[image: Balisage logo]Balisage: The Markup Conference

A practical introduction to EXPath
Collaboratively Defining Open Standards for Portable XPath Extensions
Florent Georges
XML Architect
fgeorges.org

<fgeorges@fgeorges.org>

Balisage: The Markup Conference 2009
August 11 - 14, 2009

Copyright © 2009 Florent Georges. Used by permission.

How to cite this paper
Georges, Florent. "A practical introduction to EXPath." Presented at: Balisage: The Markup Conference 2009, Montréal, Canada, August 11 - 14, 2009. In Proceedings of Balisage: The Markup Conference 2009.
 Balisage Series on Markup Technologies vol. 3 (2009). https://doi.org/10.4242/BalisageVol3.Georges01.

Abstract
For some time now the demand for standardized extensions within the core XML
 technologies, especially XSLT and XQuery, has been increasing. A closer look at the
 EXSLT and EXQuery projects shows that their goals align to address the issue of
 extensions, but also that they overlap, predominantly because of their common ancestor:
 XPath. It is thus reasonable to assume that both projects should collaborate together on
 common areas influenced by the underlying XPath specification. In addition, by jointly
 working at the lower level, any XPath based language or processor could also benefit
 from this work, like XProc, XForms or plain XPath engines.

Balisage: The Markup Conference

 A practical introduction to EXPath

 Collaboratively Defining Open Standards for Portable XPath Extensions

 Table of Contents

 	Title Page

 	Introduction

 	The project

 	Two example modules

 	SOAP Web service client

 	Compound Document Template pattern

 	Google Contacts to ODF

 	Packaging

 	Conclusion

 	About the Author

 A practical introduction to EXPath
Collaboratively Defining Open Standards for Portable XPath Extensions

Introduction
XPath is a textual language to query XML content. Besides a very convenient way to
 navigate within an XML document through a path system, it provides the ability to make
 various kinds of computation, for example string manipulations or date and time processing.
 Such features are provided as functions, defined in a separate recommendation detailing a
 standard library. It is also possible to use additional defined functions; XSLT and XQuery
 allow one to define new functions directly in the stylesheet or query module. An XPath
 processor also usually provides implementation specific libraries of additional functions,
 as well as a way to augment the set of available functions, these are typically written
 using an API in the same language as the processor.
This leads to the concept of an extension function. Such a function is not defined by
 XPath, but inspired by XSLT this is defined as any function available in an expression
 although not defined in any recommendation. There are two major kinds of extension
 functions: those provided by the processor itself, and those written by the user. A
 processor can provide extensions to deal with database management for instance, and the
 user can implement any processing he could not write in XPath directly (for instance using
 a complex mathematical library available in Java.) Examples of possible useful extensions
 could provide support for performing HTTP requests, using WebDAV, reading and writing ZIP
 files (like EPUB eBook, Open XML and OpenDocument files,) parsing and serializing XML and
 HTML documents, executing XSLT transforms and XQuery queries, etc.
Extension functions are very powerful ways to extend XPath functionality. Many
 extensions have been written over the years and by many different people. Reflecting on
 this, it appears almost impossible to create and then share an extension function among
 several processors and to maintain interoperability with them all over time. Extension
 functions provided by processors themselves are not compatible, so that an expression that
 uses them is not portable between processors. It is that situation which has led to the
 creation of a project that would define libraries of extension functions unrelated to any
 single processor, allowing existing processors to choose to implement them natively, or
 allowing a user to install an existing implementation as an external package in their
 processor. In this way it becomes possible to use extension functions already defined and
 implemented, and if not more importantly, to write expressions that become portable across
 every processor that supports the extension or that an implementation was pre-provided
 for.
This project is EXPath!

The project
EXPath was launched four months ago in April 2009. It is divided into several modules,
 quite independent from each other. The module is the delivery unit of EXPath. It is a
 consistent set of functions providing support for a particular domain, and can be viewed as
 a specific library of functions. Besides the specification of the functions itself,
 implementations can also be provided for various processors. The first module that has been
 defined is the HTTP Client. It provides support to send HTTP requests and to handle the
 responses. This module defines one single function, how it represents a HTTP request and
 response as XML elements and how it can be used to perform requests. Implementations are
 provided as open source packages via the website for a number of processors - Saxon, eXist
 and MarkLogic.
If there is a need for new extension functions to address missing functionality, a new
 module may be proposed by anyone with the help of other people interested in supporting the
 same features. The first step in this process is to identify precise use cases for the
 desired features, and describe examples of use; this sets the scope of the module and sets
 us on the road to defining specifications. Of course the scope can evolve over time, as
 well as the use case examples, but this gives a formal basis for further discussion.
Once the use cases have been identified, function signatures and definitions of
 behaviour for the module must be proposed. That proposal is discussed among the community
 through the mailing list, and people interested in this module help to solve issues and
 improve its design. Extensions addressing the same problem might already exist, either as
 part of a known processor, or developed as independent individual projects; this is
 valuable material to learn from during this stage. In parallel with this definition, it is
 encouraged to develop at least one implementation to validate the feasibility of what is
 being specified. Before being officially endorsed as a module, at least two implementations
 should have been provided, to ensure that the specification is not too tightly linked to a
 particular processor.
Each module has its own maintainer who is responsible for editing the specification,
 leading the discussions and making design choices in according to those discussions.
 Similarly, every implementation of a module for a particular processor has its own
 maintainer. If someone needs the module to be implemented for another processor, they may
 volunteer for that work, and propose an implementation. A test suite for the module should
 be provided and carefully designed to ensure every implementation provides the same
 functionality. The vendor of a processor might also propose a native implementation of a
 module, in which case responsibility for the implementation and ensuring it meets the
 specification and tests lies with the vendor.
An interesting point about implementing a module is when a processor already provides a
 similar feature through processor-specific extension functions. It may then be sometimes
 possible to reuse the existing extensions through a lightweight wrapper exposing the EXPath
 interface to the user. For instance, the HTTP Client has been implemented for MarkLogic
 Server with an XQuery module using MarkLogic's own HTTP Client set of extension functions.
 This example also shows the limitations of this approach: the implementation is only
 partial, as the MarkLogic's extensions do not provide exactly all the possibilities
 required by the EXPath HTTP Client module. It is thus not always possible to use this
 technique to provide full conformance, but this is a convenient way to quickly provide a
 (possibly partial) implementation.
Needless to say, lots of work needs to be done, and everyone is welcome to help, at
 every level: writing specifications, writing documentation and tutorials, peer review,
 discussion, coding, testing or simply using the extensions and providing feedback.
But let's call it a day on the theory, and let's examine some real examples using two
 modules: the HTTP Client and ZIP modules.

Two example modules
Before going through the examples, here is a simple introduction to the modules. The
 HTTP Client module, without any surprise, provides the ability to send HTTP requests and
 handle the responses. The ZIP module provides ZIP files support, either to extract entries
 from them, add new entries, or update entries in existing ZIP files.
The HTTP Client provides one single function: http:send-request (actually
 it defines four different arities for this function, but this is mainly a convenient way to
 pass some values as separate parameters.) This function has been inspired by the
 corresponding XProc step, p:http-request. This function makes it possible to
 query REST services, Google services, Web services through SOAP, or simply to retrieve
 resources on the Web. The signature of this function (the one-parameter version) is:
http:send-request($request as element(http:request)) as item()+
Its parameter is an element representing the request. It is structured as in the
 following sample:
<http:request href="http://www.example.com/..." method="post">
 <http:header name="X-Header" value="some value"/>
 <http:header name="X-Other" value="other value"/>
 <http:body content-type="application/xml">
 <hello>World!</hello>
 </http:body>
</http:request>
The request will result in a HTTP POST, with Content-Type application/xml,
 sent to the specified URI and with a header explicitly set by the user (X-Header:
 some value.) The result is described with another element,
 http:response, that describes the response returned by the server:
<http:response status="200" message="OK">
 <http:header name="..." value="..."/>
 ...
 <http:body content-type="application/xml"/>
</http:request>
The structure of this element is not dissimilar to the request element, instead of the
 URI and HTTP method, it contains the status code and the message returned by the server.
 One significant difference as opposed to the request, lies in the way in which the response
 body is returned: the response body element (if any) is only a description of the body. The
 body content itself is returned as a subsequent item in the result sequence (or several
 items in case of a multipart response.) Let's analyse an example in XQuery:
http:send-request(
 <http:request href="http://www.balisage.net/" method="get"/>)
This simply sends a GET request to the web server of Balisage. The result of this
 function call is a sequence of two items: the http:result element and the body
 content as a document node (holding an XHTML document):
<http:response status="200" message="OK">
 <http:header name="Server" value="Apache/1.3.41 (Unix)"/>
 ...
 <http:body content-type="text/html"/>
</http:response>

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <title>Balisage: The Markup Conference</title>
 ...
It may sound strange to have a sequence as the result of the function, but this is the
 only way to provide the response description alongside the payload expressed as a full
 document node. This design choice prevents mixing different layers in the same document.
 The body content is analysed based on the content-type returned by the server. If the
 content type is of an XML type it is parsed and returned as a document node, if it is an
 HTML type it is tidied up, parsed and returned as a document node, if it is a textual type
 it is returned as a string, in any other case it is returned as a
 xs:base64Binary item. In the case of a multipart response this rule is
 applied to each part which is then returned as subsequent items after the
 http:response element.
The ZIP module defines the following functions to read the structure of a ZIP file, to
 create a completely new ZIP file from scratch, and to create a new ZIP file, based on an
 existing file by changing only some entries:
zip:entries($href) as element(zip:file)
zip:zip-file($zip as element(zip:file)) as empty-sequence()
zip:update-entries($zip, $output) as empty-sequence()
The first function takes a ZIP file's URI as parameter, and returns a description of its
 structure (its entries) as a zip:file element. This element looks like the
 following:
<zip:file href="some.zip">
 <zip:entry name="file.xml"/>
 <zip:entry name="index.html"/>
 <zip:dir name="dir">
 <zip:entry name="file.txt"/>
 </zip:dir>
</zip:file>
Only the structure is returned, not the whole content of each file entry. The function
 zip:zip-file() takes a similar element as parameter, and create a new ZIP
 file based on that content. The element is similar, but in addition it contains the content
 of each file entry, so that the function has all the needed information to actually create
 the whole file. For each zip:entry, the content of the element can be an XML
 document, a string, or binary encoded as a base 64 string (an attribute tells if the
 content has to be serialized as XML, HTML, text or binary.) An existing file can also be
 copied verbatim to the entry, by giving its URI instead of the actual content. An example
 of a zip:file element to pass to this function is:
<zip:file href="some.zip">
 <zip:entry name="file.xml" output="xml">
 <hello>World!</hello>
 </zip:entry>
 <zip:entry name="index.html" href="/some/file.html"/>
 <zip:dir name="dir">
 <zip:entry name="file.txt" output="text">
 Hello, world!
 </zip:entry>
 </zip:dir>
</zip:file>
The third function, zip:update-entries() looks a lot like
 zip:zip-file(), but it uses an existing ZIP file to create a new one,
 replacing the entries in the zip:file element in parameter. It then becomes
 possible to use a pattern file, replacing only a few entries, with content computed in this
 expression. To be complete, the module also provides 4 functions to read one specific entry
 from an existing ZIP file, for instance depending on the result of
 zip:entries(). They return either a document node, a string or a
 xs:base64Binary item, following the same rules as
 http:send-request():
zip:xml-entry($href, $entry) as document-node()
zip:html-entry($href, $entry) as document-node()
zip:text-entry($href, $entry) as xs:string
zip:binary-entry($href, $entry) as xs:base64Binary

SOAP Web service client
EXPath works at the XPath level. But XPath is never used standalone, it is always used
 from within a host language. Among the various languages providing support for XPath, XSLT
 and XQuery have a place of choice, by their close integration with XPath. We will thus use
 XQuery and XSLT to demonstrate complete examples of the functions introduced earlier.
 XQuery's ability to create elements directly within expressions allows for very concise
 examples that are easier to understand. However, where transforming XML trees is fully part
 of the example, XSLT is used instead.
The first sample consumes a SOAP Web service. The Web service takes as input an element
 with a country code and a city name. It returns an element with a corresponding place name
 and the local short term weather forecast. The format of the request and response elements
 is as follows:
<tns:weather-by-city-request>
 <tns:city>Montreal</tns:city>
 <tns:country>CA</tns:country>
</tns:weather-by-city-request>

<tns:weather-by-city-response>
 <tns:place>Montreal, CA</tns:place>
 <tns:detail>
 <tns:day>2009-08-13</tns:day>
 <tns:min-temp>16</tns:min-temp>
 <tns:max-temp>26</tns:max-temp>
 <tns:desc>Ideal temperature for a conference.</tns:desc>
 </tns:detail>
 <tns:detail>
 ...
</tns:weather-by-city-response>
Thus, the XQuery module has to send a SOAP request to the Web service HTTP endpoint,
 check any error conditions and then if everything went well, process the result content.
 These steps fit naturally into three different functions defined within the XQuery module.
 After a few declarations (importing the HTTP Client module, declaring namespaces and
 variables,) the three functions are defined and then composed together:
xquery version "1.0";

import module namespace http = "http://www.expath.org/mod/http-client";

declare namespace soap = "http://schemas.xmlsoap.org/soap/envelope/";
declare namespace tns = "http://www.webservicex.net";

declare variable $endpoint as xs:string
 := "http://www.webservicex.net/WeatherForecast.asmx";
declare variable $soap-action as xs:string
 := "http://www.webservicex.net/GetWeatherByPlaceName";

(: Send the message to the Web service.
 :)
declare function local:send-message()
 as item()+
{
 http:send-request(
 <http:request method="post" href="{ $endpoint }">
 <http:header name="SOAPAction" value="{ $soap-action }"/>
 <http:body content-type="text/xml">
 <soap:Envelope>
 <soap:Header/>
 <soap:Body>
 <tns:weather-by-city-request>
 <tns:city>Montreal</tns:city>
 <tns:country>CA</tns:country>
 </tns:weather-by-city-request>
 </soap:Body>
 </soap:Envelope>
 </http:body>
 </http:request>
)
};

(: Extract the SOAP payload from the HTTP response.
 : Perform some sanity checks.
 :)
declare function local:extract-payload($res as item()+)
 as element(tns:weather-by-city-response)
{
 let $status := xs:integer($res[1]/@status)
 let $weather := $res[2]/soap:Envelope/soap:Body/*
 return
 if ($status ne 200) then
 error(xs:QName('ERRSOAP001'),
 concat('HTTP error: ', $status, '-', $res[1]/@message))
 else if (empty($weather)) then
 error(xs:QName('ERRSOAP002'), "SOAP payload is empty?")
 else
 $weather
};

(: Format the Web service response to a textual list.
 :)
declare function local:format-result(
 $weather as element(tns:weather-by-city-response))
 as xs:string
{
 string-join((
 'Place: ', $weather/tns:place, '
',
 for $d in $weather/tns:detail return $d/concat(
 ' - ', tns:day, ':	', tns:min-temp, ' - ',
 tns:max-temp, ':	', tns:desc, '
'
)
),
 '')
};

(: The main query, orchestrating the request, extracting and
 : formating the response.
 :)
let $http-res := local:send-message()
let $payload := local:extract-payload($http-res)
 return
 local:format-result($payload)
If everything goes well, the result should look like the following:
Place: Montreal, CA
 - 2009-08-13: 16 - 26: Ideal temperature for a conference
 - 2009-08-14: 24 - 32: Enjoy holidays
 ...
This simple example shows a client call to a SOAP Web service. Given that such Web
 services are usually described by a WSDL service description, it is actually possible to
 automatically generate something like the previous example, but once for all operations
 described in the WSDL. This has been implemented in the WSDL Compiler, an XSLT stylesheet
 that transforms a WSDL file into an XSLT stylesheet or an XQuery module which can then be
 used as a library module. As each WSDL operation becomes a function, the XPath processor
 actually checks at compile time that the namespace URI, function name and parameters are
 correct. Here is the same example but using the module generated by this WSDL
 compiler:
(: The module generated by the WSDL compiler.
:)
import module namespace tns = "http://www.webservicex.net" at "weather.xq";

(: The main query call the Web service like a function, passing
 : directly its parameters and using its result.
 :)
local:format-result(
 tns:weather-by-city(
 <tns:weather-by-city-request>
 <tns:city>Montreal</tns:city>
 <tns:country>CA</tns:country>
 </tns:weather-by-city-request>
)
)
All the HTTP and SOAP details have been hidden, and calling the Web service looks
 exactly like using a library module. Technically speaking, this is the case: only that
 module uses the HTTP extension and has been generated from the WSDL file, so that it knows
 how to communicate with the Web service.

Compound Document Template pattern
This section introduces a new design pattern to generate compound documents based on the
 ZIP format, such as OpenDocument or Open XML, by using a template file. It is particularly
 well-suited to file generation based on transformations from data-oriented document to ODF
 for presentation purpose. Let us take a concrete example, transforming a simple contact
 list to an OpenDocument (ODF) text file (I use ODF as an example here, but the pattern
 could equally applied to other similar formats.) A typical transform of an input
 data-oriented document to an OpenDocument content.xml file can be represented
 by the following workflow (by which a contact list is transformed to ODF using XPath
 technologies, for instance an XSLT stylesheet):

 [image:]

The content.xml file is just one file in a whole ODF document. Such a
 document is actually a ZIP file, containing several XML files (the structure of the ZIP
 file in a manifest, the several styles used in other parts, the content...) among other
 files (for instance pictures in an OpenDocument Text file.) For instance, a typical ODF
 text document could have a structure like the following (if you open it as a ZIP
 file):
mimetype
content.xml
styles.xml
meta.xml
settings.xml
Thumbnails/
META-INF/
 manifest.xml
Pictures/
 d9e69.map.gif
 d9e80.map.gif
 d9e82.photo.png
So the above transformation requires some post-processing to create the ZIP file that
 bundles all those files into a proper ODF document. In addition, some files depend on the
 way content.xml is generated (for instance the style names it uses) even if
 they could be seen as static files. ODF is a comprehensive and quite complex specification,
 and it could rapidly become complicated to deal with all of its aspects while generating a
 simple text document. This pattern simplifies this by allowing one to create a template
 document using an application like Open Office. In this specific example, this is as simple
 as creating a table, with several columns, where each line is a contact. By using Open
 Office, we can set up all the layout visually, and create one single contact in the table.
 The transform will then extract content.xml from the template file, copy it
 identically except for the fake contact line that will be used as a template for each
 contact in the input contact list. Then the result is used to create a new ZIP file, based
 on the template file, where all entries are copied except content.xml, which
 is replaced by the result of the transform. The general diagram for this pattern is:

 [image:]

There are several possible variants: the transform could read some entries from the
 template file, or not; it can generate several different entries or just the main content
 file... But the important point is to be able to create and maintain the overall structure
 and the layout details from within end-user applications for one ZIP-and-XML based format,
 and then to be able to use this template and just fill in the blanks with actual data. Here
 is how the last step (creating a new ZIP file based on the template file by updating some
 entries) can be implemented in XSLT:
<xsl:param name="content" as="element(office:document-content)"/>

<xsl:variable name="desc" as="element(zip:file)">
 <zip:file href="template.odt">
 <zip:entry name="content.xml" output="xml">
 <xsl:sequence select="$content"/>
 </zip:entry>
 </zip:file>
</xsl:variable>

<xsl:sequence select="zip:update-entries($desc, 'result.odt')"/>
This ability to manipulate ZIP files opens up several possibilities with ODF.
 Spreadsheets or text documents could for instance be used directly from within XSLT
 stylesheets or XQuery modules as a natural human front-end for data input. But let us
 examine a simpler transformation from a contact list to a text document.

Google Contacts to ODF
Using the http:send-request() extension (introduced above) it is possible
 to access Google's Data REST Web services. It is even possible to write a library to
 encapsulate those API calls into our own reuseable functions. I have written such a library
 for XSLT 2.0, supporting the underlying Data Service, as well as various dedicated
 services, such as contacts and calendar (unfortunately, it is not published yet, but feel
 free to contact me in private, or through the EXPath mailing list if you are interested in
 obtaining a draft version.) Let's take for instance the Google Contacts API, and use
 the contact information it provides to create a contact book in ODF Text format. The
 contact book is a simple table with three columns: a picture of the contact if any, then
 its textual information (name, email, address, etc.) and finally a last column with a
 thumbnail of a Google Map of its neighbourhood:

 [image:]

By using the Compound Document Template pattern, it is possible to create this table
 directly in Open Office, by just creating one single row with a picture, a name in bold, an
 email address as a link, other textual info, and a map. Let's save the file in, for
 instance, template.odt. The transform contains three rather independent parts:
 retrieve info from Google, format them into a new content.xml document, then
 create a new result.odt file by updating content.xml and adding
 the picture files:

 [image:]

By using an intermediate document type for the contacts, we apply the
 separation of concerns principle to isolate the formatting itself,
 making it independent of the specific Google Contacts format. The get
 contacts and update zip modules use the same kind of
 code shown in previous sections to ask the Google servers on the one hand, and to read and
 update ZIP files on the other hand. The orchestration of those three modules is controlled
 by the main driver: google contacts.

Packaging
XPath and XSLT 1.0 recommendations are ten years old, and still there are very few
 libraries and applications distributed in XSLT. You can find looking around very valuable
 pieces of work written in XSLT like FunctX, XSLStyle, Schematron or of
 course DocBook, but the absence of a
 standardized way to install them tends to slow down their adoption. However, each time one
 has to go through the same process: figuring out the exposed URIs, creating a catalog
 mapping those URIs to the install location, checking whether there are dependencies to
 install, plug the catalog to the cataloging system of her processor or IDE (for each ot
 them,) etc. But there is no homogeneity in the way each project packages its resources and
 it documents the install process.
It would be nice though to be able to download a single file, to give that file to a
 processor to install it automatically, and to rely only on the public URIs associated to
 XSLT stylesheets, XQuery modules and XProc pipelines. Or with any library of functions,
 including extension functions. Where other languages define packages, core XML technologies
 use URIs. But the concept is the same, and we should only care about those URIs when
 developing, instead of constantly keeping trace of physical files, and installing them
 again and again on each machine we have to work on. Everything else than those public URIs
 should be hidden deep in the internals of a simple packaging system supported by most
 processors, IDEs and server environments.
There is not already a formal proposal for such a system, but the idea is quite
 well-defined, and there is even an implementation of a prototype for Saxon, supporting
 standard XSLT stylesheets and XQuery modules, as well as extension functions written in
 Java. I have successfully packaged projects like the DocBook XSLT stylesheets, the DITA
 Open Toolkit XSLT stylesheets, the XSLStyle stylesheets, or the FunctX library (for XSLT as
 for XQuery.) The principle is very simple: a graphical application helps you to manage a
 central repository where it installs the libraries, as well as generated XML Catalogs, and
 a shell script wrapper or Java helper class configure correctly Saxon, so you can still use
 Saxon from the command line or from within a Java program. You can then use the public
 import URI of the installed stylesheet to import the components it provides. This is also
 possible with extension functions, even though Saxon does not provide any (simple) way to
 link a URI to an extension function. The trick is to provide a wrapper stylesheet that uses
 the Saxon-specific URI to access extension functions in Java, while providing a wrapper
 function defined in the correct namespace for each exported function from Java:
<xsl:stylesheet xmlns:http="http://www.expath.org/mod/http-client"
 xmlns:http-java="java:org.expath.saxon.HttpClient"
 ...>

 <xsl:function name="http:send-request" as="item()+">
 <xsl:param name="request" as="element(http:request)?"/>
 <xsl:sequence select="http-java:send-request($request)"/>
 </xsl:function>

 ...
On the other hand, the stylesheet using the extension function does not rely on any
 detail of its implementation. It uses a public absolute URI to import the library and the
 namespace defined in the specification instead of the Java-bound namespace:
<xsl:stylesheet xmlns:http="http://www.expath.org/mod/http-client" ...>

 <xsl:import href="http://www.expath.org/mod/http-client.xsl"/>

 <xsl:template match="/">
 <xsl:sequence select="http:send-request(...)"/>
 ...
Here is how the different pieces fit together:

 [image:]

The admin GUI is used to manage the repository (you can use it from the command line
 too.) It can install, remove and rename packages. Once installed, everything needed by a
 module resides in that repository (you can have several repositories, for different
 purposes or projects,) like stylesheets and queries, XML catalogs and JAR files for
 extension functions. The shell script is used to execute Saxon from the command line, while
 the Java helper class is used from within Java programs, for instance in a web application.
 Both do configure Saxon with the appropriate resolvers to locate properly the modules in
 the repository. For instance, you can add the following line to your project's Makefile in
 order to generate the documentation with XSLStyle:
> saxon -xsl:urn:isbn:978-1-894049:xslstyle:xslstyle-dita.xsl -s:my.xsl
This is an interesting example as XSLStyle relies on DocBook or DITA (or both.) Let us
 examine how I packaged XSLStyle. The original distribution includes a private copy of both
 DocBook and DITA. This is a bad practice in software engineering, but one has no other
 choice as long as there is no packaging system out there. The first step is thus to remove
 those external libraries, and package them separately. Then we have to define a public URI
 to allow other stylesheets to import the stylesheets provided by this package. This URI
 does not have to point to an actual resource; this is a logical identifier. Following Ken's
 advice, I chose urn:isbn:978-1-894049:xslstyle:xslstyle-dita.xsl, and a
 similar one for the DocBook version. The same way, because we removed the private copies of
 DocBook and DITA, we have to change the XSLStyle stylesheet accordingly, to use public URIs
 in their import instructions. As long as the package for DocBook or for DITA are installed,
 Saxon will find them through the packaging system, by their public URIs.
Furthermore, because Saxon is a standalone processor and can be invoked from the command
 line directly by humans, the shell script allows you to use symbolic names in addition to
 URIs. URIs are convenient from within program pieces like stylesheets and queries, but are
 not well-suited to human beings. Depending on how exactly you installed and configured the
 package, the above example can be rewritten as:
> saxon --xsl=xslstyle-dita -s:my.xsl
This prototype has been implemented only for Saxon so far, but the concept of a central
 repository is particularly well-suited for XML databases as well, like eXist or MarkLogic,
 as they already own a private space on the filesystem to save and organize their components
 and user data. And because the resolving mechanism is built on top of XML Catalogs, any
 serious XML tool or environment (like oXygen) can be configured to share the same
 repository. If this packaging system becomes widely used to deliver libraries and
 applications, we can even think about a central website listing all existing packages,
 allowing for automatic package management over the Internet. Like the APT system for
 Debian, CTAN for TeX or CPAN for Perl. The later inspired in fact the concept and the name
 of CXAN for such a system, thanks to Jim Fuller and Mohamed Zergaoui, which stands for
 Comprehensive X* Archive Network (replace X* with your preferred core XML
 technology.)

Conclusion
EXPath has just been launched, right after XML Prague 2009, and yet there are very
 valuable modules. The most exiting of them being maybe the packaging system. Besides other
 modules defined as function libraries, this system is a good example of a module that is
 not a library, but rather a tool or a framework which various core XML technologies could
 benefit from. Other ideas include nested sequences, useful to define and manipulate complex
 data structures, first-class function items, to define higher-order functions, XML and HTML
 parsers, or filesystem access. Another module under investigation aims to define an
 abstract web container and the way a piece of X* code can plug itself into this container
 to be evaluated when it receives requests from clients, as well as the communication means
 between the container and the user code. Something similar to Java EE's servlets. For now,
 there is no abstract description of the services provided by an X* server environment, like
 an XML database. Given such a description of an abstract container, third-party frameworks
 could be written in an implementation-independent way, like web MVC frameworks and
 frameworks for XRX applications.
That gives me the opportunity to introduce three sibling extension projects: EXQuery,
 EXSLT 2.0 and EXProc. Without any surprise, their goal is to define extensions to
 respectively XQuery, XSLT 2.0 and XProc. Each of those projects is complementary with
 EXPath, which has been created in the first place to avoid having to specify several times
 the same features, in an non-compatible way.
There is a bunch of work to define new extensions, to write their specifications, to
 implement and test them, to document them. Everyone is welcome to help on the project (and
 I am sure on the other EX* projects.) Just use the extensions and give us feedback on the
 mailing list: http://www.expath.org/.
See you soon!

Balisage: The Markup Conference

A practical introduction to EXPath
Collaboratively Defining Open Standards for Portable XPath Extensions
Florent Georges
XML Architect
fgeorges.org

<fgeorges@fgeorges.org>
Florent Georges is a freelance IT consultant in Brussels who has been involved in
 the XML world for 10 years, especially within the XSLT and XQuery communities. His
 main interests are in the field of XSLT and XQuery extensions and libraries,
 packaging, unit and functional testing, and portability between several processors.
 Since the beginning of 2009, he has worked on EXPath, to define "standard" extension
 function libraries that can be used in XPath (so in XSLT, XQuery and XProc as
 well).

Balisage: The Markup Conference

content/images/Georges01-004.png
<contacts> content.xml

<contact>

+ pictures

template.odt
(ip)
\/

result.odt
(ip)

google
contacts

e import

<«—— data flow

content/images/Georges01-005.png
Packages

Repository
(with catalogs)

& [
Shell Java
script helper

Saxon +
resolvers

content/images/Georges01-002.png
<contacts>
<contact>

)

content.xml

template.odt
(ip)
L

result.odt
(ip)
\/

content/images/Georges01-003.png
Contacts

Photo Name

Michael Kay
Saxonica
mike@saxonica.com
Reading, UK

Group: XSL List o

fe [8ina 2000 Teo A

Florent Georges

fgeorges.test ail.com Saint-Giles.
rue de Savoie 73 7 AR

1060 Brussels
Foveniger/ — o
Gorgle ap st 2008 mj

Jirka Kosek

jirka@kosek.cz
Groups: XML Prague, XSL List

Jim Fuller
FlameDigital Ltd.

e e Narvrmlnracie oo

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Georges01-001.png
<contacts>
<contact>

format

content.xml

