed the CtCDPI_Mask.
The following tables provides an example of constructing the CtCDPI_Mask.
Table VIII
CtCDPI Mask Generation

	Input Data	<?php?> <!-- example --> <![CDATA[shift: a<<1]]>
	CD_Span	___________________________1111111111111111111111_
	Ct_Span	___________111111111111___________________________
	PI_Span	_11111__
	CtCDPI_Mask	_111111__111111111111111__111111111111111111111111
	ErrorFlag	__

 With the removal of all non-interpreteable markup, several phases of parallel bit
 stream based SIMD operations may follow operating on up to 128 byte positions on
 current commondity processors and assured of XML markup relevancy. For
 example, with the extents identification of comments, processing instructions and
 CDATA sections, XML names may be identified and length sorted for efficient symbol
 table construction.
 As an aside, comments and CDATA sections must first be validated to ensure
 that comments do not contain "--" sequences and that CDATA sections do not contain illegal
 "]]>" sequences prior to ignorable markup stream generation.

Reference Call Out Streams
The reference call out streams are the GenRefs, DecRefs, and HexRefs streams. This
 subset of the call out streams marks the extents of all but the closing semicolon of
 general and character references.
Predefined character
 (<,>,&,',") and numeric character
 references (&#nnnn;, &#xhhhh;) must be replaced by a single character
 [XML 1.0]. As previously shown, this subset of call out streams enables the construction of a DelMask for
 references.

Tag Call Out Streams
Whereas sequential bit scans over lexical item streams form the basis of XML
 parsing, in the current Parabix parser a new method of parallel parsing has been
 developed and prototyped using the concept of bitstream addition. Fundamental to this
 method is the concept of a cursor stream, a bit stream marking
 the positions of multiple parallel parses currently in process.
The results of parallel parsing using the bit stream addition technique produces a
 set of tag call out bit streams. These streams mark the extents of each start tag,
 end tag and empty element tag. Within tags, additional streams mark start
 and end positions for tag names, as well as attribute names and values. An error flag
 stream marks the positions of any syntactic errors encountered during parsing.
 The set of tag call out streams consists of the ElemNames, AttNames, AttVals, Tags,
 EmptyTagEnds and EndTags bit streams. The following example demonstrates the bit
 stream output produced which from parallel parsing using bit stream addition.
Table IX
Tag Call Out Streams

	Input Data	
 <root><t1>text</t1><t2
 a1='foo' a2 =
 'fie'>more</t2><tag3
 att3='b'/></root>

	ElemNames	
 _1111__11___________11_______________________________1111__________________

	AttNames	
 _______________________11_______11________________________1111_____________

	AttrVals	
 __________________________11111______11111_____________________111_________

	EmptyTagEnds	
 ___1_______

	EndTags	
 _______________111______________________________111__________________11111_

	Start/EmptyTags	
 _1111__11___________1111111111111111111111___________11111111111111________

	ErrorFlag	

SIMD Beyond Bitstreams: Names and Numbers
Whereas the fundamental innovation of our work is the use of SIMD technology in
 implementing parallel bit streams for XML, there are also important ways in which more
 traditional byte-oriented SIMD operations can be useful in accelerating other aspects of
 XML processing.
Name Lookup
Efficient symbol table mechanisms for looking up element and attribute names is
 important for almost all XML processing applications. It is also an important technique
 merely for assessing well-formedness of an XML document; rather than validating the
 character-by-character composition of each occurrence of an XML name as it is
 encountered, it is more efficient to validate all but the first occurrence by first
 determining whether the name already exists in a table of prevalidated names.
The first symbol table mechanism deployed in the Parabix parser simply used the
 hashmaps of the C++ standard template library, without deploying any SIMD technology.
 However, with the overhead of character validation, transcoding and parsing dramatically
 reduced by parallel bit stream technology, we found that symbol lookups then accounted
 for about half of the remaining execution time in a statistics gathering application
 [Cameron, Herdy and Lin 2008]. Thus, symbol table processing was identified as a major
 target for further performance improvement.
 Our first effort to improve symbol table performance was to employ the splash tables
 with cuckoo hashing as described by Ross [Ross 2006], using SIMD
 technology for parallel bucket processing. Although this technique did turn out to have
 the advantage of virtually constant-time performance even for very large vocabularies,
 it was not particularly helpful for the relatively small vocabularies typically found in
 XML document processing.
 However, a second approach has been found to be quite useful, taking advantage of
 parallel bit streams for cheap determination of symbol length. In essence, the length of
 a name can be determined very cheaply using a single bit scan operation. This then makes
 it possible to use length-sorted symbol table processing, as follows. First, the
 occurrences of all names are stored in arrays indexed by length. Then the length-sorted
 arrays may each be inserted into the symbol table in turn. The advantage of this is that
 a separate loop may be written for each length. Length sorting makes for very efficient
 name processing. For example hash value computations and name comparisons can be made by
 loading multibyte values and performing appropriate shifting and masking operations,
 without the need for a byte-at-a-time loop. In initial experiments, this length-sorting
 approach was found to reduce symbol lookup cost by a factor of two.
 Current research includes the application of SIMD technology to further enhance the
 performance of length-sorted lookup. We have identified a promising technique for
 parallel processing of multiple name occurrences using a parallel trie lookup technique.
 Given an array of occurrences of names of a particular length, the first one, two or
 four bytes of each name are gathered and stored in a linear array. SIMD techniques are
 then used to compare these prefixes with the possible prefixes for the current position
 within the trie. In general, a very small number of possibilities exist for each trie
 node, allowing for fast linear search through all possibilities. Typically, the
 parallelism is expected to exceed the number of possibilities to search through at each
 node. With length-sorting to separate the top-level trie into many small subtries, we
 expect only a single step of symbol lookup to be needed in most practical instances.
The gather step of this algorithm is actually a common technique in SIMD processing.
 Instruction set support for gather operations is a likely future direction for SIMD
 technology.

Numeric Processing
 Many XML applications involve numeric data fields as attribute values or element
 content. Although most current XML APIs uniformly return information to applications in
 the form of character strings, it is reasonable to consider direct API support for
 numeric conversions within a high-performance XML engine. With string to numeric
 conversion such a common need, why leave it to application programmers?
 High-performance string to numeric conversion using SIMD operations also can
 considerably outperform the byte-at-a-time loops that most application programmers or
 libraries might employ. A first step is reduction of ASCII bytes to corresponding
 decimal nybbles using a SIMD packing operation. Then an inductive doubling algorithm
 using SIMD operations may be employed. First, 16 sets of adjacent nybble values in the
 range 0-9 can be combined in just a few SIMD operations to 16 byte values in the range
 0-99. Then 8 sets of byte values may similarly be combined with further SIMD processing
 to produce doublebyte values in the range 0-9999. Further combination of doublebyte
 values into 32-bit integers and so on can also be performed using SIMD operations.
 Using appropriate gather operations to bring numeric strings into appropriate array
 structures, an XML engine could offer high-performance numeric conversion services to
 XML application programmers. We expect this to be an important direction for our future
 work, particularly in support of APIs that focus on direct conversion of XML data into
 business objects.

APIs and Parallel Bit Streams
The ILAX Streaming API
The In-Line API for XML (ILAX) is the base API provided with the Parabix parser. It
 is intended for low-level extensions compiled right into the engine, with minimum
 possible overhead. It is similar to streaming event-based APIs such as SAX, but
 implemented by inline substitution rather than using callbacks. In essence, an extension
 programmer provides method bodies for event-processing methods declared internal to the
 Parabix parsing engine, compiling the event processing code directly with the core code
 of the engine.
 Although ILAX can be used directly for application programming, its primary use is
 for implementing engine extensions that support higher-level APIs. For example, the
 implementation of C or C++ based streaming APIs based on the Expat [Expat] or general SAX models can be quite directly implemented. C/C++ DOM
 or other tree-based APIs can also be fairly directly implemented. However, delivering
 Parabix performance to Java-based XML applications is challenging due to the
 considerable overhead of crossing the Java Native Interface (JNI) boundary. This issue
 is addressed with the Array Set Model (ASM) concept discussed in the following section.
 With the recent development of parallel parsing using bitstream addition, it is
 likely that the underlying ILAX interface of Parabix will change. In essence, ILAX
 suffers the drawback of all event-based interfaces: they are fundamentally sequential in
 number. As research continues, we expect efficient parallel methods building on parallel
 bit stream foundations to move up the stack of XML processing requirements. Artificially
 imposing sequential processing is thus expected to constrain further advances in XML
 performance.

Efficient XML in Java Using Array Set Models
 In our GML-to-SVG case study, we identified the lack of high-performance XML
 processing solutions for Java to be of particular interest. Java byte code does not
 provide access to the SIMD capabilities of the underlying machine architecture. Java
 just-in-time compilers might be capable of using some SIMD facilities, but there is no
 real prospect of conventional compiler technology translating byte-at-a-time algorithms
 into parallel bit stream code. So the primary vehicle for delivering high-performance
 XML processing is to call native parallel bit stream code written in C through JNI
 capabilities.
However, each JNI call is expensive, so it is desirable to minimize the number of
 calls and get as much work done during each call as possible. This mitigates against
 direct implementation of streaming APIs in Java through one-to-one mappings to an
 underlying streaming API in C. Instead, we have concentrated on gathering information on
 the C side into data structures that can then be passed to the Java side. However, using
 either C pointer-based structures or C++ objects is problematic because these are
 difficult to interpret on the Java side and are not amenable to Java's automatic storage
 management system. Similarly, Java objects cannot be conveniently created on the C side.
 However, it is possible to transfer arrays of simple data values (bytes or integers)
 between C and Java, so that makes a reasonable focus for bulk data communication between
 C and Java.
Array Set Models are array-based representations of information
 representing an XML document in accord with XML InfoSet [XML Infoset] or
 other XML data models relevant to particular APIs. As well as providing a mechanism for
 efficient bulk data communication across the JNI boundary, ASMs potentially have a
 number of other benefits in high-performance XML processing. 	Prefetching. Commodity processors commonly support hardware and/or software
 prefetching to ensure that data is available in a processor cache when it is
 needed. In general, prefetching is most effective in conjunction with the
 continuous sequential memory access patterns associated with array
 processing.

	DMA. Some processing environments provide Direct Memory Access (DMA)
 controllers for block data movement in parallel with computation. For example,
 the Cell Broadband Engine uses DMA controllers to move the data to and from the
 local stores of the synergistic processing units. Arrays of contiguous data
 elements are well suited to bulk data movement using DMA.

	SIMD. Single Instruction Multiple Data (SIMD) capabilities of modern
 processor instruction sets allow simultaneous application of particular
 instructions to sets of elements from parallel arrays. For effective use of
 SIMD capabilities, an SoA (Structure of Arrays) model is preferrable to an AoS
 (Array of Structures) model.

	Multicore processors. Array-oriented processing can enable the effective
 distribution of work to the individual cores of a multicore system in two
 distinct ways. First, provided that sequential dependencies can be minimized or
 eliminated, large arrays can be divided into separate segments to be processed
 in parallel on each core. Second, pipeline parallelism can be used to implement
 efficient multipass processing with each pass consisting of a processing kernel
 with array-based input and array-based output.

	Streaming buffers for large XML documents. In the event that an XML document
 is larger than can be reasonably represented entirely within processor memory,
 a buffer-based streaming model can be applied to work through a document using
 sliding windows over arrays of elements stored in document order.

Saxon-B TinyTree Example
As a first example of the ASM concept, current work includes a proof-of-concept to
 deliver a high-performance replacement for building the TinyTree data structure used
 in Saxon-B 6.5.5, an open-source XSLT 2.0 processor written in Java [Saxon]. Although XSLT stylesheets may be cached for performance, the
 caching of source XML documents is typically not possible. A new TinyTree object to
 represent the XML source document is thus commonly constructed with each new query so
 that the overall performance of simple queries on large source XML documents is
 highly dependent on TinyTree build time. Indeed, in a study of Saxon-SA, the
 commercial version of Saxon, query time was shown to be dominated by TinyTree build
 time [Kay 2008]. Similar performance results are demonstrable for the
 Saxon-B XSLT processor as well.
 The Saxon-B processor studied is a pure Java solution, converting a SAX (Simple
 API for XML) event stream into the TinyTree Java object using the efficient Aelfred
 XML parser [Ælfred]. The TinyTree structure is itself an
 array-based structure mapping well suited to the ASM concept. It consists of six
 parallel arrays of integers indexed on node number and containing one entry for each
 node in the source document, with the exception of attribute and namespace nodes
 [Saxon]. Four of the arrays respectively provide node kind, name
 code, depth, and next sibling information for each node, while the two others are
 overloaded for different purposes based on node kind value. For example, in the
 context of a text node , one of the overloaded arrays holds the text buffer offset
 value whereas the other holds the text buffer length value. Attributes and namespaces
 are represented using similiar parallel array of values. The stored TinyTree values
 are primarily primitive Java types, however, object types such as Java Strings and
 Java StringBuffers are also used to hold attribute values and comment values
 respectively.
 In addition to the TinyTree object, Saxon-B maintains a NamePool object which
 represents a collection of XML name triplets. Each triplet is composed of a Namespace
 URI, a Namespace prefix and a local name and encoded as an integer value known as a
 namecode. Namecodes permit efficient name search and look-up using integer
 comparison. Namecodes may also be subsequently decoded to recover namespace and local
 name information.
 Using the Parabix ILAX interface, a high-performance reimplementation of TinyTree
 and NamePool data structures was built to compare with the Saxon-B implementation. In
 fact, two functionally equivalent versions of the ASM java class were constructed. An
 initial version was constructed based on a set of primitive Java arrays constructed
 and allocated in the Java heap space via JNI New<PrimitiveType>Array
 method call. In this version, the JVM garbage collector is aware of all memory
 allocated in the native code. However, in this approach, large array copy operations
 limited overall performance to approximately a 2X gain over the Saxon-B build time.
To further address the performance penalty imposed by copying large array values,
 a second version of the ASM Java object was constructed based on natively backed
 Direct Memory Byte Buffers [Hitchens 2002]. In this version the JVM garbage
 collector is unaware any native memory resources backing the Direct Memory Byte
 Buffers. Large JNI-based copy operations are avoided; however, system memory must be
 explicitly deallocated via a Java native method call. Using this approach, our
 preliminary results show an approximate total 2.5X gain over Saxon-B build time.

Compiler Technology
 An important focus of our recent work is on the development of compiler technology to
 automatically generate the low-level SIMD code necessary to implement bit stream processing
 given suitable high-level specifications. This has several potential benefits. First, it
 can eliminate the tedious and error-prone programming of bit stream operations in terms of
 register-at-a-time SIMD operations. Second, compilation technology can automatically employ
 a variety of performance improvement techniques that are difficult to apply manually. These
 include algorithms for instruction scheduling and register allocation as well as
 optimization techniques for common subexpression expression elimination and register
 rematerialization among others. Third, compiler technology makes it easier to make changes
 to the low-level code for reasons of perfective or adaptive maintenance.
Beyond these reasons, compiler technology also offers the opportunity for retargetting
 the generation of code to accommodate different processor architectures and API
 requirements. Strategies for efficient parallel bit stream code can vary considerably
 depending on processor resources such as the number of registers available, the particular
 instruction set architecture supported, the size of L1 and L2 data caches, the number of
 available cores and so on. Separate implementation of custom code for each processor
 architecture would thus be likely to be prohibitively expensive, prone to errors and
 inconsistencies and difficult to maintain. Using compilation technology, however, the idea
 would be to implement a variety of processor-specific back-ends all using a common front
 end based on parallel bit streams.
Character Class Compiler
The first compiler component that we have implemented is a character class compiler,
 capable of generation all the bit stream logic necessary to produce a set of lexical
 item streams each corresponding to some particular set of characters to be recognized.
 By taking advantage of common patterns between characters within classes, and special
 optimization logic for recognizing character-class ranges, our existing compiler is able
 to generate well-optimized code for complex sets of character classes involving numbers
 of special characters as well as characters within specific sets of ranges.

Regular Expression Compilation
Based on the character class compiler, we are currently investigating the
 construction of a regular expression compiler that can implement bit-stream based
 parallel regular-expression matching similar to that describe previously for parallel
 parsing by bistream addition. This compiler works with the assumption that bitstream
 regular-expression definitions are deterministic; no backtracking is permitted with the
 parallel bit stream representation. In XML applications, this compiler is primarily
 intended to enforce regular-expression constraints on string datatype specifications
 found in XML schema.

Unbounded Bit Stream Compilation
The Catalog of XML Bit Streams presented earlier consist of a set of abstract,
 unbounded bit streams, each in one-to-one correspondence with input bytes of a text
 file. Determining how these bit streams are implemented using fixed-width SIMD
 registers, and possibly processed in fixed-length buffers that represent some multiple
 of the register width is a source of considerable programming complexity. The general
 goal of our compilation strategy in this case is to allow operations to be programmed in
 terms of unbounded bit streams and then automatically reduced to efficient low-level
 code with the application of a systematic code generation strategy for handling block
 and buffer boundary crossing. This is work currently in progress.

Conclusion
Parallel bit stream technology offers the opportunity to dramatically speed up the core
 XML processing components used to implement virtually any XML API. Character validation and
 transcoding, whitespace processing, and parsing up to including the full validation of tag
 syntax can be handled fully in parallel using bit stream methods. Bit streams to mark the
 positions of all element names, attribute names and attribute values can also be produced,
 followed by fast bit scan operations to generate position and length values. Beyond bit
 streams, byte-oriented SIMD processing of names and numerals can also accelerate
 performance beyond sequential byte-at-a-time methods.
Advances in processor architecture are likely to further amplify the performance of
 parallel bit stream technology over traditional byte-at-a-time processing over the next
 decade. Improvements to SIMD register width, register complement and operation format can
 all result in further gains. New SIMD instruction set features such as inductive doubling
 support, parallel extract and deposit instructions, bit interleaving and scatter/gather
 capabilities should also result in significant speed-ups. Leveraging the intraregister
 parallelism of parallel bit stream technology within SIMD registers to take of intrachip
 parallelism on multicore processors should accelerate processing further.
Technology transfer using a patent-based open-source business model is a further goal of
 our work with a view to widespread deployment of parallel bit stream technology in XML
 processing stacks implementing a variety of APIs. The feasibility of substantial
 performance improvement in replacement of technology implementing existing APIs has been
 demonstrated even in complex software architectures involving delivery of performance
 benefits across the JNI boundary. We are seeking to accelerate these deployment efforts
 both through the development of compiler technology to reliably apply these methods to a
 variety of architectures as well as to identify interested collaborators using open-source
 or commercial models.

Acknowledgments
This work is supported in part by research grants and scholarships from the Natural
 Sciences and Engineering Research Council of Canada, the Mathematics of Information
 Technology and Complex Systems Network and the British Columbia Innovation Council.
We thank our colleague Dan Lin (Linda) for her work in high-performance symbol table
 processing.

Bibliography
[Leventhal and Lemoine 2009] Leventhal, Michael and
 Eric Lemoine 2009. The XML chip at 6 years. Proceedings of International Symposium on
 Processing XML Efficiently 2009, Montréal. doi:https://doi.org/10.4242/BalisageVol4.Leventhal01.
[Salz, Achilles and Maze 2009] Salz, Richard,
 Heather Achilles, and David Maze. 2009. Hardware and software trade-offs in the IBM
 DataPower XML XG4 processor card. Proceedings of International Symposium on Processing XML
 Efficiently 2009, Montréal. doi:https://doi.org/10.4242/BalisageVol4.Salz01.
[Cameron 2007] Cameron, Robert D. 2007. A Case Study
 in SIMD Text Processing with Parallel Bit Streams UTF-8 to UTF-16 Transcoding. Proceedings
 of 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming 2008, Salt
 Lake City, Utah. On the Web at http://research.ihost.com/ppopp08/. doi:https://doi.org/10.1145/1345206.1345222.
[Cameron, Herdy and Lin 2008] Cameron, Robert D.,
 Kenneth S Herdy, and Dan Lin. 2008. High Performance XML Parsing Using Parallel Bit Stream
 Technology. Proceedings of CASCON 2008. 13th ACM SIGPLAN Symposium on Principles and
 Practice of Parallel Programming 2008, Toronto. doi:https://doi.org/10.1145/1463788.1463811.
[Herdy, Burggraf and Cameron 2008] Herdy, Kenneth
 S., Robert D. Cameron and David S. Burggraf. 2008. High Performance GML to SVG
 Transformation for the Visual Presentation of Geographic Data in Web-Based Mapping Systems.
 Proceedings of SVG Open 6th International Conference on Scalable Vector Graphics,
 Nuremburg. On the Web at
 http://www.svgopen.org/2008/papers/74-HighPerformance_GML_to_SVG_Transformation_for_the_Visual_Presentation_of_Geographic_Data_in_WebBased_Mapping_Systems/.
[Ross 2006] Ross, Kenneth A. 2006. Efficient hash
 probes on modern processors. Proceedings of ICDE, 2006. ICDE 2006, Atlanta. On the Web at
 http://www1.cs.columbia.edu/~kar/pubsk/icde2007.pdf.
[Cameron and Lin 2009] Cameron, Robert D. and Dan
 Lin. 2009. Architectural Support for SWAR Text Processing with Parallel Bit Streams: The
 Inductive Doubling Principle. Proceedings of ASPLOS 2009, Washington, DC. doi:https://doi.org/10.1145/1508244.1508283.
[Wu et al. 2008] Wu, Yu, Qi Zhang, Zhiqiang Yu and
 Jianhui Li. 2008. A Hybrid Parallel Processing for XML Parsing and Schema Validation.
 Proceedings of Balisage 2008, Montréal. On the Web at
 http://www.balisage.net/Proceedings/vol1/html/Wu01/BalisageVol1-Wu01.html. doi:https://doi.org/10.4242/BalisageVol1.Wu01.
[Cameron 2008] u8u16 - A High-Speed UTF-8 to UTF-16
 Transcoder Using Parallel Bit Streams Technical Report 2007-18. 2007. School of Computing
 Science Simon Fraser University, June 21 2007.
[XML 1.0] Extensible Markup Language (XML) 1.0 (Fifth
 Edition) W3C Recommendation 26 November 2008. On the Web at
 http://www.w3.org/TR/REC-xml/.
[Unicode] The Unicode Consortium. 2009. On the Web at
 http://unicode.org/.
[Hilewitz and Lee 2006] Hilewitz, Y. and Ruby B. Lee.
 2006. Fast Bit Compression and Expansion with Parallel Extract and Parallel Deposit
 Instructions. Proceedings of the IEEE 17th International Conference on Application-Specific
 Systems, Architectures and Processors (ASAP), pp. 65-72, September 11-13, 2006. doi:https://doi.org/10.1109/ASAP.2006.33.
[XML Infoset] XML Information Set (Second Edition) W3C
 Recommendation 4 February 2004. On the Web at
 http://www.w3.org/TR/xml-infoset/.
[Saxon] SAXON The XSLT and XQuery Processor. On the Web
 at http://saxon.sourceforge.net/.
[Kay 2008] Kay, Michael Y. 2008. Ten Reasons Why Saxon
 XQuery is Fast, IEEE Data Engineering Bulletin, December 2008.
[Ælfred] The Ælfred XML Parser. On the Web at
 http://saxon.sourceforge.net/aelfred.html.
[Hitchens 2002] Hitchens, Ron. Java NIO. O'Reilly, 2002.
[Expat] The Expat XML Parser.
 http://expat.sourceforge.net/.

Balisage: The Markup Conference

Parallel Bit Stream Technology as a Foundation for XML Parsing Performance
Rob Cameron
Professor of Computing Science
Simon Fraser University

<cameron@cs.sfu.ca>
Dr. Rob Cameron is Professor and Director of Computing Science at Simon Fraser
 University. With a broad spectrum of research interests related to programming
 languages, software engineering and sociotechnical design of public computing
 infrastructure, he has recently been focusing on high performance text processing
 using parallel bit stream technology and its applications to XML. He is also a
 patentleft evangelist, advocating university-based technology transfer models
 dedicated to free use in open source.

Ken Herdy
Graduate Student, School of Computing Science
Simon Fraser University

<ksherdy@cs.sfu.ca>
 Ken Herdy completed an Advanced Diploma of Technology in Geographical Information
 Systems at the British Columbia Institute of Technology in 2003 and earned a Bachelor
 of Science in Computing Science with a Certificate in Spatial Information Systems at
 Simon Fraser University in 2005.
 Ken is currently pursuing graduate studies in Computing Science at Simon Fraser
 University with industrial scholarship support from the Natural Sciences and
 Engineering Research Council of Canada, the Mathematics of Information Technology and
 Complex Systems NCE, and the BC Innovation Council. His research focus is an analysis
 of the principal techniques that may be used to improve XML processing performance in
 the context of the Geography Markup Language (GML).

Ehsan Amiri
Graduate Student, School of Computing Science
Simon Fraser University

<eamiri@cs.sfu.ca>
Ehsan Amiri is a PhD student of Computer Science at Simon Fraser University.
 Before that he studied at Sharif University of Technology, Tehran, Iran. While his
 graduate research has been focused on theoretical problems like fingerprinting, Ehsan
 has worked on some software projects like development of a multi-node firewall as
 well. More recently he has been developing compiler technology for automatic
 generation of bit stream processing code.

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

