[image: Balisage logo]Balisage: The Markup Conference

XML in the Browser: the Next Decade
R. Alexander Milowski
Head Geek
Appolux, Inc

<alex.milowski@appolux.com>

Balisage: The Markup Conference 2009
August 11 - 14, 2009

Copyright © 2009 R. Alexander Milowski. Used by permission.

How to cite this paper
Milowski, R. Alexander. "XML in the Browser: the Next Decade." Presented at: Balisage: The Markup Conference 2009, Montréal, Canada, August 11 - 14, 2009. In Proceedings of Balisage: The Markup Conference 2009.
 Balisage Series on Markup Technologies vol. 3 (2009). https://doi.org/10.4242/BalisageVol3.Milowski01.

Abstract
At the 1999 XTech conference in San Jose, Netscape demonstrated
 their web browser natively rendering an XML document for the first time.
 It is now a decade later, browsers have changed, and there has possibly
 been forward progress. This paper briefly describes the demonstration
 from 1999 and then questions whether current browsers can or cannot
 handle what was demonstrated in 1999. It also details how new XML
 vocabularies can be integrated into the browser to provide a new way
 forward for XML in the browser.

Balisage: The Markup Conference

 XML in the Browser: the Next Decade

 Table of Contents

 	Title Page

 	"First Hand" XML History

 	The Status Quo

 	Browser Application Delivery
 	Intrinsic Vocabularies

 	The Core Intrinsic Vocabularies

 	Firefox Extensions for Non-Intrinsic Vocabularies

 	Mobile Applications

 	The Unified Application Model

 	The DAISY Book Example

 	A Peek Into the Future

 	About the Author

 XML in the Browser: the Next Decade

"First Hand" XML History
It was Thursday, March 11th and the last day of XTech 1999 in San
 Jose, California, just before lunch. We'd just heard a presentation from
 Microsoft about their vision for client and server XML and what we should
 expect in IE (Internet Explorer) 5. I and few of my colleagues were
 standing in the back, arms crossed, ready for the session to be over. The
 next presentation [apparao1999-1] was from Netscape
 about their new Gecko rendering engine and what came next was going to
 make our day.
The first six slides went through more technical information than
 most wanted about how it was all going to work together and on the seventh
 slide was a demo. The demo consisted of a simple XML document listing six
 books, their titles, authors, and ISBN numbers that had been rendered via
 CSS natively for the first time in a widely used, open-source, commercial
 web browser [apparao1999-2]. For some of us, that
 was delivery on the promise of rendering XML on the web and surprise to
 many in the room. It deserved and received a standing ovation.
The demo continued in that not only was the document able to be
 rendered, but Javascript was used to add semantics to a set of buttons
 that toggled the sort order (via title, author, or ISBN) and the style (as
 a simple list or boxes). The style changes were simply enabling and
 disabling of different CSS stylesheets with a dramatic effect on the
 document. This again deserved applause.
They could have stopped there with some success but there was more
 to be seen. A few slides later was a final demo that demonstrated
 client-side harvesting of information [apparao1999-3]. An IRS document in XML was presented
 that contained a small box with a button labeled "Contents" on the right.
 When this button was pressed, TOC items were harvested from the document
 and a collapsible table of contents was displayed on the left side of the
 document. When a TOC item was clicked, the document navigated to the
 item's location in the document. Unbeknownst to the users at the
 conference, this was accomplished via Simple XLinks [xlink] embedded in the TOC.
Elated and hungry we all went to lunch with "success" on our minds.
 We had just stood witness to the start of an avalanche, or so we thought,
 of delivery of XML content to users. We were no longer bound to the
 perceived limitations of HTML.

The Status Quo
Given the demos from 1999, the simple question is where are we today
 after a decade of "progress". Testing with IE 6, IE7, IE 8, Firefox,
 Safari, and Andriod's WebKit-based mobile browser, we get these
 results:
Table I
	Browser	Books Demo	TOC Demo
	Firefox 3.x	Yes	Yes
	Safari 4.x	Yes	Partial
	Andriod (WebKit)	Yes	Partial
	IE 6	No - Blank Page	No - Errors
	IE 7	No - Blank Page	No - Errors
	IE 8	No - Blank Page	No - Errors

The books demo uses CSS for rendering and Javascript via a
 "borrowed" HTML script element. The CSS is provided by three
 separate stylesheets. In the case of all the "recent" versions of IE, the
 browser fails to render the document and provides no indication of what
 failed. All the other browsers give a consistent rendering and user
 experience--including the loading and execution of the Javascript.
As for the TOC demo, since this demo uses XLink and only Firefox
 completely implements simple links, only Firefox can display this demo
 correctly. WebKit and all WebKit based browsers have some ability to
 detect simple links and provide the hover/click semantics for rendering
 display, but the show/replace semantics are not implemented. For this
 demo, all versions of IE have the same Javascript error related to
 unimplemented parts of the DOM level 2 specification [dom2].
Based on browser usage statistics [usage] and
 grouping all WebKit based browser together, we get a penetration of 32.74%
 of browsers that can render XML (excluding XLink handling) as of July 9th,
 2009. Given that IE fails for both demos and consists of around 65.5% on
 that same date, that leaves roughly 1.76% in an unknown state of whether
 they can render and manipulate XML documents. That's not a very good
 result for a decade of browser development--mainly due to IE's dominance
 and failures.
The question remains as to where the decade has gone. One large
 factor has been the stagnation of browser development due to the demise of
 Netscape and the resulting reluctance of Microsoft to really implement the
 W3C's recommendations. Only recently has the public--either general or
 developers--understood the need for conformance to these W3C
 recommendations and how failing to do so affects both the bottom line and
 the user's experience.
Nevertheless, the open source community has emerged strong with two
 viable contenders for core browser technology--Firefox [mozilla] and WebKit [webkit]. While
 readers are probably more familiar with Mozilla Firefox, the WebKit
 project is the core technology inside Safari, Chrome, the iPhone's web
 browser, and Andriod's web browser. Also, the WebKit project is both open
 source and supported by large companies such as Google and Apple.

Browser Application Delivery
Figure 1
[image:]
The Current Model of Application Delivery

Over the last decade the browser's intrinsic ability to handle
 deliver of complex applications based on some combination of HTML,
 Javascript (ECMAScript), and CSS has dramatically increased such that it
 is an economic force. Delivery of goods and services via browser based
 applications have become not only common but critical to a company's
 continued success. In addition, new kinds of services have been enabled by
 the flexibility provided by the browser as a semi-consistent network-based
 thin client.
This success has been driven by the fact that HTML, not XML, in
 conjunction with CSS and ECMAScript has been spiraling towards a
 consistent target platform--dragging Microsoft kicking and screaming along
 the way. The Application Provider is then responsible
 for bridging the gap between any Content Providers
 and the target application that will properly render and present their
 content intertwined with an application. Many creative and resourceful
 developers have found ways around browser quirks and lack-of-conformance
 issues to provide consistent toolkits for use by the application
 provider.
The result is the Web User receives the
 application and content intertwined as unrecognizable HTML from whatever
 source received from the Content Provider. The
 unfortunate consequence is that they cannot necessarily re-purpose the
 information they receive. For many this is not an issue but, depending on
 user's needs, such lack of information repurpose means they may not be
 able to even read or use the application due to accessibility or other
 human constraints. Further, the user may be unable to use augmentation
 tools--such as browser extensions--to extract additional information or
 enhance their user experience from the same lack of the original
 content.
Even with these restrictions, this model has been wildly successful
 and has delivered, on both the business and user sides, a web with some
 aspect of ubiquity. All of this is without much XML involved in the
 client-side delivery of content to the browser. XML has largely been
 hidden on the server-side of the application.
Intrinsic Vocabularies
Any markup that a web browser can natively process with some
 well-defined non-trivial semantic without the aid of additional
 constructs (e.g. stylesheets) we'll call an Intrinsic
 Vocabulary. By that definition, HTML is an intrinsic
 vocabulary. Notably, XML is not an intrinsic vocabulary as some
 semantics--at least via something like CSS--are needed to give the
 browser some instructions as what to do with a specific XML
 document.
An application provider can rely upon an intrinsic vocabulary to
 have some baseline semantic. They can still enhance the semantics by
 using additional augmentations such as a stylesheet or ECMAScript. In
 some cases, like SVG or MathML, while a stylesheet may enhance the
 rendering, the vocabulary itself is self-contained and the mere act of
 delivering the vocabulary invokes the intended result.
Given a sufficient set of intrinsic vocabularies for linking,
 diagramming, and specialized communications like Mathematics, an
 application developer can deliver content to the browser with some
 expected result and semantics for the user. In the case of domains like
 Mathematics, by having MathML as an intrinsic vocabulary, augmentation
 by tools or accessibility can be achieved by the simple fact that the
 markup is there instead of a representation (e.g like an image of the
 mathematics).
Unfortunately, the set of currently available intrinsic vocabularies
 is across the different browsers is limited to a subset of HTML
 4. MathML [mathml], SVG [svg], and
 other possible intrinsic vocabularies are limited to specific browsers
 and their implementations are incomplete.

The Core Intrinsic Vocabularies
There are many choices for core intrinsic vocabularies but it is
 clear that the likely near-term outcomes are the following:
	HTML5 - provides needed enhancements to
 HTML while providing a standard way of including other vocabularies
 like MathML or SVG and, at the same time, provides an option for an
 XML syntax.

	SVG - provides interactive diagrams that
 can be affected by stylesheets and/or ECMAScript much like
 HTML.

	MathML - provides essential content
 models for mathematical, scientific, or education content.

While HTML5 is currently under development, the promise of the
 ability to mix MathML and SVG into an HTML document is very powerful.
 Add to that the ability to deliver an HTML document in XML syntax
 without it being thought of as a separate vocabulary means we can
 utilize all the work that has gone into making XML
 internationalized.
Also, SVG has shown up recently in several browsers. The support
 for this essential vocabulary will certainly grow over time in the
 open-source community. Whether commercial browser vendors like Microsoft
 will support SVG is unknown.
Finally, MathML support is currently only native to Firefox. While
 MathML was the first XML vocabulary produced by the W3C in April 1998,
 only the Mozilla developers have chosen to integrate it into their
 browser--which is, unfortunately, an incomplete implementation. While
 Mathematics is a universal human language with a long history,
 intertwined into so many subjects, and involved in so many
 communications, MathML support has been largely ignored by browser
 vendors.
Nevertheless, what separates an intrinsic vocabulary from a
 non-intrinsic vocabulary is the ability to map from one to the other. A
 non-intrinsic vocabulary can be composed out of intrinsic vocabulary
 components via some kind of mapping. In contrast, an intrinsic
 vocabulary is difficult to implement correctly and efficiently. We need
 our browser vendors to build-in support for intrinsic vocabularies as
 the average developer cannot do so.

Firefox Extensions for Non-Intrinsic Vocabularies
Unlike many other desktop browsers, Firefox provides the ability
 to write "extensions" [extensions] in addition to
 "plugins". A plugin typically provides:
	the ability to handle a specific media type,

	the ability to render that media type via an HTML
 object element.

In contrast, Firefox has a very successful extensions model that
 provides augmentations to the browser. Extensions can provide what a plugin
 provides as well as add UI elements (menus, sidebars, etc.) and other
 internal components. These augmentations can be used in concert to
 provide a completely new experience for specific tasks or
 services.
An extension is installed by the user and always present, unlike
 plugins which are invoked as necessary by the browser to handle a
 specific media type. Accordingly, the user can add extensions that they
 rely upon for their "every day" experience when using the browser.
The user can find new extensions by visiting a registry provided
 by Mozilla. Within Firefox, a user can search and access an application
 registry (addons.mozilla.org) where developers have uploaded extensions.
 These extensions have been put through a basic approval process by which
 a user has a minimum level of confidence that the extension isn't
 malicious. Afterwards, the same services are used to allow the developer
 to upload and distribute updates to their extensions.
Figure 2
[image:]
Firefox Extensions

Somewhat unique to Firefox is the ability to register new internal
 components via an extension that can be used by other extensions or web
 pages. These components become part of the browser's ecosystem. As such,
 an extension developer can truly "extend" the basic core of the browser
 and add the ability to process new XML vocabularies.
Firefox's extension architecture enables a new application model
 for developing and deploying markup semantics. Previously, had we wanted
 to deliver XML content directly the browser, either it was one of the
 browser's intrinsic vocabularies or it was delegated to a plugin and
 accessible only as a standalone or via a HTML 'object' element. Within
 this new model, we can develop an extension to the browser that
 understands the XML media type and delegates to our own components using
 the browser's ecosystem and intrinsic capabilities to render the
 document.
With this architecture we can extend Firefox such that it can
 handle any XML vocabulary we choose to send to it as long as it can be
 uniquely identified either by namespace or media type (preferably by
 media type). The basic process by which the extension does this is by
 registering a media type handler component with Firefox's internal
 registry. This component is responsible for handling, parsing, and
 otherwise processing the XML data stream coming across any transport
 Firefox supports (e.g. files, http/https, ftp, etc.).
Since we have a non-intrinsic vocabulary, the extension can
 provide whatever internal semantics to translate, transform, other
 otherwise orchestrate the use of intrinsic vocabularies like HTML,
 MathML, SVG, etc. to render the document and provide user interface
 components to the browser user. From the perspective of the browser
 user, ultimately, the XML document received is just another tab in their
 browser window. From the perspective of the developer, the user
 interface provided can be much more rich in UI widgets, semantics, and
 privileges than what a typical HTML document provides. The end result is
 a merged view of the application and the document's rendering within the
 Firefox user interface.
Figure 3
[image:]
Firefox Extensions

Mobile Applications
Mobile applications as architected by Google for their Andriod OS
 and Apple for their iPhone OS are both remarkably similar to each other
 as well as similar, in a limited way, to Firefox extensions. A mobile
 application is essentially a program that runs on the mobile OS platform
 with access to certain system services. On both the Andriod and iPhone
 platforms, one of these system services is the ability to construct a
 web browser environment based on WebKit.
Much like Firefox's addon registry, the developer uploads the
 application to the "marketplace" where users can download it and add it
 to their mobile phone's environment. Unlike a Firefox browser extension,
 it isn't really merged into the browser and does not augment the general
 web browser's capability. Instead, it provides a separate launching icon
 where the user must go to initiate the application.
Figure 4
[image:]
Mobile Application Markets

Even given the limitations in augmenting the general web browser
 on these platforms, the mobile application can do remarkably similar
 things. Within the environment a developer can instantiate a browser
 instance, load content, and manipulate the browser's environment. To
 some extent, the mobile developer can mimic some of the Firefox browser
 extension environment by building their own application.
What a developer cannot do is change the browser's handling of
 media types. If a document is requested that uses some specialized XML
 vocabulary, it will get rendered using the same rules as if the user
 were using the platforms browser application. As such, the application
 developer needs to understand and control what is being given to the
 browser much more so than within Firefox.
In addition, once the application has rendered an XML document
 into some kind of HTML/Intrinsic vocabulary application being displayed
 by the WebKit instance, there are platform-specific limitations as to
 what kinds of interactions between the application and document can
 occur. This can be broken down further into these useful application
 categories:
	Affect Global Environment: Can the application provide global
 objects accessibly by any document loaded by the browser
 instance?

	Execute Inside: Can the application execute ECMAScript within
 the browser's document?

	Execute Outside: Can the document execute scripts or access
 objects within the application's environment?

Table II
	OS/Browser	Affect Global Environment	Execute Inside	Execute Outside
	Andriod/WebKit	Yes	No	Yes
	iPhone OS/WebKit	No	Yes	No
	Firefox	Yes	Yes	Yes

The result of this analysis is that Andriod applications cannot
 affect their documents once loaded but their documents can initiate a
 request causing such a change. As such, an Andriod application can work
 around this limitation by a few clever bootstrapping tricks where there
 is always an internal document which proxies subsequently loaded
 documents in an iframe.
Conversely, an iPhone OS application can affect their documents by
 executing scripts within their documents but the document cannot
 interact with the application and the application cannot affect the
 global environment in which the document exists. This severely limits a
 browser based application because the document cannot tell the
 application about an event unless the application regularly inquires
 about its status. Similarly, there is no ability to pass continuous data
 streams (e.g. Accelerometer events) to an application without constant
 execution of scripts.
Nevertheless, in both these mobile application platforms you can
 build an application that loads, intercepts, and understands XML
 vocabularies while utilizing the intrinsic abilities of the mobile
 browser to handle the rendering and UI semantics. The application has to do
 a lot more of the "heavy lifting" than in the case of a Firefox
 extension and it also cannot integrate quite seamlessly into the
 browser's internals.

The Unified Application Model
Common between Firefox extensions and applications on the iPhone
 or Andriod platforms is:
	an "application registry" or "store" where users can readily
 get new functionality,

	the use of the browser as a core application user interface
 component,

	the reliance on HTML and associated intrinsic capability of
 the browser for application functionality.

Unfortunately, in the case of both the mobile platforms, the
 browser's integration into the application is limited. While we can
 possibly write an application that interacts with our XML content, we
 can only do so within the confines of our application. The regular
 browser on the mobile platform remains ignorant of what to do with such
 XML content.
What we want is for the browser itself to be augmented to handle our
 media type so that the user experience inside and outside of any mobile
 or desktop application is the same. We don't want to duplicate the
 browser's architecture for handling transports, media types, and linking
 that it already does well. Instead, we want to augment the existing
 known media type handlers and insert a portion (if not all) of our
 application.
Figure 5
[image:]
Unified Model

A simplified scenario for how this works internally can be
 described as this sequence of events:
	A XML media type is recognized at the transport layer.

	The media type is associated with our embedded application's
 media type handler for that XML vocabulary.

	The XML data stream and metadata is transferred to our
 application component registered for that media type.

	From the XML content received, our embedded application
 component constructs user interface elements and/or web content
 documents in the browser's intrinsic vocabularies.

	The unified experience of our application facade and the web
 content documents are presented to the user.

The end result is the user's experience is much like that of any
 other HTML application they might use a browser to access. The
 difference is that over the transport they received the XML content
 rather than some single-purpose rendition of that content. As such, they
 can choose the embedded application appropriate to the experience that
 they desire.

The DAISY Book Example
The DAISY/NISO standard, ANSI/NISO Z39.86 [daisy3], commonly known as DAISY 3, is an e-book
 specification developed with accessibility for the visually disabled in
 mind. While the specification itself is not limited to only such special
 purpose software environments, the focus of development has been around
 the such special needs users. In the end, the e-book specification is a
 collection of XML vocabularies that work together to form a single
 e-book.
Figure 6
[image:]
A DAISY Book

The anatomy of a DAISY 3 book starts with a manifest document called
 a "OEB Package File". This XML document type was developed by the Open
 E-Book Forum/International Digital Publishing Forum [idpf] and provides a manifest of all the parts of the DAISY
 e-book. From such a manifest you can access:
	The DAISY DTBook XML instance which contains the e-book
 content,

	The DAISY NCX XML instance which contains navigation information
 about the e-book (e.g. table of contents),

	SMIL XML documents used to provide playback scripts for the
 e-book content,

	Any ancillary media objects used by the playback or book.

For a browser to open and display such an e-book, assuming we start
 with the OEB Packaging, the browser must first collect all the related
 parts and then decide what to render. The starting point of the packaging
 file gives the typical XML rendering very little to display. As such, just
 associating a CSS stylesheet or an XSLT transformation for rendering is
 insufficient.
Solving this requires a browser extension that understands the OEB
 Packaging file's media type, application/oebps-package+xml,
 and invokes a DAISY browser extension. This component is the responsible
 for locating the different documents linked by the manifest in the OEB
 Packaging document. The collection of document located is then used to
 assemble an appropriate UI within the browser.
Figure 7
[image:]
A DAISY Browser Extension

The DAISY NCX document is used to provide a navigation aid, such as
 a table of contents, to the user. This document has links into the DAISY
 DTBook instance, which is the e-book content. These documents are used to
 present the user with a browser tab with e-book content via some XSLT
 transformation.
The book itself can be "played" to the user via the linked SMIL
 documents. These XML documents describe how the content from the original
 DAISY DTBook instance should be sequenced. As such, care must be taken in
 the transformations to preserve the identity of content elements so the
 SMIL references will work. In the end, the user is presented with playback
 options that sequence the book's content.
The end result is the user "opens" a DAISY book just like they do any
 other web document. They just follow a link or type in a URL to a DAISY
 book's packaging document and read the content. They don't need to know
 that there is some more complicated processing going on behind the
 interface presented to them.
The crucial point here is that for accessibility, since DAISY was
 started as an e-book format for blind and otherwise visually disabled
 people and since the DTBook content is translated into an intrinsic
 vocabulary (HTML) that the browser already understands, the tools used by
 these people to read web documents still work. The vendors of such tools
 like screen readers do not need to add specialized support for the DAISY
 book reader because, to them, the user is just reading a regular HTML web
 document. The combination of standardized intrinsic vocabularies and
 widespread software supported by these vendors means that specialized
 software like the DAISY browser extension can "hide" in the background and
 allow the user the same experience they are used to when they browse the
 web.
This DAISY book extension has been implemented as a Firefox
 extension and is now open-source. It is available for download from
 launchpad.net [daisyextension].

A Peek Into the Future
Making predictions is certainly risky business. Many of us at that
 1999 XTech presentation thought we were at the start of the ability to
 deliver high quality XML content to users over the web and into their
 browsers. What we didn't understand was the complexity of the
 interactivity model being developed within HTML, the explosion of
 sufficiency from "regular HTML" based web applications, and the relative
 high complexity of delivering a true XML application to a client-side
 browser.
In 2009, we've found ourselves at another crossroad where high
 quality browser technology is now simultaneously scalable to the mobile
 platform and open-source as WebKit or Firefox. The promise of WebKit
 provides the unique ability to contribute to open-source efforts and
 bridge the gap between the ultimate flexibility of the Firefox Mozilla
 platform and the streamlined and compliant nature of WebKit. That is, we
 can make WebKit what we need simply by actively contributing or otherwise
 supporting its development.
In the past, we waited for the browser vendors to do "the right
 thing". Now we can make what we want to happen by embracing our
 open-source browser technologies and have them do "the right thing"
 because we implemented the code to do so. That's our choice: to contribute
 or let our ideas fail.
In the spirit of this, I present these challenges for the
 reader:
	We need intrinsic vocabularies and semantics we can rely upon.
 We must have HTML5, SVG, and MathML.

	We won't wait for "someone else" to develop our browser
 enhancements.

	We will embrace the idea of intrinsic vocabularies, like HTML,
 because such things take an inordinate amount of time to
 develop.

	We will replicate the browser extension model championed by
 Firefox because it enables direct delivery of XML vocabularies without
 obscene acts.

	We will support open-source and make it easy to use because it
 is our "big stick" we use to get what we want.

Commercial vendors of browser technologies need to catch up or perish.
 The drag that has been created by certain browsers not implementing the
 most basic of recommendations from the W3C has caused enormous delay as
 well as economic consequences. While it is the user who suffers, they also
 often have a choice and can choose one that works.
The ability to deliver XML content paired with applications directly
 to users has existed for quite awhile--but only in Firefox. That ability
 has been buried inside Firefox and delegated to the brave souls who want
 to dig through the source code. We need to bring that ability to the
 surface and make it easy to use.
Having only one browser that does "cool things" is not enough. We
 need to propagate the ability to extend a web browser by extending it at
 its core. We need the ability to do serious work along side other
 components inside the browser in addition to augmenting the user interface
 to add in our "gadgets". It is really our choice to propagate a new model
 based on this knowledge and experience for the next decade.

Bibliography
[apparao1999-1] V.
 Apparao .XML and Related Standards in
 Gecko - slides from XTech 1999 - http://www.mozilla.org/newlayout/xml/slides/slide1.xml.
[apparao1999-2] V.
 Apparao .Book Demo - from XTech 1999 -
 http://www.mozilla.org/newlayout/xml/books/books.xml.
[apparao1999-3] V.
 Apparao .TOC Demo - from XTech 1999 -
 http://www.mozilla.org/newlayout/xml/tocdemo/rights.xml.
[xlink] S. Derose, E. Maler,
 D. Orchard. XML Linking Language (XLink) Version
 1.0 - http://www.w3.org/TR/xlink/#simple-links.
[svg] J. Ferraiolo, 藤沢 淳, D. Jackson.
 Scalable Vector Graphics (SVG) 1.1
 Specification - http://www.w3.org/TR/SVG11/.
[mathml] D. Carlisle et al.
 Mathematical Markup Language (MathML) Version 2.0
 (Second Edition) - http://www.w3.org/TR/MathML2/.
[dom2] A. Le Hors et al. Document Object Model (DOM) Level 2 Core
 Specification - http://www.w3.org/TR/DOM-Level-2-Core/.
[usage] Wikipedia Usage share of web browsers - http://en.wikipedia.org/wiki/Usage_share_of_web_browsers.
[mozilla] Mozilla Firefox - http://www.mozilla.org/.
[webkit] WebKit - http://www.webkit.org/.
[extensions] Firefox Extensions
 - https://developer.mozilla.org/en/Extensions.
[daisy3] DAISY/NISO Standard,
 officially, the ANSI/NISO Z39.86, Specifications for the Digital Talking
 Book - http://www.niso.org/standards/resources/Z39-86-2005.html.
[idpf] International Digital Publishing Forum - http://www.idpf.org/.
[daisyextension] DAISY Firefox Extension - https://launchpad.net/daisyextension.

Balisage: The Markup Conference

XML in the Browser: the Next Decade
R. Milowski
Head Geek
Appolux, Inc

<alex.milowski@appolux.com>
Alex Milowski is a technologist, entrepreneur, developer, and
 mathematician who has worked on markup technologies and their use
 since 1990. Mr. Milowski is also an active and past participant on a
 number of different standards efforts at the W3C: he is currently a
 co-editor of XProc and has been involved in XSLT and XML Schema in
 the past.
Mr. Milowski is also an advocate of open source software and
 its use for accessible content. He's an avid Firefox extension
 developer--several of which are open source. He is currently working
 on contract for Benetech to produce a Firefox extension that is a
 DAISY e-book reader for the visually disabled.

Balisage: The Markup Conference

content/images/Milowski01-007.png
transport

application/osbps-packagesxmi handier

DAISY Browser Extension

Browser Tab with Rendered.
DTBook

content/images/Milowski01-006.png

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Milowski01-005.png
%

‘Application Provider

f.

Application Registry

Embodded Applcation

>

‘Content Provider

content/images/Milowski01-004.png
:

Application

Andriod Markt Place.

Application

s, . ¢)| P

content/images/Milowski01-003.png
User

Vocabulary Extension

Vocabulary Application

<\;

Rogistorod Modia

o

Varged

e

EEEL

= Transportand
S Ty
et

HIML * MathtiL +
SvG -

ENCAScrpt+ C38

Firefox nfrastructure

— U

content/images/Milowski01-002.png

content/images/Milowski01-001.png

