[image: Balisage logo]Balisage: The Markup Conference

The Open Security Controls Assessment Language (OSCAL): schema and
 metaschema
Wendell Piez
National Institute of Standards and Technologies / Information Technology
 Laboratory

Balisage: The Markup Conference 2019
July 30 - August 2, 2019

Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States.

How to cite this paper
Piez, Wendell. "The Open Security Controls Assessment Language (OSCAL): schema and
 metaschema." Presented at: Balisage: The Markup Conference 2019, Washington, DC, July 30 - August 2, 2019. In Proceedings of Balisage: The Markup Conference 2019.
 Balisage Series on Markup Technologies vol. 23 (2019). https://doi.org/10.4242/BalisageVol23.Piez01.

Abstract
The Information Technology Lab at NIST is developing prototype
 formats for machine-readable documentation related to systems security.
 The Open Security Controls Assessment Language (OSCAL) defines
 lightweight schemas, along with related infrastructure, for tagging
 system security information to support routine tasks like crosschecking,
 validating against arbitrary constraints, and producing punchlists.
 OSCAL is not conceived as “another big XML application” but as a
 metaschema. This approach allows us to simplify the design and
 maintenance of schemas and related tooling; support generation of
 documentation; produce multiple parallel schemas for XML, JSON, and
 YAML; and construct conversion tools more easily. Documents and tools
 leverage basic HTML, or even Markdown, for simplicity even though it
 limits the expressiveness of what can be directly imported. Conversion
 is simplified by the metaschema approach, even when multiple schemas
 apply to a single set of information. We hope that these simplifications
 will lead to more useful documents.

Balisage: The Markup Conference

 The Open Security Controls Assessment Language (OSCAL): schema and
 metaschema

 Table of Contents

 	Title Page

 	Challenges of the systems security domain
 	Salient features of the domain
 	1. Impermeable system boundaries – mostly

 	2. Asymmetric power relations

 	3. Impeded network effects

 	4. Multipolarity

 	Things we do not control

 	The limiting factor of available attention

 	An abstract generic approach
 	Emulating success

 	Limits of the familiar

 	From schema to metaschema
 	What is a metaschema

 	The OSCAL Metaschema
 	Features of OSCAL Metaschema

 	The OSCALizable subset of XML

 	JSON Alignment

 	More tools

 	OSCAL, XML and the SAND trap
 	XML for SANDs

 	One document, many schemas

 	The Rule of Least Power: designing security in

 	Acknowledgements

 	Appendix A. An example JATSish Metaschema

 	About the Author

 The Open Security Controls Assessment Language (OSCAL): schema and
 metaschema

Challenges of the systems security domain
Note
Disclaimer: The opinions expressed in this article are the author's
 own and do not necessarily represent the views of the National Institute
 of Standards and Technology.

This view can be extended to all of problem solving – solving a
 problem simply means representing it so as to make the solution
 transparent.
— [Herbert Simon paraphrasing Saul
 Amarel]

While it may be useful for markup practitioners to be aware of the
 Open Security Controls Assessment Language (OSCAL) under development at
 NIST (the National Institute of Standards and Technology) as an initiative
 directed at a certain set of vexing problems in information exchange
 within a particular domain – what may be more interesting is our work
 providing an infrastructure for OSCAL's ongoing development. As so often
 in systems design, we find the solution to the hard problems at one level,
 is solving a simpler set of problems at a lower level. In this case, the
 lower level represents all the foundational work designing and maintaining
 schemas, syntax, and constraint sets for a data format. This is a common
 challenge for information modelers and tag set developers. But it is
 impossible to understand why we are approaching this work at this level
 without understanding something about the peculiarities of the systems we
 need to support. The world of systems security
 documentation is complex and presents more to learn than an
 individual can master in a few weeks. Indeed the fact that there is so
 much to know about it, is what makes it a distinct domain.
What sorts of inhabitants populate this world? Systems security
 entails analysis, planning, implementation, assessment, authorization and
 monitoring. All of these activities will be reflected, often, in
 documentation. This documentation is both complex in itself, and also
 presents a requirement to be related – and traceable in its relation – to
 other documents. This information is highly granular hypertext in every
 meaningful sense of the word, albeit produced for the (laser-) printed
 page as well as for the screen and automation tool. A security plan may
 need to cite, in detail, a policy or strategy document on which it is
 based, or a set of them. An assessment plan for a system must aggregate
 and integrate information from plans already written for its components.
 The assessment itself must be able to demonstrate the validity of its
 assertions in view of a configuration. In fact and in principle, in an IT
 system, many of the cross checks we promise can be automated. These
 relations can be choreographed (databases can and have been designed
 around such information flows), and such a choreography may support the
 work. While the work depends on this choreography, it stands and falls on
 its own: a successful design for systems security documentation by no
 means ensures a success in systems security – while a bad design puts at
 risk the security it is intended to support. At least according to one
 analysis, the world of systems security and its documentation needs an
 interchange format very badly. But a badly designed format could be worse
 than no format at all.
Salient features of the domain
If you are acquainted with names or acronyms such as Special
 Publication (SP) 800-53, SP 800-171, FedRAMP (Federal Risk and
 Authorization Management Program), FIPS (Federal Information Processing
 Standards) or ISO/IEC 27001[1] – or labels such as AC-1 (Access Control Policy and
 Procedures) or SI-8 (Spam Protection) – you are probably a specialist in
 IT systems security and policy. The complexity of the information sets
 you work with, and the complexity of their relations, both explicit and
 implicit, is not breaking news. Readers who are not IT security
 specialists may be able to appreciate this complexity by analogy to
 other domains, with similar requirements for information management at
 multiple levels of granularity, across organizational boundaries: the
 general rule is always that things are more complicated and more nuanced
 than one might first assume. There are rules, and there are exceptions.
 And there are rules about the exceptions and exceptions to those. At a
 superficial material level, things are familiar. A word processor is
 still a word processor, and a spreadsheet application is still a
 spreadsheet; well structured data is still well structured, and
 narrative or discursive information – natural (written)
 language composed and arranged into coherent and interlocking,
 articulated assemblies, with named parts, but also order among the parts
 – presents similar challenges for modeling as it does in other fields.
 But there are some things about the terrain or topography of this
 particular problem space, that must be understood and respected. None of
 the characteristics described here are unique to systems
 security.
1. Impermeable system boundaries – mostly
The working assumption of a language designer must be that if
 communication channels are open, communication will happen. And while
 it is perhaps fair to think that this is the normal and desired state
 inside the system, this does not extend beyond the system boundaries.
 (That's why it's a boundary.) One system should not be able to read
 what another one is saying in confidence to someone else, or to
 itself, or "confidence" becomes meaningless.
Yet there are also times when communication must happen across the
 boundaries as well, because there are important things to be discussed
 (if only because it helps if the border guards talk to one another).
 The need for qualified and mitigated
 opacity to the outside, even while we have transparency
 within, is the first significant design problem, and practical
 barrier, we face. (So our hardest problem in data modeling has been to
 acquire real-world examples.) Even when an organization is willing to
 share its security planning data, its policies and protocols already –
 and for good reason – may prevent it from doing so, even with those
 who might be in a position to help it. So the need for security
 hinders the exploration of how to achieve better security. This is a
 difficult barrier to break down, and it should be: radical and
 universal transparency is not our goal. Instead, we seek to make this
 barrier more permeable and flexible, a choice and something to be
 managed rather than a simple hindrance.
XML (Extensible Markup Language), in particular, has roots in the
 idea of open data. (Nor is JSON (Javascript Object Notation) any
 stranger to the idea, of course.) And its use and fitness for domains
 in which there is every advantage to openness, and no advantage to
 opacity as such, is well established. It might seem a paradox that
 openness turns out to be what we need also in systems that are
 designed not to communicate with one another, except when they must do
 so seamlessly and with great fidelity to intention. We
 focus on those moments of seamless communication. But we must not
 forget, that the default setting is and should be not to share.

2. Asymmetric power relations
The paradox is confounded because one of the conversations that
 must take place is the conversation about system security itself.
 Organizations cooperating with each other – perhaps they are buying
 software or contracting with people – may have legitimate interest in
 one another's internals. And even more than in other domains, these
 conversations are frequently asymmetric: for example, a software
 vendor seeking authorization to operate (ATO) in a government agency.
 At least from a business development point of view, a security plan
 proposed by a software vendor, integrator, or service provider may be
 the most important piece of documentation they write all year. To the
 receiving agency, it is only one of dozens.
This kind of imbalance is not unusual. In other industries, such
 disparities are managed by finding new ways to distribute and for
 sharing expertise across organizational boundaries. Possibly a service
 or consulting sector emerges to mediate. For example, a small
 scientific research publisher who cannot become expert in JATS – which
 it must produce in order to be able to submit work to PMC (Pubmed
 Central), as mandated – can find a conversion vendor who already has
 the expertise. Such a vendor plays an important role as a node in a
 system of discrete connection. Nonetheless, economies of scale tend to
 favor the big players over the small, who cannot afford to outsource,
 with the effect of magnifying the imbalances in power and capabilities
 noted above. The large have the advantage of having the margins to
 invest in these activities. The largest have the advantage of
 resources of their own to bring to bear.
We think that a solution – or, possibly more realistically, a
 development conducive to a mix of solutions – to our problems in
 information exchange supporting systems security – public and private
 – will need to acknowledge this tendency, again considering it to be
 neither a good thing in itself, nor a bad thing. Asymmetry may in
 general favor either the large or the small. What is tricky is to
 bring everyone forward together. This means looking after the
 interests of organizations of all sizes, operating legitimately – and
 it means being an honest broker. Trying to participate as both a
 player, and a referee, leads to trouble. So we seek to define the
 rules of a game that players of all sizes, playing together, can
 referee themselves.

3. Impeded network effects
The two aforementioned characteristics combine together to impede
 the benefits of network effects. Because not all potential partners
 can be assumed trustworthy, the assumption must be that system
 boundaries should be impermeable unless there is a reason for
 communication to happen. (See salient feature #1.) If they are not
 impermeable because communications are mutually unintelligible, they
 can be made impermeable by erecting screens and barriers. And since
 big movers have large influence (see #2), the network itself shows a
 tendency to become irregular – not all nodes can be connected easily
 with other nodes – or even to decompose into smaller networks with few
 connections between them.
This has the effect of hindering the network effects that are
 sometimes promoted as one of the most compelling benefits to a
 standard basis for interchange. (See for example Michael
 Sperberg-McQueen's reflection on this idea in his 2002 closing keynote
 to the predecessor conference of this one, [cmsmcq-2002].) In theory, when all nodes in a network can communicate with all
 other nodes, the addition of each node adds to the network the value
 of all its new connections, which is to say, the number of all nodes
 so far. Effectively this results in n-squared scaling of value. But if
 each new node can communicate not with all others, but only with one,
 the new value to the network is only the value of the single node's
 connection, while the cost is the same. Between these extremes is a
 not-fully-connected (or connectable) network.
Then too, the fact that the default position tends to be
 closed not open means that the costs
 and benefits of developing a shared medium or infrastructure are not
 shared equally or across an entire community of users. An open
 communications channel is only useful to those who can find a way to
 be open. Part of the high price we pay for being closed, is the
 opportunity cost – what we cannot have because we cannot share.
As an early reader has pointed out, this is especially the case in
 the systems security domain, where networks become fragmented at many
 levels. There is a communications gap between regimes conformant to SP
 800-53, and those conformant to ISO 27001. Likewise there is a gap
 wider than a hallway between us XML developers and the web developer
 in the neighboring cubicle.

4. Multipolarity
This also means there is not one center either. A cloud
 environment is one with a kind of fractal regular-irregularity, in
 which our customers, partners, sources, suppliers and service
 providers come in every shape and size imaginable; and this very much
 depends on who we are. Similarly, across the domain, there is a
 proliferation of relevant standards and specifications – and here, we
 should be thinking not only about technical standards enabling
 information interchange, and not even of policy documents more
 broadly, but of the information itself that is
 to be shared, which to a significant extent consists of
 documents describing, referencing and including
 standards and specifications. This
 proliferation and variation – which indeed is not to be solved by
 better interchange standards of whatever sort, but encouraged by it –
 reflects both the complexity of the domain, and the complexity of
 governance within it. Each governing body that promulgates standards
 or best practices, from formal SDOs (Standards Development
 Organizations) through to informal initiatives of communities, seeks
 to answer a different though overlapping set of requirements for a
 different – though overlapping – set of problems, kinds of data, even
 data instances. And an organization that seeks to develop and document
 its systems security, must often conform or comply to more than one of
 these different regimes. Not having the choice of one or another, if
 and as they are mandated, organizations must develop hybrid and
 synthetic, comprehensive policies, and articulate these for its
 partners and stakeholders. At the same time, systems security is both
 a reality, if never absolute or static, and a representation, inasmuch
 as it is typically attested and demonstrated with documentation
 describing states of affairs both actual and aspirational. Such
 documentation could be standardized with significant benefits, both in
 terms of getting better quality with less effort, and in the
 usefulness of the information we produce, leveraging it in new ways.
 Yet at the same time we are aware that security will not be improved
 by the blind adoption of any technology.
Is it a problem to work and function in a world where any one
 agent has many partners and even, in some senses, many masters? Not
 necessarily – though it inevitably poses challenges. The question
 might be not only, how broadly shared are the means, but also, how
 broadly shared is the initiative? And can we see to it that
 responsible players at all levels of scale are able to take meaningful
 initiative. Assuming it is not possible (or desirable at the cost of
 having it) for the means and resources to be shared equally (see
 asymmetry above), this does not mean we need to consider either
 freedom or capacity (for security-related activity or
 any other) as a fixed, finite resource, that we are unable to
 cultivate usefully at every level of scale. Other imbalances might
 matter less if both large and small have freedom to act for
 themselves.

Things we do not control
The scaling model for any development of a non-proprietary standard
 or shared technology includes adopters who are relied on to make the
 technology work for themselves. This is only one of many factors that
 are effectively externalities that we do not control – even while this
 project is trying to provide advantages of exactly such a (positive)
 externality to them, in the form of a robust standard, we rely on them
 in turn to take advantage of it – to make it an actual standard, not
 merely a proposal for one. Another factor is the availability of
 alternatives (technologies or approaches) in an open market, whether and
 how we work with those.
It must be kept in mind how the IT systems security domain is
 already technologically mature. Even given the evident need for their
 work, and despite and because of widespread obliviousness, apathy and
 (understandable) anxiety regarding the topic among those they work with,
 security professionals know what job they have to do, and what means are
 at hand for doing it. This is their focus, and indeed they will resist
 us technologists as long as our approach is to try taking away (even to
 improve) those means, for the simple (if paradoxical)
 reason that those means are not ends in themselves (documenting security
 is not the same as having it) – while at the same time, the tools we
 know have come to be fairly reliable and dependable, for all their
 flaws, while a new approach remains untested. The problem is familiar
 enough to give rise to clichés: the chicken/egg problem, or replacing
 the engine while the ship is underway, etc. In offering OSCAL, we do not
 control the workflow within which information processing and exchange
 takes place. Most important, we do not control the data acquisition
 model: where does the data come from and how does it get into the form
 we need for it. We do not fail to take note how successful
 open-technology alternatives for text encoding working in vertical
 domains (including XML vocabularies such as DITA, JATS and TEI[2], always bring with them at least an implicit model – suited
 to their respective communities, stakeholders and active constituents –
 for how the data is ideally to be produced in XML (to an acceptable
 standard) to begin with. We also do not control the favorite formats of
 developers, who inevitably have their own perspectives and prejudices –
 these days, frequently, JSON or YAML (YAML Ain't Markup
 Language).
This means that either we must develop models that are generic
 enough to support many or most workflows, either in the center or at the
 edges, or we must be very flexible with models that can be specialized
 easily to their use cases. Or both.

The limiting factor of available attention
Finally, security professionals already have to know too much.
 (Certainly of all the features of this domain, this is one that systems
 security has in common with others.) With the exception of a few
 remarkable individuals – those who might break any mold – experts in
 security should not have to be experts in text encoding, for the simple
 reason that we need them to be masters of something else. Many of them
 are already experts in and power users of a range of applications,
 especially word processors, spreadsheets and databases.
Any set of technical standards, if it is really to facilitate
 advance, must be good enough to be made useful while it is invisible –
 or rather, while it is rendered intelligible and tractable by sensible
 interfaces. This adds considerably to the challenge. Interfaces must in
 some sense themselves be secured, if only by validibility in principle
 and demonstration. Validibility here implies that not
 only are we valid, but that we have reason for confidence that we can
 continue to be valid.
In our case, a strongly limiting factor is the apparent reality that
 there are key constituencies who are simply not able to embrace a
 technology that demands they adopt XML, when in their mind they already
 have a better, more viable and attractive alternative. To be sure the
 alternative is always a different one, even if it is always
 obvious that the solution should be based in JSON, or a
 Markdown/YAML hybrid, or a favorite database – or Word or Excel. On the
 XML side, we have arguments for why XDM (the XML Data Model, as
 specified by W3C, the World Wide Web Consortium), for example, may be
 more accommodating than JSON – but we do not agree (much) on what the
 XML should look like. In none of these cases do debates over why
 they (or we) might be wrong about any of
 this, appear to have much if any traction. But given actual requirements
 for data processing, we have had some success with an approach that is
 agnostic as to notation (XML or JSON), while taking the mapping and
 modeling problems that appear (especially as we try to represent
 documentary data) seriously on their own terms – fully aware of
 solutions to those problems in neighboring spaces. Limitations in some
 respects do not need to hinder – they might even accentuate – progress
 and improvement in other areas. So tools are the key.
Finally, problems that are not solved, can be demonstrated and
 dramatized: the first step to a solution. Indeed these problems will not
 be solved by technologies, but by people reaping the rewards of openness
 in a context of trust and trustworthiness. We need to stay focused on
 our text encoding technologies as a means to this end, not as ends in
 themselves.

An abstract generic approach
Emulating success
Our starting point for design is the idea that a lightweight and
 versatile alternative to a large and complex schema, would be a more
 abstract and generic tagging syntax, which permits moving much of the
 complexity of the application out of the schema and into a higher layer.
 (See [Piez 2011]) Distinguishing
 between a simple set of rules to which everyone would conform, and more
 complex sets of local requirements to be validated locally, would permit
 the owners and users of information to fit the tagging to the
 information, while maintaining a base level of uniformity. That base
 level can be clean and clear enough to offer graceful and sensible
 fallbacks, while at the same time the special properties and
 regularities that are also typical of this data, could be represented
 and addressed, exposed with hooks to smarter applications built on top
 of the rudimentary ones.
In this design we have been inspired to a significant extent by DITA
 (the Darwin Information Typing Architecture); by HTML microformats
 (Hypertext Markup Language); and by applications of JATS including both
 BITS (Book Interchange Tag Suite) and NISO STS (the Standards Tag Suite
 developed at the National Information Standards Organization) that have
 served to demonstrate the special strengths of JATS in its highly
 generalized, shared vocabulary. Indeed we feel that to a great extent,
 the success of "big schema" industry standards – where they are
 successful – can be traced to the fact that across a landscape of even
 very disparate applications, there is a common generalized description, which serves as a basis and
 foundation for semantic differentiation within the domain as well as
 between domains. This implies that, despite all the futility of trying
 to build out systems-across-systems that are immune to local vagaries in
 tagging (be it interoperability or blind
 interchange, see [bauman2011]), there has
 nonetheless been considerable success, across varying industries, driven
 in large part because tooling and
 capability can be transferred even when data cannot, or not perfectly.
 We wish to emulate these successes and borrow as much tooling – and
 prior knowledge and lessons learned – as we can.
As both DITA and JATS suggest in their adaptability across their
 users, a strength of the abstract, generic approach is that it scales
 well in complexity. As a counter example: the fact that HTML does not
 readily suggest this is perhaps not because the microformat approach
 does not work, but because HTML validation is simply not very robust in
 general due to its catch-all content models. Any capable documentary
 system has islands of regularity – frequently metadata – within a choppy
 sea of mixed content. Simple data can be simple, while complex data
 should not be more complex that it has to be. Most especially, local
 variation is tolerated, sometimes by a strategic postponement or
 deferral of the question of normalization or regularization.
At its heart, OSCAL might be considered another variety of Peter Flynn's "Standard Average Document Grammar" Flynn 2017, this time using familiar HTML vernacular, supported by a generic infrastructure. For similar reasons, the bones of our format are in a set of simple structures for managing and navigating arbitrary "hunks" of content, including constituent logical parts of documentary data. And the hands and eyes are in a relatively rich, while lightweight, set of metadata-descriptive elements. In large part due to simple modeling and reuse of generic structures, when we turned to building out stylesheets and processing for our draft formats, as they have evolved, we were able to demonstrate many of the benefits of a mature stack in immediate returns. And we found that the generic approach to modeling had few downsides. Where we found we had specific and peculiar validation rules to enforce, as we expected, Schematron proved useful to fill the gaps between local requirements, which in its way vindicated our decision not to try and express every constraint we knew about, in the core set of structures.
An example of a control catalog encoded in OSCAL may be seen here:
 https://github.com/usnistgov/OSCAL/blob/master/content/nist.gov/SP800-53/rev4/xml/NIST_SP-800-53_rev4_catalog.xml.
 Figure 1 offers a snippet for a single control,
 with its subcontrols (control enhancements) elided. SP800-53 contains
 hundreds of controls and subcontrols, of which any particular
 application needs to use only a different and varying subset.
Figure 1: A security control, in OSCAL
An HTML display of the same data can be seen here:
 https://nvd.nist.gov/800-53/Rev4/control/SC-7. Note
 that the HTML on that page, while it can be generated from OSCAL such
 as this example, is actually produced upstream from the same source
 data set that the OSCAL is derived from.
For brevity, the text is curtailed significantly; the actual
 control includes more parts and a number of subcontrols
 (control enhancements) as well.
<control xmlns="http://csrc.nist.gov/ns/oscal/1.0"
 class="SP800-53" id="sc-7">
 <title>Boundary Protection</title>
 <param id="sc-7_prm_1">
 <select>
 <choice>physically</choice>
 <choice>logically</choice>
 </select>
 </param>
 <prop name="label">SC-7</prop>
 <link href="#ref015" rel="reference">FIPS Publication 199</link>
 <link href="#ref072" rel="reference">NIST Special Publication 800-41</link>
 <link href="#ref093" rel="reference">NIST Special Publication 800-77</link>
 <part id="sc-7_smt" name="statement">
 <p>The information system:</p>
 <part id="sc-7_smt.a" name="item">
 <prop name="label">a.</prop>
 <p>Monitors and controls communications at the external boundary of the
 system and at key internal boundaries within the system;</p>
 </part>
 <part id="sc-7_smt.b" name="item">
 <prop name="label">b.</prop>
 <p>Implements subnetworks for publicly accessible system components
 that are <insert param-id="sc-7_prm_1"/> separated from internal
 organizational networks; and</p>
 </part>
 <part id="sc-7_smt.c" name="item">
 <prop name="label">c.</prop>
 <p>Connects to external networks or information systems only through
 managed interfaces consisting of boundary protection devices
 arranged in accordance with an organizational security
 architecture.</p>
 </part>
 </part>
 <part id="sc-7_gdn" name="guidance">
 <p>Managed interfaces include, for example […].</p>
 <link rel="related" href="#ac-4">AC-4</link>
 <link rel="related" href="#ac-17">AC-17</link>
 <link rel="related" href="#ca-3">CA-3</link>
 <link rel="related" href="#cm-7">CM-7</link>
 <link rel="related" href="#cp-8">CP-8</link>
 <link rel="related" href="#ir-4">IR-4</link>
 <link rel="related" href="#ra-3">RA-3</link>
 <link rel="related" href="#sc-5">SC-5</link>
 <link rel="related" href="#sc-13">SC-13</link>
 </part>
 [… more parts, subcontrols …]
</control>

Limits of the familiar
But we also knew that this was nowhere near a full solution, the
 main problem here being that we also face an existing semantic
 architecture, which already stipulates several kinds of documents in
 several different roles with one another. (See the OSCAL web site for
 details on this architecture.) And this was not something we were free
 to engineer however we might please: the kinds of documents we call
 catalogs, profiles (or sometimes
 overlays or baselines), planning
 documents, assessments and assessment reports: all of these are already
 features of the terrain, well established and understood in their
 different ways in different contexts. (Thus, offering cases of emergent
 semantics.) Everyone in the space already knows what all these things
 are; most importantly, their various functional requirements are tied to
 the core processes of security assessment, and are broadly felt and
 articulated. Yet at the same time, their definitions and the formal
 features that characterize these information sets are only partly
 codified and generally not exposed in machine-readable format; and this
 gap is the space where we can be useful. Whether we offer a solution
 with elements or attributes matters less in the end than whether we
 serve a functional need.
Complementing these ideas – and reflecting the core assumption of
 our design, namely that OSCAL does not need to be everything to everyone
 to be useful, while on the other hand, it needs to be something to
 someone – is another design decision. Although OSCAL is abstract and
 generic enough to be freely adaptable and useful to describe just about
 any kind of semantics in its data, it is not expected to accommodate any
 arbitrary document: it is not another generalized documentary encoding
 solution. This is because, in order to focus on our goals in security
 automation (including both planning and assessment, considered broadly),
 we are focusing on the islands of structure within the
 sea of documentary information typically presented. As published (in
 presentation), such islands frequently appear as tables or structured
 appendixes. Invariably (they are tables or structured appendixes for a
 reason) these data sets have been designed with special care to their
 layout, structure and internal consistency, and hence (if only
 implicitly) their representations of semantics. Indeed such datasets
 might already be created and produced in a more highly structured way
 than a word processor can support, in a spreadsheet or database
 application. Whatever the workflow or lifecycle, OSCAL does not intend
 to support its entirety end to end. Rather, it is to be deployed to
 specific effect at specific points.
So we imagine this information is best produced and managed in some
 other form, then mapped into OSCAL by automated means. Its authoritative
 canonical representation, from which OSCAL is derived, might well be
 another form of XML. Where this is the case, OSCAL is spared having to
 address a certain set of functional requirements; in particular, since
 it is focused on the information presented in security control
 descriptions and not other types of documentary content, OSCAL's catalog
 and profile models do not need to be able to capture full text
 transcriptions of arbitrary documents.

From schema to metaschema
What is a metaschema
Within the context of this paper, a metaschema is considered to be
 any abstracted representation of a set of constraints over (or
 regularities across) an information set, especially a set of documents.
 As such, it works like a schema and can serve similar purposes; but a
 metaschema is not a schema insofar as it is not intended to be
 implemented directly, that is to say treated as a schema without
 mediation. Typically, a schema may be derived from a metaschema. This
 having been said, most any schema will also be something of a metaschema
 describing itself. You start your metaschema when you start writing
 comments into your schema.
To the extent that you may have processing requirements for this
 information, perhaps the metaschema takes on a formal character. Maybe
 the metaschema emerges first in the form of a set of Naming and Design
 Rules. And possibly you now embed your schema in the metaschema instead
 of the other way around. Or derive it by transformation. (Or possibly
 you code nothing by hand and use an application to produce your schema,
 in which case you are implicitly adopting something of a metaschema from
 your schema toolkit.) Once the machine has leverage, that is, over some
 sort of declarative content with rigorous, schema-oriented semantics,
 there are many possibilities; and for any set of documentary processing
 requirements, it will be tempting to conceive an application for
 addressing them. A formalization offers computational traction over the
 metaschema constructs.
Once this takes the form of an actual implementation, it
 subsequently seems quite natural to with to reuse, support and possibly
 distribute the metaschema itself – among other reasons, to permit schema
 development across a community more broadly.
A metaschema once formalized can be given expression in many ways,
 offering different capabilities:
	Embedding and coordinating documentation

	Expressing schema functionality as requirements, and leaving out
 unneeded schema features

	Given those requirements, easier schema production and
 incremental maintenance: tweak the metaschema, hit the button to get
 a new schema

	Easier coordination with related schemas, through modular and/or
 aligned metaschemas or a single metaschema infrastructure for a
 family of data models

	More than one schema syntax; so it is not unusual for an
 XML-oriented metaschema to emit different-but-compatible schemas in
 different syntaxes

	More than one operational environment can be targeted, assuming
 data models appropriate to each can be outlined that serve as
 satisfactory mappings from the conceptual model of the metaschema,
 with respect to naming and classification, ordering, object or data
 types, etc.

	A wide variety of spinoff tools – whatever the metaschema might
 be designed to support

Examples of fully formed metaschema technologies, each with
 different capabilities suited to its application and requirements space
 and user community:	The ODD format (One Document Does it all) of
 the Text Encoding Initiative. TEI schemas and documentation, in
 multiple formats, are generated from ODD instances. This, together
 with the TEI class model on which it depends, constitute layers in
 a metaschema architecture.

	The NLM/NISO (National Library of Medicine / National
 Information Standards Organization) family of schemas and
 tag suites (the name hints at a metaschema) – the
 several JATS models, BITS, and now NISO STS, are produced from a
 core set of modules that can be assembled dynamically, as well as
 surgically altered or replaced in modular fashion, according to a
 predefined architecture, as described in its documentation ([jats-docs]).[3] Again, schemas and documentation are maintained and
 produced together through a single framework. Among other benefits
 this permits the different models to be closely aligned, sharing
 definitions where appropriate.

	The UBL (Universal Business Language) Naming and Design Rules
 are codified and published as a component of UBL; see
 http://docs.oasis-open.org/ubl/UBL-NDR/v3.0/cnprd02/UBL-NDR-v3.0-cnprd02.html.
 These rules comprise only a piece of the UBL schema production and
 maintenance infrastructure (see [Holman 2018], which its lead engineer explicitly
 names a metaschema).

	Finally, DITA presents an interesting case. Both in its
 modular/layered schema design, and its encouragement of extension
 by restriction, DITA itself is very metaschema-like. But a full
 accounting would take into view all the kinds of validation
 enabled or supported as well as potential processing as applied to
 DITA data – which might imply that the measure of success of a
 metaschema is when it enables all kinds of processing additional to its core feature set. Given
 its roots, that DITA itself should be more a metaschema than a
 schema, is possibly not surprising – especially if this evolution
 is as inevitable among capable and long-lived markup technologies
 as I believe it to be.

The OSCAL Metaschema
In its layered architecture, OSCAL is a family of related document
 types described by a set of related schemas. It directly reflects an
 analysis of the security problem space offered by the Risk Management
 Framework (see RMF 2016). This is not arbitrary or
 accidental: the RMF provides us a breakdown of the problem space across
 activities starting with the definition of security- or privacy-related
 requirements (as we have seen, controls
 in security parlance), and continuing through their refinement and
 configuration; implementation (i.e., actually performing or delivering
 on requirements); assessment and auditing. The relations among these
 various documents serves as a starting point for design of a system of
 related document types. This complexity, however, also indicates where
 we need a corresponding simplicity, inasmuch as it suggests how we need
 our schema development – which is happening on more than one layer at
 once, at least if/as we must revisit lower layers to make it work at
 higher layers – to be more flexible than usual. Markup professionals
 know how complex and demanding is the development, documentation and
 support of even a single tag set. Security professionals assuredly need
 something more rigorous, regular and assessable than HTML. This implies
 that any format facing users (even through GUI interfaces or underlying
 their spreadsheets) be as simple and unencumbered as possible. One way
 of achieving this is to move the complexity out of the format and into
 the relations between several simpler, plainer related
 formats. This implies more than one usage profile and even more than one
 schema. However, this precise design to say nothing of the particulars,
 remains to be determined. In short, we know the complexity of the data
 processing requirements is such that a flexible and adaptable approach
 to both the documents, and the modeling exercise itself, is a
 necessity.
In other words, again we face the paradox of needing bottom-up
 development to address the broad range of needs, but top-down
 development to address the specific functional requirements of the
 domain as it is already defined (and defines itself) with respect to
 such entities as catalogs, controls,
 enhancements (also called subcontrols)
 etc. Both together will only be possible if we take an agile design
 approach well supported by tooling. This should enable us to address –
 and publish solutions for – the top-down problems while remaining
 receptive to the bottom-up development.
What kind of tooling did we have in mind, to support such an
 activity? We started designing the OSCAL Metaschema for the usual
 reasons one wants a metaschema layer in the development framework: to
 centralize the design of the schema, with its documentation. We quickly
 found it had many more capabilities.
Features of OSCAL Metaschema
What makes OSCAL Metaschema distinct is its focus on a particular
 subdomain within the general space of information modeling, namely
 that space of negotiation between document-oriented tagging formats
 (today most conveniently expressed as XML), and application-oriented
 object notations (today, mostly JSON and YAML, though many others are
 of course possible). Paradoxically, because JSON and YAML are in some
 important respects less expressive than XML (inasmuch as they impose
 more restrictions on naming and cardinality of data objects in
 context), OSCAL Metaschema must be similarly curtailed in its modeling
 – only data constructs that transpose easily (using a mapping
 derivable from the Metaschema), can be described.[4] This makes the Metaschema relatively simple, as far as its
 modeling capabilities go; and as long as it is not also too confining,
 simple should also mean easy to use.
Specifically, OSCAL Metaschema requires two significant design
 sacrifices at the outset. First, in order to ease convertibility and
 interchangeability at a low level, as mentioned, we decided to
 describe all discursive data (as roughly distinguished from metadata)
 using an HTML subset, only very slightly extended to support an
 essential requirement in processing SP800-53 data (namely, parameter
 insertion points, as illustrated in statement sc-7_smt.b
 in the example given in Figure 1). The practical
 consequence is that, whatever namespace you give to your
 metaschema-defined XML, at the branches it has either (a) simple
 values, or (b) an HTML subset (mirror). This means among other things
 we can define a Markdown equivalent for our HTML at the level of prose
 or discursive text. HTML subsets are also well known to database
 engineers as workarounds for unstructured prose.
Secondly, we severely restricted the content modeling capability
 of the metaschema, in order to maintain lossless convertibility with a
 JSON mirror of our XML format (as described below). In
 specifying this capability we took the conscious approach that less is
 more, therefore we should not seek to support any capability that we
 did not actually need, in the data we have.

The OSCALizable subset of XML
An OSCAL Metaschema can be written to describe the tagging of any
 XML document with the following features. Not by accident, these
 restrictions taken together have two important effects: they narrow
 the space of validable XML, restricting it to certain arrangements or
 types (really types of clusters) that impose
 regularities over and above what a straightforward grammar-based
 approach to tag validation, needs to impose. In turn this limits the
 kinds of constructions a Metaschema format must represent.
 Simultaneously, the structures help serve to make the XML
 transparently castable into an information-equivalent
 JSON form, both by precluding organizations of data that do not
 translate well and by providing a kind of conceptual
 scaffolding enabling a mapping.
Any XML that follows these rules is in principle capable of
 description using OSCAL Metaschema. Some of the rules can be
 bent more easily than others. (For example, it is
 generally possible to accommodate namespace mixing – if one is willing
 to make more rules.) But the narrowest definition should
 include:
	Everything is in a single namespace, which we can bind at the
 top of documents to names with no prefix.

	We have such a thing as prose, which captures a
 general description of all uses of mixed content (text and element
 siblings) vs element content in our model. Prose is restricted to
 a smallish subset of HTML homonyms in the local namespace. At the
 block level these are p, ul,
 ol, table, pre and
 img. Within prose, no attributes are captured (as
 of yet) except for the minimal values on links and images
 href or src needed for functionality. Within blocks, inline
 elements are similarly restricted to a small subset of HTML tags
 with loose semantics - strong, em and
 the like. This subset casts cleanly to a Markdown syntax
 equivalent (designed for compatibility with Github Markdown, a
 common vernacular). This notation can be used to represent OSCAL
 prose in non-XML environments and converted back to XML when
 wanted.
In order to address a functional requirement in catalogs, a
 single exception is made, namely an element to support parameter
 value insertion (somewhat analogous to DITA keyref)
 into arbitary running prose (again see Figure 1 for an example).
Additionally we find it useful to distinguish between prose at
 the block level and prose inline, insofar as we may wish to permit
 the latter only in certain circumstances.
At the edges, the prose model can be tweaked, extended or
 replaced, but it entails both a schema definition (in the target
 schema language, XSD for us) and a mapping into Markdown; so it is
 not trivial. Making the prose model and associated
 (rich or marked-up) data values more pluggable is
 a possible future work item.

	Prose is always clumped within its parent element: all prose
 elements at the block level (p, ul,
 ol, table and pre) are
 adjacent (sticking together in a row) within their parent
 elements. Since they are all known in advance to be prose, they
 can be selected and handled together, retaining both their
 ordering as a group (relative to siblings) and their ordering with
 respect to one another.
In the JSON representation, a run of prose is cast into a
 Markdown string. This does introduce a dependency on Markdown
 parsing in the JSON-to-XML pathway. To ease this requirement, our
 specification for Markdown is kept as small as possible.

	Parent elements outside prose blocks, also appear only in
 clumps, by name (i.e. elements can recur, but not after element
 siblings of a different type). This achieves an orderable mapping
 into a JSON object model.
To achieve this we observe the rule (expressed here as XPath
 3.0 / XQuery), for every element in an element-only (block-level)
 context, in source
 data:let $n := name(), $s := preceding-sibling::*[name() eq $n][1]
return (empty($s) or ($s is preceding-sibling::*[1]))
returning
 a Boolean value in XPath. (In English: The element is the first of
 its name to appear inside its parent, or it immediately follows
 another element of the same name. So A, B, B, C, but not A, B, C,
 B. But note that we do not have to assert or test this rule over
 OSCAL data – which always follows it – but only over data whose
 closeness to the OSCAL subset we wish to assess.)
This ensures that any element outside of prose appears
 contiguously with others of the same name, which permits implicit
 grouping and solves the order/cardinality mapping problem with
 object notations such as JSON. Because contiguous elements of the
 same name can be grouped without re-ordering, it is possible to
 cast the data by groups onto array properties in the target object
 model, which preserves their relations both with respect to their
 labeling and, again, their internal order.
Since the JSON model (and other similar object notations) does
 not respect ordering of data values outside arrays, the
 requirement to preserve relative ordering among sibling data
 values is one of the challenges in bidirectional conversion. A key
 feature here is that when converting data back into JSON from XML,
 a process can rely on a Metaschema to determine correct
 ordering.

	Attribute semantics are limited to a few utilitarian types
 (XML ID/IDREF, URL types, Boolean etc.), as supported in our
 target schema languages.

Given these restrictions in XML, and given a set of names for
 implicit groupings of elements (of the same name) into an object
 model, we can "cast" from XML into an equivalent model, while also
 generating schemas for either representation.
The tradeoff here is that not all XML data sets, or even most
 documents valid to nominal schemas, can be brought into OSCAL
 Metaschema, as they fail to exhibit these enabling regularities. For
 those that can, however, development is a straight track. As is
 possible with XML schema languages such as XSD and RNG, it is possible
 to produce automatically, on the basis of a static analysis of a
 document or document set, a metaschema to describe it. Given a
 document that follows these rules, we can derive the metaschema by
 running a transformation – then (perhaps after hand refinement) put
 that metaschema through our set of build applications
 to produce tools for handling the XML – including for mapping other
 tagging schemes into it. To be sure, such a derived metaschema will
 help to codify only such semantics as can be detected by inference
 from element relations, such as which elements are always discrete
 blocks vs which may occur in line (i.e., mixed with text). Without the
 vexing problem of mapping elements inside prose, however, this turns
 out to be quite a bit.
As Appendix A suggests, OSCAL Metaschema
 equivalent for most any XML tag set, up to a point, is thinkable – the
 example given there being meant to look like JATS. A Metaschema for an
 XHTML subset (Hypertext Markup Language in XML syntax) is similarly
 thinkable.

JSON Alignment
As is well known to students of this problem, XML and JSON have
 quite different affordances. Yet if we were to convince others to
 invest in creating OSCAL data, we knew that permitting them a JSON
 expression was an absolute necessity – whereas being able to provide
 assurance, on the other hand, that they could always have JSON for
 free – at the cost only of your XML! – would be a big win. Or
 alternatively, that the XML is no big deal if you have got your JSON
 under control. A driving factor for our adoption of a metaschema
 approach was that it gives us a place to unify and consolidate our
 approach to both formats.
OSCAL manages this in two ways. First, the metaschema architecture
 provides a scaffolding for declarations such that everything can be
 defined together, without any direct reference to its syntactic
 representations in its eventual outputs. These definitions, that is,
 are abstracted away, and then carefully bound back, by means of
 classic layering or indirection, to its operational semantics in the
 target schema technologies. Because our XSD and our JSON Schema are
 produced from the same source, alignment between them is a function of
 the logic that creates them.
In doing so, the Metaschema can address, deterministically and at
 a systematic level, all the problems of variable expressiveness
 between XML and JSON. Most importantly among these, it isolates the
 problem of arbitrary mixed content – either at the element level or
 within arbitrary mixed elements-with-text as is routine in embedded
 markup technologies – in such a way that the stress on JSON to
 represent such information is relieved (see notes on OSCAL's model for
 prose in the next section). Setting aside any capability for
 generalized semantic description (so we have nothing like HTML
 span or JATS/BITS named-content), instead
 we exploit the opportunities offered by today's tooling by mandating a
 simple Markdown format as the notation for prose on the JSON
 side.
Examples of OSCAL metaschema instances can be seen on our site.
 The place to begin could be the metaschema for the OSCAL catalog
 format:
 https://github.com/usnistgov/OSCAL/blob/master/src/metaschema/oscal_catalog_metaschema.xml
Figure 2: A metaschema-driven conversion into JSON
As converted by tools produced from the Metaschema, XML from
 Figure 1 is rendered into JSON as follows.
 Only the beginning of the control is shown; whitespace has been
 added for legibility in presentation.
{
 "id": "sc-7",
 "class": "SP800-53",
 "title": "Boundary Protection",
 "parameters": {
 "id": "sc-7_prm_1",
 "select": {
 "alternatives": [
 "physically",
 "logically"
]
 }
 },
 "properties": {
 "name": "label",
 "label": "SC-7"
 },
 "links": [
 {
 "href": "#ref015",
 "rel": "reference",
 "text": "FIPS Publication 199"
 },
 {
 "href": "#ref072",
 "rel": "reference",
 "text": "NIST Special Publication 800-41"
 },
 {
 "href": "#ref093",
 "rel": "reference",
 "text": "NIST Special Publication 800-77"
 }
],
 "parts": [
 {
 "id": "sc-7_smt",
 "name": "statement",
 "prose": "The information system:",
 "parts": [
 {
 "id": "sc-7_smt.a",
 "name": "item",
 "properties": {
 "name": "label",
 "label": "a."
 },
 "prose": "Monitors and controls communications at the external
 boundary of the system and at key internal boundaries
 within the system;"
 },
 {
 "id": "sc-7_smt.b",
 "name": "item",
 "properties": {
 "name": "label",
 "label": "b."
 },
 "prose": "Implements subnetworks for publicly accessible system
 components that are { sc-7_prm_1 } separated from
 internal organizational networks; and"
 },
 {
 "id": "sc-7_smt.c",
 "name": "item",
 "properties": {
 "name": "label",
 "label": "c."
 },
 "prose": "Connects to external networks or information systems
 only through managed interfaces consisting of boundary
 protection devices arranged in accordance with an
 organizational security architecture."
 }
]
 }, ...

More tools
Schemas and conversion utilities are only the beginning, and
 linked documentation is only one output. (See an example at
 https://pages.nist.gov/OSCAL/docs/schemas/oscal-catalog-xml.)
 Other tools we have in the workshop or sketched on the board:	Produce starter CSS (Cascading Style Sheets) for
 presentation of valid XML for authoring or production

	Produce starter display HTML XSLT (Extensible Stylesheet
 Language Transformations, version 1.0 or 3.0)

	Produce Schematron for matching and testing specified
 subsets (whether families, classes, contexts) according to local
 requirements

	Produce XSLT for structural validation of JSON/YAML (i.e. a
 functional analog to JSON Schema) or constraints expressed as
 queries (i.e., a Schematron analogue for JSON).

	Produce a metaschema to fit a suitable data set, enabling
 mockup- or sample-driven development
Alternatively, from an unsuitable data set, produce a
 Metaschema-oriented diagnostic report

	Further improvements to JSON/object representations
 supported by Metaschema
These become possible as more constraints are imposed over
 Metaschema-defined XML - for example as attribute value
 uniqueness in scope can be validated, their values can be
 exploited as object labels

	XForms bindings?

These are all exclusive of the tools that will implement the
 semantics peculiar to metaschema-defined formats, whether OSCAL or any
 other.

OSCAL, XML and the SAND trap
In 2014 at this conference, Joshua Lubell presented on the idea –
 embedded among several others – of a class of application for which (he
 said) the XML stack was particularly well suited: the SAND, for
 Small Arcane Non-trivial Dataset.[5]The data with which OSCAL is most directly concerned –
 high-level systems security documentation – is not exactly a SAND in
 Lubell's sense exactly (while one layer of the OSCAL stack, our catalog
 format, is indeed designed specifically to fit one of his examples, NIST
 Special Publication 800-53). Whether data at higher levels of our stack –
 the so-called profile, implementation, assessment and report layers –
 qualify as SANDs precisely, is possibly not an important debate. But it is
 fair to say they are arcane and even esoteric in certain senses of those
 words.
Yet history suggests that defining such formats is not a simple thing,
 even in domains such as technical or scholarly publishing where the
 rewards have been significant. This is because it proves to be not only an
 engineering problem but fundamentally a set of social and organizational
 problem as well. OSCAL aims to address this aspect of the situation not
 simply by floating or positioning yet another vertical XML format, but to
 enable the flexible and responsive development of more formats like itself
 in future. In other words, it is designed to serve also as a schema
 maker's machine tool, or schema kit.
Another way of putting it is that in order to deal with SANDs, we need
 something both more and less than standards. An encoding standard can be
 the basis, but a gap typically remains between the adoption of a standard,
 and the definition of a robust exchange model between parties. OSCAL's
 Metaschema offers a technical foundation for the specification of formats
 that can serve the competing requirements of aligning with standards on
 the one hand, while also addressing local functional needs – including,
 crucially, the need for integration of this information into security
 automation systems.
XML for SANDs
Such a common exchange model might work like a
 standard in every way except that it is used by a relatively specialized
 group of people to a specific set of ends. It may well be a local
 specialization, adaptation or application of a broader standard or have
 technical foundations there. What makes it different from a standard is
 that it is designed to the particular requirements of its constituent
 parties, over and above the requirements addressed by the standard on
 which it may be based. It is different from an application in being
 shared among users who do not have to share a technical stack: only an
 agreement on the protocol or common language. But as such an agreement
 or protocol, such a model must itself be stabilized, documented and
 tested just like any set of encoding guidelines shared between parties,
 whether standard or entirely ad hoc and private.
The capability offered by such documented, external specification is
 important in security space as a part of the immune
 system provided by responsive mechanisms to security threats
 and incidents. The OSCAL catalog and profile models, for example, should
 not only to provide a basis for standards-based interchange; like other
 broadly adopted encoding technologies, it must also accommodate local
 needs for defining and validating both data and constraints over data
 sets. OSCAL more broadly, as a family of tag sets with rough
 comparability, which is to say the capabilities offered by our
 schema-making metaschema apparatus, similarly aspires to contribute to
 the state of the art in fitting the technologies to human and
 organizational needs for rational and transparent communication.
We envision OSCAL expressions (whether as canonically valid
 instances, or variant formats) for more than one set of specifications
 within the security domain -- standards, guidelines
 and best practices that organizations are bound to follow or aspire to.
 Among these, SP800-53 is the seed we are starting with; but our hope is
 that other similar such documents – which offer similar opportunities
 and rewards for automation – should be similarly easy to express in
 OSCAL Metaschema, and that their owners will see the considerable
 advantages in doing so. Being able to integrate these on any platform
 together is surely a worthy goal. However OSCAL also seeks to support
 this work at a more fundamental level. There is an intersecting space
 between word processors, spreadsheets, databases, forms interfaces, web
 applications, and security automation systems. In this context, an easy
 and straightforward way to produce a utilitarian schema and set of
 tools, including tools for mapping and moving data in and out of
 applications, might be just what developers need. OSCAL Metaschema as a
 toolkit might have utility even apart from our application space.
Wherever the defined spaces between vertical domains overlap and
 contend, and it is not clear which of several available alternative
 formats, even effectively standardized and externalized, provides the
 easiest course for ongoing development and evolution, developers face a
 problem. Or to say the same thing in reverse, there are some domains
 that because they are hybrid, working across boundaries – possibly they
 mix financial information with patient information, or systems security
 planning and procedures with systems configuration data – are
 necessarily a challenge since they are by definition neither quite fish,
 nor fowl. A lightweight carrier format for pretty-well structured data
 could fill a niche there – even or especially for data sets that already
 have (other) standard representations, when they need to cross
 organizational boundary lines.
A metaschema gives us a way to make throwaway schemas and ad hoc
 models, while at the same time building out and documenting the core
 schema, even while it too is still under development. The trouble and
 expense of tooling to a new data set is lightened by starter-kit tooling
 provided automatically from Metaschema, such as display stylesheets, or
 data flatteners, or import/export scripts for databases or
 spreadsheets.

One document, many schemas
Schemas that are produced from a single metaschema semantics –
 especially a simple one like OSCAL's – should also have the capacity of
 being more easily mapped to one another. (In this, the metaschema
 emulates some of the functionality of ISO/IEC 10744's architectural
 forms, albeit in somewhat less generalized terms. See [Cover 2001].) The possible and even very
 local and peculiar semantics of data types in one schema (both what XSD
 calls simple and complex types, which
 includes but is not limited to what markup practitioners call content
 modeling) are more easily fitted to those of another when both use the
 same language, reducing the problem in the same way. Then too, the
 common language exposes any non-trivial differentiation between them.
 Assuming acceptable tradeoffs can be found for managing such
 differentiation, if both are made using the same metaschema then
 migrating information sets across formats from one to another, ought to
 be easier. Indeed this is a general proposition and might be tested by
 considering other metaschemas besides ours. Presumably it is similarly
 easier to map between two data sets both supported by TEI ODD
 descriptions, two documents valid to different flavors of the NLM/NISO
 JATS family, or two DITA applications.
In other words, when a document is valid to schema A, and a robust
 mapping exists from all possible A to schema B, then we get validation
 to schema B for free.Note
Of course the second condition is a big if, and
 having a mapping and a mapping that we trust are indeed two separate
 things. I make the optimistic assumption here that a good mapping
 can be produced and validated in good faith by knowledgeable
 parties. Even if this is more the exception than the rule, this does
 not mean it never happens – and enabling easier development and
 validation of the maps, might actually help.

There may be a loss in data quality, depending on the mapping.
 But the channel itself, the projection such that our
 instance of A, can be transitioned securely (under the supervision of a
 mapping that is explicit and well understood) into an environment set up
 for schema B, is guaranteed.
We do not yet know whether this particular feature of the system,
 specifically what we hope or assume should be its adaptability to
 change, adaptability and migration, will prove to be as critical as we
 imagine. If no one finds that exposing the data in these formats is
 worth the effort, then of course downstream benefits will also not
 accrue; and nothing happens simply because we think it might. But we
 believe a system designed from the start to be lightweight and flexible,
 with a built-in forward migration pathway, may have a chance – and may
 complement, moreover, other approaches where they make sense.

The Rule of Least Power: designing security in
A simple, descriptive, declarative open and legible documentary format
 can serve as a positive externality for an industry or community. Even
 when the communications themselves are private, and even without a common technical infrastructure (a dependency
 on a stack), everyone benefits from a common language that enables the
 expression, paradoxically, of as little as can be
 said, to a purpose:
Nowadays we have to appreciate the reasons for picking not the most powerful solution
 but the least powerful. Expressing constraints, relationships and processing instructions in
 less powerful languages increases the flexibility with which information can be reused: the
 less powerful the language, the more you can do with the data stored in that language.
Less powerful languages are usually easier to secure. A bug-free regular expression
 processor, for example, is by definition free of many security exposures that are inherent
 in the more general runtime one might use for a language like C++. Because programs in
 simpler languages are easier to analyze, it's also easier to identify the security problems
 that they do have.
— [w3cLeastPower]

As is pointed out on a Wikipedia page on the Rule of Least Power
 ([ruleofleastpower]), this is a refinement of AC-6 (Rule
 of Least Privilege) in the SP800-53 control vocabulary.Note
CM-7, Least Functionality, might also have been mentioned.

Of course, proponents of XML-based standard vocabularies will and
 should see here an argument not only for OSCAL or its Metaschema, but for
 tailored, descriptive and declarative, application-independent data
 formats in general. While this is certainly the case, one might also go
 one step further: secure data sets also require the minimally adequate, necessary and sufficient encoding for
 their purposes.
It may be that as a principle, this is overstated. Engineering
 decisions cannot practically be reduced to formulas, and there may always
 be a reason to open a trapdoor to a layer down. Yet the reason we define
 these layers at all, is that we discover their serviceability: having
 stipulated this, it makes sense for us to observe our own rules, being as
 scrupulous as we can.
As a reflection, here is the Wikipedia editors' hierarchy of formats,
 from least powerful (by implication, least problematic and most secure) to
 most powerful. A few amendments are offered (in bold).
	Ink on paper (least powerful) and this
 does not mean
 PDF

	The plainly descriptive [formats] (such as the content of most
 databases, or HTML)
	Descriptive and declarative languages
 specified and documented as standards

	Customized or bespoke declarative
 syntaxes with their specifications and
 documentation

	Including everything from
 CSV/spreadsheet dumps through simple JSON up to custom-built
 XML vocabularies

As long as it is declarative and aims to
 be clean, simple, economical and intelligible

	Logical languages of limited propositional logic (such as access
 control lists)
Declarative languages on the verge of being
 Turing-complete

	Those that are in fact Turing-complete though one is led not to
 use them that way (XSLT, SQL)

	Those that are functional and Turing-complete general-purpose
 programming languages

	Those that are unashamedly imperative

	All-purpose feature-rich applications such
 as word processors and spreadsheets supporting macros and
 arbitrary execution
(A larger category than you might
 expect)

	Unsecured, undocumented applications in
 the Cloud

Acknowledgements
The technical lead and architect of OSCAL is David Waltermire. He
 shares project leadership with Michaela Iorga, whose vision and initiative
 have also been essential. OSCAL is a team effort and this work builds on
 the work of others. This paper owes much to the support, insight and
 constructive criticism of Joshua Lubell and other colleagues at NIST as
 well as anonymous Balisage reviewers.

Appendix A. An example JATSish Metaschema
Another tag set might exploit a Metaschema to useful purpose. The
 vocabulary here is JATS, except within prose, where we fall into HTML.
 (Namespace enthusiasts will however take note everything is in a namespace
 declared by the metaschema.) On the JSON side, the prose
 structure is explicit, where in the XML, it is implied by the sequence of
 prose elements, which can appear in only one place (as per Metaschema
 rule) within the sequence of permitted elements.Note
At the time of submitting, we are in the midst of redesigning
 Metaschema; with apologies, we hope the older syntax will illustrate
 the concept.

The differences in support for cardinality and ordering in XML and
 JSON are thus mediated.
The metaschema describes this tagging and emanates or expresses
 schemas in XSD and JSON schema describing the respective notations.
 Additionally, instances that are valid to either of these formats can be
 processed by a conversion tool, also produced programmatically from the
 metaschema, to make the other. It includes a component for producing XML
 from a Markdown subset equivalent to the HTML-like markup appearing on the
 XML side.
Again, the JSON equivalent is offered. Note: in the example, escape
 characters in the JSON representing LF (line feed) characters have been
 replaced by literal line feeds, for legibility. In reality the JSON is
 optimized not for legibility but for relatively robust transmission and
 data exchange.
Figure 3: JATS-like XML, followed by the equivalent JSON
<?xml version="1.0" encoding="UTF-8"?>
<sec xmlns="urn:example:oscal-jats-emulator"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:example:oscal-jats-emulator
 jats-section-metaschema.xsd">
 <sec-meta>
 <contrib>
 <collab>Joint Task Force, Transformation Initiative</collab>
 <role>author</role>
 </contrib>
 <abstract>
 <p>A few lines excerpted from the beginning of the
Introduction to NIST SP800-53, rev 4, <i>Security and
Privacy Controls for Federal Information Systems and
Organizations</i>.</p>
 </abstract>
 </sec-meta>
 <title>Introduction: The need to protect information and information
systems</title>
 <p>There are several key questions that should be answered by
organizations when addressing the information security
considerations for information systems:</p>

 What security controls are needed to satisfy the security
requirements and to adequately mitigate risk incurred by using
information and information systems in the execution of
organizational missions and business functions?
 Have the security controls been implemented, or is there an
implementation plan in place?
 What is the desired or required level of assurance that the
selected security controls, as implemented, are effective in their
application?
 <p>The answers to these questions are not given in isolation but
rather in the context of an effective risk management process
 for the organization that identifies, mitigates as deemed
necessary, and monitors on an ongoing basis, risks arising from its
information and information systems.</p>
 <ref-list>
 <ref>
 <citation>National Institute of Standards and Technology (NIST),
Joint Task Force, Transformation Initiative. <i>Security and
Privacy Controls for Federal Information Systems and Organizations
</i>. April 2013, with updates. DOI <a href=
"http://dx.doi.org/10.6028/NIST.SP.800-53r4"
>http://dx.doi.org/10.6028/NIST.SP.800-53r4.</citation>
 </ref>
 </ref-list>
</sec>
{ "sec": {
 "sec-meta": {
 "contributors": [
 { "collab": "Joint Task Force, Transformation Initiative",
 "role": "author"
 }
],
 "abstract": {
 "prose": ["A few lines excerpted from the be ginning of the
Introduction to NIST SP800-53, rev 4, *Security and Privacy
Controls for Federal Information Systems and Organizations*."]
 }
 },
 "title": "Introduction: The need to protect information and
information systems",
 "prose":
 "There are several key questions that should be answered by
organizations when addressing the information security
considerations for information systems:

* What security controls are needed to satisfy the security
requirements and to adequately mitigate risk incurred by using
information and information systems in the execution of
organizational missions and business functions?
* Have the security controls been implemented, or is there an
implementation plan in place?
* What is the desired or required level of assurance that the
selected security controls, as implemented, are effective in their
application?

The answers to these questions are not given in isolation but
rather in the context of an effective *risk management process*
for the organization that identifies, mitigates as deemed
necessary, and monitors on an ongoing basis, risks arising from
its information and information systems.",
 "ref-list": {
 "references": [
 { "citations": "National Institute of Standards and Technology
(NIST), Joint Task Force, Transformation Initiative. *Security
and Privacy Controls for Federal Information Systems and
Organizations*. April 2013, with updates. DOI
[http://dx.doi.org/10.6028/NIST.SP.800-53r4](http://dx.doi.org/10.
6028/NIST.SP.800-53r4)."
 }
]
 }
 }
}

The tooling to support this conversion was not more expensive than the
 time to develop a Metaschema to describe the tagging. This Metaschema does
 not describe an OSCAL schema; for purposes of illustration, tag names and
 definitions are consistent with JATS (while using their own namespace).
 Because JATS itself describes XML that falls outside the
 OSCALizable subset (section “Features of OSCAL Metaschema”), an OSCAL Metaschema that accounts for all of JATS is not possible. In
 particular, inline tagging here is HTML-flavored not JATS. However, with
 allowances made for inline content, a subset of JATS can be described this
 way; and such a subset of convertible JATS might be useful
 in some contexts. In addition to supporting tooling, for example, such a
 Metaschema would help define a bridge from a JATS application such as NISO
 STS, into OSCAL.
As noted earlier, Metaschema syntax is changing even as I write this.
 More examples of Metaschemas can be found on our web site.
<?xml version="1.0" encoding="UTF-8"?>
<METASCHEMA xmlns="http://csrc.nist.gov/ns/oscal/metaschema/1.0" root="sec">

 <schema-name>JATS emulator schema</schema-name>
 <short-name>jats-emulator</short-name>
 <namespace>urn:example:oscal-jats-emulator</namespace>
 <remarks>
 <p>Provides a subset of the JATS 'sec' element.</p>
 </remarks>

 <define-assembly name="sec" group-as="sections">
 <flag name="id" datatype="ID"/>
 <flag name="sec-type"/>
 <flag name="specific-use"/>
 <formal-name>Section</formal-name><description/>
 <model>
 <assembly named="sec-meta"/>
 <field named="title" required="yes"/>
 <prose/>
 <assemblies named="sec"/>
 <assembly named="ref-list"/>
 </model>
 </define-assembly>

 <define-field name="title" as="mixed">
 <formal-name>Title</formal-name><description/>
 </define-field>

 <define-flag name="id" datatype="ID">
 <formal-name>Identifier</formal-name><description/>
 </define-flag>

 <define-flag name="sec-type" datatype="string">
 <formal-name>Section type</formal-name><description/>
 </define-flag>

 <define-flag name="specific-use" datatype="string">
 <formal-name>Specific use</formal-name><description/>
 </define-flag>

 <define-assembly name="sec-meta">
 <formal-name>Section metadata</formal-name><description/>
 <model>
 <assemblies named="contrib"/>
 <assembly named="abstract"/>
 <assembly named="ref-list"/>
 </model>
 </define-assembly>

 <define-assembly name="contrib" group-as="contributors">
 <formal-name>Contributor</formal-name><description/>
 <model>
 <choice>
 <field named="string-name"/>
 <field named="collab"/>
 </choice>
 <field named="role"/>
 </model>
 </define-assembly>

 <define-assembly name="abstract">
 <formal-name>Abstract</formal-name><description/>
 <model>
 <prose/>
 </model>
 </define-assembly>

 <define-assembly name="ref-list">
 <formal-name>Reference List</formal-name><description/>
 <model>
 <field named="title"/>
 <assemblies named="ref"/>
 </model>
 </define-assembly>

 <define-assembly name="ref" group-as="references">
 <formal-name>Reference</formal-name><description/>
 <model>
 <field named="label"/>
 <fields named="citation"/>
 </model>
 </define-assembly>

 <define-field name="string-name">
 <formal-name>Name (string form)</formal-name><description/>
 </define-field>

 <define-field name="collab">
 <formal-name>Collaborative Author Name</formal-name><description/>
 </define-field>

 <define-field name="role">
 <formal-name>Role</formal-name><description/>
 </define-field>

 <define-field name="label">
 <formal-name>Label</formal-name><description/>
 </define-field>

 <define-field name="citation" group-as="citations" as="mixed">
 <formal-name>Citation</formal-name><description/>
 </define-field>

</METASCHEMA>

Some references
Amarel, Saul. On the Mechanization of Creative Processes. IEEE
 Spectrum 3 (April 1996): 112-114. https://ieeexplore.ieee.org/document/5216589
 (restricted access). doi:https://doi.org/10.1109/MSPEC.1966.5216589.
[bauman2011] Bauman, Syd. Interchange vs.
 Interoperability. Presented at Balisage: The Markup Conference 2011,
 Montréal, Canada, August 2 - 5, 2011. In Proceedings
 of Balisage: The Markup Conference 2011. Balisage Series on
 Markup Technologies, vol. 7 (2011).
 doi:https://doi.org/10.4242/BalisageVol7.Bauman01.
[w3cLeastPower] Berners-Lee, Timothy, and Noah Mendelson. The Rule
 of Least Power. TAG Finding 23 February 2006.
 http://www.w3.org/2001/tag/doc/leastPower-2006-02-23.
[cover2001] Cover, Robin. Architectural Forms and
 SGML/XML Architectures.
 http://xml.coverpages.org/archForms.htm.
Flynn, Peter. Your Standard Average Document Grammar: just not
 your average standard. Presented at Balisage: The Markup Conference 2017,
 Washington, DC, August 1 - 4, 2017. In Proceedings
 of Balisage: The Markup Conference 2017. Balisage Series on
 Markup Technologies, vol. 19 (2017).
 doi:https://doi.org/10.4242/BalisageVol19.Flynn01.
[securitysales2019] Global Cybersecurity Market to Eclipse $300B by 2024. Security Sales
 and Integration, January 17 2019. https://www.securitysales.com/research/global-cybersecurity-market-2024/.
[holstege2018] Holstege, Mary. Metaphors We Code By: Taking Things A
 Little Too Seriously. Presented at Balisage: The Markup Conference 2018, Washington,
 DC, July 31 - August 3, 2018. In Proceedings of Balisage: The Markup
 Conference 2018. Balisage Series on Markup Technologies, vol. 21 (2018).
 doi:https://doi.org/10.4242/BalisageVol21.Holstege01.
[Holman2018] Holman, G. Ken. The Universal Business
 Language ecosystem and the OASIS TC process. Presented at Symposium on
 Markup Vocabulary Ecosystems, Washington, DC, July 30, 2018. In Proceedings of the Symposium on Markup Vocabulary
 Ecosystems. Balisage Series on Markup Technologies, vol. 22
 (2018).
 doi:https://doi.org/10.4242/BalisageVol22.Holman01.
Lubell, Joshua. XForms User Interfaces for Small Arcane Nontrivial Datasets.
 Presented at Balisage: The Markup Conference 2014, Washington, DC, August 5 - 8, 2014. In
 Proceedings of Balisage: The Markup Conference 2014.
 Balisage Series on Markup Technologies, vol. 13 (2014).
 doi:https://doi.org/10.4242/BalisageVol13.Lubell01.
[Lubell2016] Lubell, Joshua. Integrating Top-down and Bottom-up
 Cybersecurity Guidance using XML. Presented at Balisage: The Markup Conference 2016,
 Washington, DC, August 2 - 5, 2016. In Proceedings of Balisage: The
 Markup Conference 2016. Balisage Series on Markup Technologies, vol. 17 (2016).
 doi:https://doi.org/10.4242/BalisageVol17.Lubell01.
[jats-docs] Modifying This Tag Set. In
 Journal Publishing Tag Library NISO JATS Version 1.2 (ANSI/NISO
 Z39.96-2019). National Center for Biotechnology Information (NCBI)
 National Library of Medicine (NLM).
 https://jats.nlm.nih.gov/publishing/tag-library/1.2/chapter/implementor.html.
OSCAL Web site. The Open Security Controls Assessment Language.
 https://pages.nist.gov/OSCAL/.
[piez2011] Piez, Wendell. Abstract generic microformats for coverage, comprehensiveness, and
 adaptability. Presented at Balisage: The Markup Conference 2011, Montréal, Canada, August 2 -
 5, 2011. In Proceedings of Balisage: The Markup Conference
 2011. Balisage Series on Markup Technologies, vol. 7 (2011).
 doi:https://doi.org/10.4242/BalisageVol7.Piez01.
Risk Management Framework Overview. Updated 2019.
 https://csrc.nist.gov/projects/risk-management/risk-management-framework-(rmf)-overview.
[cmsmcq-2002] Sperberg-McQueen, C. Michael. What Matters? Closing keynote
 address, Extreme Markup Languages 2002.
 http://cmsmcq.com/2002/whatmatters.html.
[teiODD] TEI Wiki page on ODD (One Document Does it All). https://wiki.tei-c.org/index.php/ODD (cited 2019 April 17).
Simon, Herbert. The Sciences of the Artifical. 1996: MIT
 Press. Fourth printing, 2001.
[ruleofleastpower] Wikipedia entry on the The Rule of Least Power (cited 2019 April
 13).
Holman, G. Ken. Horses for courses: A perspective on an XML
 vs. JSON discussion. August 6, 2017.
 https://www.xml.com/articles/2017/08/06/xml-vs-json-discussion/.
La Fontaine, Robin. Making a difference by processing JSON as
 XML. Presented at Balisage: The Markup Conference 2017, Washington, DC,
 August 1 - 4, 2017. In Proceedings of Balisage: The Markup Conference
 2017. Balisage Series on Markup Technologies, vol. 19 (2017).
 doi:https://doi.org/10.4242/BalisageVol19.LaFontaine01.
[Lee2011] Lee, David A. JXON: an Architecture for
 Schema and Annotation Driven JSON/XML Bidirectional Transformations.
 Presented at Balisage: The Markup Conference 2011, Montréal, Canada,
 August 2 - 5, 2011. In Proceedings of Balisage: The Markup Conference
 2011. Balisage Series on Markup Technologies, vol. 7 (2011).
 doi:https://doi.org/10.4242/BalisageVol7.Lee01.
Pemberton, Steven. Treating JSON as a subset of XML. Presented at XML Prague
 2012.
 http://www.xmlprague.cz/2012/files/xmlprague-2012-proceedings.pdf.
Rennau, Hans-Jürgen. From XML to UDL: a unified document
 language, supporting multiple markup languages. Presented at Balisage:
 The Markup Conference 2012, Montréal, Canada, August 7 - 10, 2012. In
 Proceedings of Balisage: The Markup Conference 2012. Balisage Series on
 Markup Technologies, vol. 8 (2012).
 doi:https://doi.org/10.4242/BalisageVol8.Rennau01.
Robie, Jonathan. XQuery, XSLT and JSON: Adapting the XML stack
 for a world of XML, HTML, JSON and JavaScript. Presented at Balisage: The
 Markup Conference 2012, Montréal, Canada, August 7 - 10, 2012. In
 Proceedings of Balisage: The Markup Conference 2012. Balisage Series on
 Markup Technologies, vol. 8 (2012).
 doi:https://doi.org/10.4242/BalisageVol8.Robie01.

[1] FedRAMP (Federal Risk and Authorization Management Program) is a
 process mandated and operated by the US Government Office of
 Management and Budget (OMB) for authorizing and assessing systems
 security for service and software vendors. FIPS is the Federal
 Information Processing Standards, a set of documented requirements
 for assurance of computer system security and interoperability,
 applied across the United States Federal Government and partners.
 ISO/IEC 27001:2013, Information technology
 Security techniques, is a specification of the
 International Standards Organization / International
 Electrotechnical Commission that provides a standardized, generic
 set of security requirements for organizations of all sizes.
[2] DITA is The Darwin Information Typing Architecture.
 https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dita.
 JATS is the Journal Article Tag Suite:
 http://jats.niso.org/1.1/. TEI is the Text Encoding
 Initiative: https://tei-c.org/.
[3] The JATS documentation offers some cogent rationales for
 maintaining a metaschema. But it does not tell the entire
 story – for example, while it describes the modular
 architecture shared by this particular family of schemas, it
 says very little about how the documentation itself is
 maintained and produced.
[4] It bears mentioning that this work was enabled to a great
 extent by prior work in this area, much of it presented at this
 conference, as represented in the bibliography. Especially worth
 mentioning are David Lee's JXON and G Ken Holman's work with UBL
 as well as the research of Hans Jurgen Rennau and Jonathan
 Robie.
[5] It might be that this works as an apt label because it evokes the
 ideas of sandboxes as well as sand castles – while this paper proposes
 the best way of dealing with SANDy data is to put it in boxes.

Balisage: The Markup Conference

The Open Security Controls Assessment Language (OSCAL): schema and
 metaschema
Wendell Piez
National Institute of Standards and Technologies / Information Technology
 Laboratory

A long-time contributor to Balisage and its predecessor
 conferences, since 2018 Wendell Piez has been serving as an IT
 Specialist in the Information Technology Laboratory, National
 Institute of Standards and Technology (Gaithersburg Maryland). There
 he is putting his XML and XSLT skills to daily use.

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

