[image: Balisage logo]Balisage: The Markup Conference

Graphical user interfaces in the X stack
Zahra Al-Awadai
Technical University of Munich (TUM)

<alawadai@in.tum.de>

Anne Brüggemann-Klein
Technical University of Munich (TUM)

<brueggemann-klein@tum.de>

Christina Grubmüller
Technical University of Munich (TUM)

<christina.grubmueller@tum.de>

Philipp Ulrich
Technical University of Munich (TUM)

<philipp.ulrich@tum.de>

Balisage: The Markup Conference 2019
July 30 - August 2, 2019

Copyright ©2019 by the authors. Used with permission.

How to cite this paper
Al-Awadai, Zahra, Anne Brüggemann-Klein, Christina Grubmüller and Philipp Ulrich. "Graphical user interfaces in the X stack." Presented at: Balisage: The Markup Conference 2019, Washington, DC, July 30 - August 2, 2019. In Proceedings of Balisage: The Markup Conference 2019.
 Balisage Series on Markup Technologies vol. 23 (2019). https://doi.org/10.4242/BalisageVol23.Bruggemann-Klein01.

Abstract
“XML Everywhere” isn't just a slogan: it actually works, up and down the XML
				application stack. Recent developments, such as the inclusion of custom elements in
				HTML5, allow the declarative approach of XML to come into the browser/server
				interaction. XForms, supported by SVG and CSS, can serve as the basis for a
				graphical user interface. A custom WebSocket element can support client-to-client
				and server-push communication of XML data. Applications of State Chart XML (SCXML)
				mean that the “XML Everywhere” approach can be extended all the way to models of
				operations in an application. Interactive games offer living proof of the
				stack.

Balisage: The Markup Conference

 Graphical user interfaces in the X stack

 Table of Contents

 	Title Page

 	Introduction

 	Requirements for GUI technologies

 	XHTML with XForms and SVG

 	Web Components

 	Server support for multi-client applications

 	WebSocket Element
 	Requirements

 	Basic WebSocket Element

 	Imperative and declarative approach

 	Advanced functionality

 	Architecture

 	Example application: Tic-Tac-Toe

 	Final remarks

 	Statecharts and SCXML

 	Conclusion and future work

 	About the Authors

 Graphical user interfaces in the X stack

Introduction
As we have claimed before [B16,ABCES17], current XML technologies provide a full stack of modeling
			languages, implementation languages, and tools for web applications that is stable,
			platform independent, and based on open standards. A particular strong point of what we
			call the X stack is that data are encoded with XML end-to-end and that XML technologies
			can be used where-ever XML data need to be processed.
We are interested in the X stack for web applications for three reasons. First, its
			practices and techniques support development processes that are driven by models,
			particularly by domain models [E04]. This is relevant in the
			context of a research agenda of generating instances of serious games and learning
			analytics. Second, the complete X stack serves as a vehicle to teach XML technology to
			students through the backdoor of engaging web applications such as games. The austerity requirement we impose on students in a lab course
			on XML technology, namely to implement a game on the web with XML technology alone, no
			JavaScript or frameworks allowed, forces students to become proficient with SVG, XQuery,
			XSLT and other XML technologies. It also reinforces their knowledge of software
			engineering principles and teaches basic web application architecture that is not
			clouded by some specific and potentially short-lived framework. Third, the practices we
			suggest with the X stack pave the way for XML experts to develop XML-based applications
			on the web.
Graphical user interfaces (GUIs) are crucial components of applications with which
			users interact directly. They present information about the state of the domain entities
			in the application and provide methods of interaction to manipulate them. In this paper,
			we investigate a spectrum of GUI technologies in web applications and how they fit into
			the X stack. We explore a number of technologies that independently address some aspect
			of a GUI in the X stack.
Throughout the paper, we provide code to illustrate the techniques that we introduce.
			We have also applied our principles and strategies in a case study, the game Guess the
			Number (GN). which is documented in a separate document that is available on request.
			This case study is intentionally kept simple, so that we can focus on principles without
			being distracted by more complex XML processing. We have student projects from the XML
			Technology Lab at TUM for Tic-Tac-Toe, Scissor-Paper-Rock, Blackjack, Memory, Mancala
			and the early GameX [SKB14] that follow the same principles as
			they evolved and that are technically more complex. The case studies demonstrate how
			end-user developers who are conversant with XML technologies can create their own web
			applications.
This paper is organized as follows:
After this introduction, section “Requirements for GUI technologies” briefly describes the
			responsibilities of a GUI component before honing in on our two main requirements for
			GUI technologies in the X stack that fit into a model-driven approach. The two
			requirements are that the GUI and the application core must communicate through
			XML-encoded declarative data and that the GUI component itself must be defined in a
			declarative manner.
We then investigate a number of GUI technologies that contribute to the two main
			requirements.
First, in section “XHTML with XForms and SVG”, we discuss XForms in the context of HTML and
			SVG. XForms is the prototypical GUI technology for our first requirement. We also
			investigate to which extent it supports the second requirement and how it compares to
			HTML forms.
One topic that has always been and still is present when discussing GUI technologies
			is a component-based approach that allows for composition and reuse of GUI
			components. The Web Components specification [WC19] brings the component idea to HTML by enabling web
			developers to define their own reusable custom HTML elements as components that are
			marked up like regular HTML elements and that encapsulate custom behaviour and style. In
				section “Web Components”, we present custom elements and their potential
			with respect to our main requirements. This prepares a later discussion on a custom
			element that we have developed called WebSocket Element that enables GUIs to handle
			WebSocket communication in the X stack for multi-client systems.
Modern web applications, particularly games, are often multi-client systems.
			Multi-client applications require communication patterns that let clients talk to each
			other or that allow a server to push messages to clients without prior requests, as
			supported by the HTTP extension protocol WebSocket. Multi-client applications require
			both servers and clients, read GUIs in our context, to support such a protocol.
In section “Server support for multi-client applications”, we briefly present work that supports the
			WebSocket protocol and that recently was taken up and extended by the team at BaseX. The
			main contribution of this paper, in section “WebSocket Element”, is to
			present the client side of the WebSocket equation. This is a declarative custom element
			according to the Web Components specification WC19 named
			WebSocket Element that can be used in an HTML-based GUI just like a built-in HTML
			element. The WebSocket Element encapsulates code to initiate a WebSocket connection and
			to handle incoming declarative XML data that control the GUI. In the definition of a
			GUI, the WebSocket Element in its HTML surface form just declares the parameters for a
			WebSocket connection and how to handle XML data that arrive through the connection.
			Handling the incoming data can mean just to render HTML or SVG data or it may involve
			applying an XSL transformation and rendering the result. The WebSocket Element
			demonstrates how our two requirements for GUI technologies can be supported in the X
			stack for a multi-client web application.
GUI components are commonly considered to be event-driven systems whose functionality
			is triggered by events, mostly from user interactions. The classical tool to model the
			behaviour of an event-driven system is statecharts. Statecharts have arrived on the XML
			scene through the encoding language SCXML and a number of SCXML processors. In section “Statecharts and SCXML” we present the integration of the Apache Commons SCXML
			Interpreter, which is implemented in Java, into XQuery modules that implement
			event-driven applications that are run in BaseX. We expect to adapt that work so that we
			can integrate JavaScript SCXML interpreters into GUIs. That would contribute to our
			second requirement of having a declarative definition of GUI components in the X
			stack.
We conclude the paper with a number of discussion points and some final
			remarks.

Requirements for GUI technologies
The general task of a GUI is to represent application data or domain entities, to
			provide ways for the user to interact with this information and to save, on user
			request, changes that were made in the course of the interaction. In the web context, we
			consider GUI components that run in a web browser and whose communication with the
			application core is mediated by a web server via HTTP or via HTTP extensions such as
			WebSocket.
Our reference architecture for web applications in the Model-View-Controller (MVC)
			architectural style [ABCES17] has a one-to-one relationship
			between the Model and Controller components. The Model provides an API that is only used
			by the Controller. There are no outside influences on the Model. State changes in the
			Model are only triggered through API use by the Controller. The Controller has its own
			API that is used by any number of View components. The View components, which run in web
			browsers, and the Controller, which runs as an XQuery module in BaseX, communicate via
			HTTP through a mediating web server: On receiving an HTTP request from a View, the web
			server triggers a RestXQ-annotated method in the Controller module and sends the return
			value of that method call back to the view as an HTTP response.
For the purposes of this paper, a GUI is a View component in the MVC architectural
			style, and the Controller and Model together form the application core.
Figure 1: Web application architecture
[image:]

Our first and central requirement is that the GUI and
			the application core exchange declarative data that are encoded in XML.
In the life cycle of interactions between the GUI and the application core, initially
			the GUI receives from the application core over HTTP declarative XML-encoded information
			about the data that it needs to present and about the interactions it needs to offer.
			While the user interacts with the GUI, the GUI may signal user events to the application
			core and receive declarative data again. In a multi-client system, it may also receive
			push data from the core application without prior request. Eventually, the user closes
			the GUI with a final interaction that the GUI may also signal to the application
			core.
The central requirement leaves many options open: The communication between GUI and
			core application can be synchronous or asynchronous. It may follow the request-response
			cycle of HTTP or allow for push data from the application core over HTTP extensions such
			as WebSocket. The GUI may integrate the information it receives into its current display
			like in a single-page web application or it may build a completely new display. The GUI
			may be a simple form-based interface that collects user input or it may have elaborate
			displays and interaction methods and perform its own computations on user request in
			Rich Internet Application (RIA) fashion.
In this paper, we focus on GUIs that follow the WIMP (Window, Icon, Menue, Pointer)
			paradigm with discrete actions. For a discussion on WIMP and Post-WIMP styles see a
			paper by van Dam [D97].
The GUI as a system is responsible for constructing a visual representation of the
			data it receives, to render that representation onto a canvas within the boundaries of a
			viewport, and to handle general as well as application-specific user interactions such
			as resizing the viewport or scrolling as well as form field entries or button clicks.
			Finally, it needs to handle the communication to the application core. As to
			computations within the GUI, they range from input validation, formatting and
			interaction support to arbitrary computations that are part of the application.
As our second requirement, we only consider GUIs that
			can be defined by configuration or that can be programmed in a declarative manner.
			Towards that requirement, component technologies for GUIs are particularly
			promising.
To illustrate, let us look at a simple case study that we have used before, the game
			Guess the Number (GN). The game GN has two types of actors: Player and Game. Upon start
			of a game, Game thinks of a secret number (secret) between 1 and some upper
			bound (range). Player guesses repeatedly what the secret number is and
			receives feedback from Game whether the guess is high, low or correct. There is a limit
			to the number of guesses allowed (maxGuesses) that depends on
				range. Player wins if they guess the secret number correctly within the
			maximal number of guesses allowed; Game wins otherwise. There are no ties.
We model the information that the GN GUI receives from the GN application core in the
			following UML class diagram. Specific information instances are translated into a
			canonic XML encoding. The debugging section of the GUI screenshot in Figure 4 demonstrates the XML encoding.Figure 2: Class diagram for data presented to GN GUI
[image:]

The type attribute with one of the values welcomeScreen, firstGuessScreen,
			furtherGuessScreen, resultScreen and goodByeScreen informs the GN GUI component
			implicitly which screen to display, which interactions to offer and which requests to
			send back to the GN application core on user request. This domain model for the GN GUI
			is defined in the following table.
Figure 3: Domain model for GN GUI
Table I
	Screen type	Information	Interaction	Request
	 	 	 	guessTheNumber
	 	 	 	
	welcomeScreen	 	fill in range	newGame[range]
	 	 	submit	
	 	 	 	
	firstGuessScreen	id	fill in next guess	guess[id,guess]
	 	guessesSoFar (static, 0)	submit	
	 	maxGuesses	 	
	 	range	 	
	 	 	 	
	furtherGuessScreen	id	fill in next guess	guess[id,guess]
	 	guessesSoFar	submit	
	 	maxGuesses	 	
	 	range	 	
	 	evaluation last guess	 	
	 	 	 	
	resultScreen	id	play again	playAgain
	 	guessesSoFar	quit	quit
	 	maxGuesses	 	
	 	range	 	
	 	evaluation game	 	
	 	secret	 	
	 	 	 	
	goodByeScreen	 	 	

In the simplest case, the GN GUI just offers input fields for entering data and
			buttons to indicate user choice. We can also imagine that a richer GN GUI keeps track of
			the history of user guesses and advises the user on a guessing strategy.
In the next few sections, we discuss a number of GUI technologies that support our
			main requirements in a number of ways.

XHTML with XForms and SVG
Let us start out by reporting on a group of well-known technologies and discuss how
			they stack up against our requirements.
XForms is the classical GUI technology that supports XML-encoded data representation
			and exchange as demanded by our first requirement. An XForms GUI is controlled by XML
			data in instances within an XML-encoded model component. GUI widgets bind to XML
			elements within the instances as defined by XPath expressions. They can be used to read
			and write element data.
An XForms model expresses type constraints for instance data and defines derived
			values via XPath. It also defines activities that are triggered by user or system
			events. Most importantly, it configures submissions that are triggered by submit widgets
			in the GUI. The configuration declares which parts of the instances to submit to which
			service using which HTTP method; it also defines what to do with the data that are
			returned after the submission and how to handle errors. A typical XForms submission
			transfers part of XML-encoded instance data in the body of an HTTP request and replaces
			instance data in AJAX fashion with the XML-encoded response data. Hence, XForms
			satisfies our first requirement.
XForms also supports a declarative definition of the graphical and dynamic side of a
			GUI. XForms widgets are declarative XML-encoded components that are bound to elements in
			instances via XPath, as we have mentioned. The XForms processor handles the data
			exchange between widgets and instance data, resolving any dependencies. It also performs
			input validation as defined through XPath expressions and XML Schema data types. XPath
			widgets have a uniform and declarative system for hints and labels. They each have a
			clearly defined presentation-independent functionality, such as accepting a typed input
			value, selecting a menu item or triggering an event. XForms widgets approximately cover
			the range of HTML form elements.
The widgets are hosted by an XHTML document and can therefore be placed and styled
			with HTML and CSS. Since HTML5, the HTML host document may include SVG code that can
			also position and style XForms widgets as foreign objects.
We have implemented a GUI for GN as a single XHTML page with embedded XForms
			components.
 The XForms model holds in its main instance the current screen type and the
			information for the current screen as specified in Figure 2.
			In two separate instances, it holds the information that needs to be edited in the
			screen and transferred to the server as detailed in Figure 3. There is one separate instance to fill in the
			range and another one to fill in the next guess. The latter copies the id of the current
			game from the main instance since that needs to be retransmitted back to the Controller
			component, which is stateless and handles any number of games concurrently. The copying
			accommodates the fact that an XForms submission can only submit data from a single
			instance.
The XForms model also defines all submit actions that GN requires. A submit action
			triggers a GET or a POST HTTP request for static or dynamic requests, respectively. A
			POST request submits the appropriate instance in the body of the request. Each response
			replaces the main instance with the HTTP response data.
In effect, the GN application core sends XML elements to the GN GUI that describe the
			data that specify the type of screen and the information that the GUI is supposed to
			display next. Again, see Figure 2 and Figure 3 for clarification. The specific information that
			is to be displayed for each screen type is specified in the domain model for component
			the GN GUI in Figure 3.
The body of the XHTML page holds a section for each screen type with XForms widgets
			that interact with the XForms model. Information about the current state is displayed in
			a table using XForms output widgets; user input is accepted through XForms input widgets
			and buttons that trigger XForms submissions. Only the screen type area that matches the
			main instance's current screen type is visible. The XForms model has a helper instance
			with a CSS attribute "display: none" that is dynamically read into each section that is
			inactive.
A less tabular and more graphical GUI for GN uses XForms widgets linked to the same
			XForms model and includes them into an SVG graphic. The widgets are included into the
			SVG code as HTML-encoded foreign objects that can be styled through CSS and positioned
			and transformed through SVG. In this variant of the GUI, there are no direct
			representations of the conceptual screens. Instead, the widgets themselves know when to
			present themselves depending on the information in the XForms model.
Below, we include a screenshot of the two versions of the GN GUI side by side.Figure 4: Two variants of component View
[image:]

Let us summarize our experience with XForms.
First, XForms fully satisfies our first requirement that the GUI and the application
			core exchange declarative data in XML format.
Second, XForms satisfies the second requirement that the GUI itself can be defined
			declaratively up to a point.	Due to the set of widgets that XForms offers, XForms GUIs are restricted
						to form-based interfaces.

	The XForms widgets that a GUI uses are defined in a declarative way, which
						includes binding to the XML-encoded instance data. Their functionality is
						supported by the XForms processor.

	The positioning and styling of XForms widgets can be done in a flexible
						and declarative way using HTML, CSS and SVG.

	There is an annoying limitation for data access within the XForms GUI:
						Instance data, when presented in the GUI, are always wrapped into XForms
						widgets. They are not directly part of the HTML. That means that, for
						example, the arched text in the graphical GN GUI is literal text in the SVG
						code that is displayed on some condition in the XForms instance data. It
						cannot, as far as we know, be taken directly from XForms instance data, so
						that it can be typeset along the arch by SVG.

	Finally, tool support for XForms is adequate but not ideal. HTML browsers
						do not support XForms natively. We are using XSLTForms, which depends on
						XSLT 1 support in browsers. It is reliable and supports most if not all
						features of XForms. It does not appear to be in active development, and
						browser support even for XSLT 1 is not guaranteed. A newer option is the
						XForms processor that is written in SaxonJS and that only depends on the
						ever-present JavaScript support in browsers.

We briefly contrast use of XForms with use of HTML forms in the context of HTML and
			SVG. On the surface, XForms and HTML appear similar since they have similar sets of
			widgets. And HTML forms as part of HTML have great browser support. HTML pages can
			accept XML data in an HTTP response and can display them, styled by CSS, for example in
			a frame. The crux, however, is that HTML forms need to use JavaScript to bind to these
			data for editing or for submission. Hence, the pure combination of HTML, HTML forms and
			SVG completely fails our first requirement for GUI technologies and falls short of the
			second one in central aspects.
Naturally, there are JavaScript frameworks that fill that gap. Please note that we
			exclude them for reasons discussed in section “Requirements for GUI technologies”.

Web Components
Compositional and reusable components are a promising idea in GUI development that
			have found their way into HTML. It is common practice to use
			arbitrary XML elements in an HTML context. Current browsers classify such elements as
			HTMLUnknownElement, insert them into the DOM and format them as inline elements like
			span elements. They even apply CSS styles to them. The Web Components
				specification [WC19] builds on that practice by
			classifying custom elements as "proper" HTMLElement objects and by extending the
			behaviour of such elements, thus turning them into real components.
The Web Components specification enables developers to define custom elements with
			custom attributes that are used just like built-in elements in an HTML document and that
			are treated just like build-in elements by HTML browsers. They are seamlessly integrated
			into the DOM and available to JavaScript code through the DOM HTML API. They can be
			styled with CSS, observed by event listeners, go in and out of focus according to
			keyboard events etc. The real innovation is that custom elements can have their own
			custom behaviour that is defined by JavaScript. They are also capable of encapsulating
			their own data and style through a shadow DOM. A custom list element for a todo list,
			for example, can offer ways to tick items or to collapse and expand sublists.
On the simplest level, a custom element can just expand the HTML vocabulary, as
			demonstrated in Figure 5. [TODO: Change class name to
			Todo_List and element name to todo-list.] The thus-defined custom element todo-list
			behaves just like a span element but has semantic meaning built into its name. Behaviour
			and style are added by extending the class of the custom element with lifecycle
				functions.Figure 5: Defining a Custom Element
[image:]

Obviously, in the context of GUIs new widgets can be defined as custom elements. It is
			even conceivable to define a system of widgets that are bound to XML data, reinventing
			XForms.
Ulrich in his Bachelor Thesis [U18] has defined
			a custom element ws-stream for HTML GUIs that establishes a WebSocket connection to a
			server and then handles XML data that are pushed over that connection, thus supporting
			our first requirement for GUI technologies. We summarize this work in section “WebSocket Element”.
As a component approach, custom elements within the HTML Components context certainly
			support reuse of components. Custom elements can also be composed from lower-level
			components. They are lacking a system of parameter passing and communication, though,
			that is the hallmark of composition support in React.

Server support for multi-client applications
Modern web applications, particularly games, are often multi-client systems.
			Multi-client applications require communication patterns that let clients talk to each
			other or that allow a server to push messages to clients without prior requests. The
			HTTP extension protocol WebSocket supports these patterns. It has been identified as the
			best current technology for these purposes with respect to support and
				functionality [C17].
Multi-client applications require both servers and clients to support the new
			protocols. In this section, we address WebSocket support for BaseX, the server system
			that we use in our projects.
In previous work [ABCES17] we have outlined how to
			integrate server-push into the X stack, based on a modified form of BaseX that was first
			presented by Conrads [C17]. The concepts and
			implementations were later refactored and better integrated into the BaseX server by
				Ulrich [U18] who also proposed a client-side
			solution as a counterpart to the server. As thesis work at University of Konstanz,
				Finckh [F18] collaborated with the BaseX
			team to integrate a WebSocket implementation into the BaseX production system.
Today, BaseX natively supports WebSocket with RestXQ-like annotations to react to
			different WebSocket events (onConnect, onMessage) on the server side. The BaseX
				documentation [B19] describes the usage and
			application of the new annotations and the new WebSocket XQuery module used to send
			messages or set WebSocket parameters.
The WebSocket protocol is low-level with little ex-ante support for commonly required
			features. Hence, it has been extended to STOMP, which supports channels and explicitly
			defines message formats. STOMP support is part of a BaseX development version that has
			not been officially released yet.
In section “WebSocket Element”, we discuss a new HTML component for GUIs
			called WebSocket Element that handles the client side. The WebSocket Element can
			interface with any server component that supports STOMP over WebSocket. Our demo
			applications use the BaseX development version that supports STOMP over
			WebSocket.

WebSocket Element
Requirements
A GUI that participates in a multi-client web application needs two capabilities:
				First, a method to initiate a connection with a server through WebSocket. Second: a
				way to receive and process data through this connection from the server.
The HTML 5 WebSocket API provides these capabilities through JavaScript code.
					Ulrich [U18] encapsulates these tasks in
				a new, purely declarative HTML component that he calls WebSocket Element. A
				WebSocket Element in an HTML page looks just like a built-in HTML element that is
				configured through attributes. WebSocket Element is defined, however, as a custom
				element in the Web Components framework that was introduced in section “Web Components” and, hence, has interesting behaviour.
The abstract idea of a custom HTML element that wraps the client side goes back to
				the Master Thesis of Conrads [C17]. Custom
				elements as defined in the Web Components specification turn out to be the perfect
				fit to implement this concept. The implementation defines the functionality of the
				WebSocket Element with JavaScript and uses the WebSocket protocol to allow
				synchronous bidirectional communication. In fact, our implementation uses the STOMP
				protocol with its predefined message formats and channel concepts. After initiating
				the bidirectional connection with a server on load of the HTML page, the WebSocket
				Element can then receive declarative data in the form of XML to which it can apply
				its own XSL transformation or it can receive and render SVG or HTML data that were
				generated by the server. Hence, the WebSocket Element contributes to our two main
				requirements for GUI technologies in a multi-client scenario.

Basic WebSocket Element
In its most basic form the WebSocket Element looks like the following: Figure 6: Basic WebSocket Element (HTML code)
[image:]

Behind the scenes, the WebSocket Element is a custom element as explained
				in section “Web Components”]. The attributes configure the functionality
				of the custom element and are used by its JavaScript implementation. It has an id
				like other HTML elements which allows us to identify and style it with CSS or to
				dynamically add and remove WebSocket Elements to and from the DOM through
				JavaScript. Furthermore, the WebSocket Element needs to know to which location the
				WebSocket connection should be established to. The attribute url lets us specify the
				server address. To separate different applications and to create channels within a
				web application the subscription attribute can be set to a path to which the
				WebSocket Element automatically subscribes after the connection is established. It
				then listens to WebSocket messages on the subscribed paths or channels and inserts
				the data it receives into its own content. Since the page doesn't have to be
				reloaded and the content is streamed continuously, the application has the look and
				feel of single-page applications.
The usage of the WebSocket Element is as simple as importing the necessary
				JavaScript files and defining the element somewhere on the HTML page. As soon as the
				page is loaded by the browser the WebSocket Element connects to the WebSocket
				server, handles the subscription process with the server and initiates the element
				based on the given configuration.

Imperative and declarative approach
Let us constrast the simple declarative use of the WebSocket Element to the
				imperative appraoch that we have used previously [C17] with one of our modified versions of the BaseX
				server to implement server-push with channels. The JavaScript code in Figure 7 demonstrates that we had to instantiate a
				custom endpoint object and parameterize it with callback functions that map to
				WebSocket events onMessage, onClose and onOpen. The endpoint object, when started,
				using the callback function configured for onOpen, would call the WebSocket API of
				the browser behind the scenes to open a connection to the modified BaseX server. The
				callback function would need to create a JSON object used as a subscribe frame to
				tell the server which channel to subscribe to.
Figure 7: JavaScript to connect to the server
[image:]

The most obvious difference to our declarative WebSocket Element approach is the
				higher complexity in terms of length and code. While this code may not be hard to
				understand for more experienced developers it does present an entry barrier to web
				development for domain experts and people without any significant coding experience
				who could use their domain expertise to build web applications with XML [B16]. No knowledge of JavaScript callback functions,
				variables or loops is needed and necessary security checks to ensure correctly
				formed attributes are done in the background using the WebSocket Element. The
				imperative solution becomes even more complicated when multiple WebSocket
				connections to different destinations must be opened, as this requires duplicate and
				more complex code. The WebSocket Element can be declared and configured multiple
				times on the same page like any other HTML element. Like other HTML elements it
				conveys meaning in the tag itself and encapsulates its functionality which could be
				extended easily in the future by adding more attributes. The modularity of the
				declarative approach makes it flexible yet easy to use as many attributes are
				optional.

Advanced functionality
Our basic WebSocket Element contains only the mandatory attributes to establish a
				WebSocket connection. There are many additional parameters which can be used to
				extend the functionality as needed. These include settings about automatic
				reconnection, ping frequency, client side XSLT support and initial data to load. In
				the example above the data received from the server will not be altered, only
				inserted into the page for rendering as content for the WebSocket Element. This is
				suitable for HTML with CSS, SVG or other pre-generated formats supported by the
				browsers. The following code shows a WebSocket Element which receives raw XML data
				from the server which is then transformed by the browser given an XSL stylesheet and
				parameters. Additionally the geturl attribute specifies a relative URL from which
				the first state of the element should be fetched. One important goal was to make the
				element easy to use but extendable for advanced tasks.Figure 8: Advanced parameters
[image:]

			

Architecture
The figure below demonstrates the interactions between the different components in
				a multi-client web application using the WebSocket Element and a WebSocket enabled
				server in an MVC architectural style. In a multi-client application many different
				views and WebSocket Element instances can exist. For the sake of simplicity, the
				figure shows the communication from only one client's perspective. From the GUI
				perspective, WebSocket Elements are part of the View and incoming messages will
				update the display according to how the View is realized. In the figure, the
				WebSocket Element and the View are shown as separate components to illustrate the
					interaction.Figure 9: Multi-client web application architecture
[image:]

This architecture extends our reference architechture as shown in Figure 1. A View communicates with the web server
				through HTTP but is not using the HTTP response. Instead, the web server triggers a
				method in the Controller through RestXQ. The Controller defines through the
				WebSocket module a response that it wants to be sent to all subscribing WebSocket
				Element instances. The web server follows through and the WebSocket Element inserts
				and potentially processes the response by transforming it and updates the view. The
				bidirectional channel between the WebSocket Element and the web server is used for
				ping and pong messages to ensure the liveness of the connection and to handle the
				subscription to channels.

Example application: Tic-Tac-Toe
We have implemented a two-player demo application for the game Tic-Tac-Toe. The
				demo uses BaseX on the server side. In this case, the application core transforms
				declarative state description into SVG and sends that to the individual clients. A
				version that passes the state description to the WebSocket Element in each of the
				clients and performs the XSL transformation into SVG on the client side is equally
				possible.
 Some important methods and concepts of using the WebSocket Element will be
				highlighted in this chapter to show the practical usage in a multi-client web
				application. The Tic-Tac-Toe game is implemented on the BaseX server (including
				STOMP support). It uses XML technologies: 	XQuery as the serverside programming language.

	XSLT to generate HTML and SVG to render in the browser.

	XML as data format to describe a Tic-Tac-Toe game.

 Furthermore it implements the following functionality: 	Playable by 2 players in a distributed way.

	Only one instance of the game, so only one game server to play
							on.

			
We will look at two methods which are important for a multi-client application and
				show how the WebSocket Element is created and the communication channels
				established.
Before players can play a game together they first need to join the game.
Figure 10: The join method
[image:]

As seen in Figure 10 the join method is using RESTXQ and
				awaits a POST request on the specified path. Its main purpose is to build a HTML
				page for the calling client and create a WebSocket Element with the specified
				playerID. The method uses BaseX's request module to get the hostname and port
				component of the incoming HTTP request. It then constructs the WebSocket path to
				which the WebSocket Element will later connect, the URL where the first state should
				be retrieved from (getURL) and the subscription attribute for the WebSocket Element.
				By using the request module no parameters like "localhost" or the port have to be
				hard coded and the game can be played in different network configurations not only
				on localhost.
The join method then proceeds to create the HTML page which contains all necessary
				dependencies (JQuery and STOMP) and the JavaScript file for the WebSocket Element
				itself. Inside the body of the HTML our newly defined WebSocket Element is defined
				and configured using parameters. After that the method returns the HTML to the
				client, the browser starts parsing the site and connects via WebSocket to the URL we
				specified in our join method. Furthermore, the subscription attribute is evaluated
				to join for example the channel "/ttt/X". The client will be reachable through the
				channel "/ttt/X" while another client can join channel "/ttt/O". Finally the
				WebSocket Element will issue a GET request to our getURL, which in the case above is
				our draw method. This will trigger the server to push the current state to all
				clients. We have now successfully established a WebSocket connection with the BaseX
				server by calling our join method.
As we now have clients connected through WebSocket Elements to our BaseX server,
				we can now proceed to send messages to them, to inform them of the state of the
				game. This is accomplished using a generic draw
				method, shown in Figure 11. The main purpose of the method is to
				send the current game state through WebSocket to all connected clients.
Figure 11: The draw method
[image:]

The drawGame method doesn't change the state of our game and is annotated using
				RestXQ's GET, awaiting requests to the specified path. The game is described by a
				XML model which is transformed into HTML and SVG by the stylesheet "ttt_game.xsl".
				The method gets the stylesheet and the wsID's of all currently connected clients.
				The getIDs() method uses BaseX's ids() method from the WebSocket module. Inside the
				return the method iterates through all connected WebSocket clients, gets their
				respective ids and generates for each of them a visual presentation of the game
				using the before mentioned stylesheet. In a last step drawGame uses the send method,
				which sends the transformedGame to the clients using the sendChannel($data, $path)
				method introduced with BaseX's STOMP server.
Inside the browser on the client side the WebSocket Element receives the HTML and
				SVG sent by the drawGame method and updates it's view accordingly, by merely
				inserting it into it's own content. The clients can now issue an action in the game,
				which ultimately triggers the drawGame method to propagate the change of state to
				all connected clients. Figure 12 shows the user interfaces of two
				clients playing against each other.
Figure 12: User Interface of the Tic-Tac-Toe
[image:]

The two functions showed some important aspects while working with the WebSocket
				Element and BaseX. It showed that building a multi-client application within the
				XStack doesn't result in complicated long code and only some additional methods have
				to be used to handle the WebSocket connection. However, many functions used by a
				locally playable Tic-Tac-Toe can be reused without further modifications in a
				multi-client application.

Final remarks
WebSocket is a widely supported technology which all major browsers implement. The
				custom element (V1) specification is fully supported by Chrome and Firefox, whereas
				Safari and Opera only implement the special case on which the WebSocket Element is
					built [CIU19]. Microsoft Edge does not
				implement custom elements yet, but support for this often requested feature is
				marked as "in development" [M19].
The WebSocket Element works in conjunction with HTML, CSS and SVG on the client
				side. We are currently investigating how the WebSocket Element can be integrated
				into other GUI technologies such as XForms and Saxon JS.
The WebSocket Element simplifies the development of multi-client web applications
				in the X stack, as shown by the proof of concept Tic-Tac-Toe, which is implemented
				by using BaseX's STOMP WebSocket implementation on the server side and the WebSocket
				Element on the client side.

Statecharts and SCXML
GUI components are commonly considered to be event-driven systems whose functionality
			is triggered by events, mostly from user interactions. Typically, due to the nature of
			those systems, there are constraints to the legal sequences of events, and the specific
			activity that is triggered may be dependent only on a specific pattern in the history of
			previous events. The classical tool to model such abstract “behaviour” of an
			event-driven system is statecharts. Statecharts have been first introduced by Harel as
			documented in a book [HP98] he co-authored with
			Politi. They have later, in the object-oriented variant of state diagrams, become part
			of UML2; see [SSHK15] for a textbook introduction
				and [H99] for an extensive discussion of the
			use of statecharts in software engineering and how they help to cut the complexity of
			models and of model-driven implementations.
Most recently, with SCXML (State Chart XML) [B15], an
			XML encoding language for statecharts has been standardized, bringing statecharts into
			the realm of XML technologies. SCXML fully supports the semantics of statecharts defined
			by Harel and furthermore, specifies additional elements, for example for communication
			to external systems or for execution of specific activities. A number of research papers
			discuss the use of SCXML in particular, among them the Bachelor Thesis of
				Roxendal [R10], invited expert to the W3C
			committee that defined SCXML.
The introduction of SCXML has led to a need and rise of systems that are able to
			interpret or run an SCXML-encoded statechart that models the behaviour of a system,
			calling system activities when changing state as defined by the statechart and therefore
			making SCXML executable in a system. Such SCXML processors directly execute models for
			application behaviour, interfacing with application activities. Grubmüller [G18] discusses a number of such SCXML processors
			which mainly differ in their programming languages as well as in their functionality of
			supporting the standardized semantics of SCXML.
In a web application that is modeled in the MVC architectural style, the Model
			component is another event-driven system that may have dynamically instantiated
			sub-components that are again also event-driven. In a game, for example, we might have a
			single lounge in which players assemble for games and a sub-component for each game that
			is currently active. Events are API calls for the Model in the form of function calls or
			HTTP requests that are typically issued by the Controller component. In the X stack, the
			Model component is implemented as an XQuery module that runs, for example, in the BaseX
			database system [B16]. That module needs to be able
			to instantiate SCXML processors for SCXML-encoded statecharts at runtime, to forward
			events to these SCXML processors and eventually to delete the SCXML processors.
			Obviously, the module also supports an API to handle activities that are triggered by
			the statecharts.
In a previous study [ABCES17], we have investigated the
			possibility of using an SCXML processor that is implemented in XQuery [S15,E17] to support the
			implementation of a Model component in a web application. Whereas it is attractive to
			use an SCXML processor that is implemented in XQuery in the X stack, the limitations in
			functionality of current XQuery implementations have led us to a different approach,
			namely to integrate the Apache Commons SCXML Interpreter [A17] into the X stack [G18]. Apache Commons SCXML Interpreter is a stable,
			functionally complete and well documented SCXML interpreter that is implemented in Java
			as a project of the Apache Software Foundation.
How can the Apache Commons SCXML Interpreter, which is implemented in Java, be
			connected to a Model component that is implemented as an XQuery module and runs in the
			BaseX database system? Grubmüller [G18]
			provides a solution that is based on Java bindings as offered by BaseX
			 to make Java classes available to XQuery
			modules. The solution is illustrated in the figure below.Figure 13: Architecture with SCXML interpreter
[image:]

Therefore, a new XQuery module handles the communication between the XQuery module of
			the Model component and the SCXML interpreters, which are Java objects. The particulars
			of Java bindings in BaseX require a second communication module written in Java that
			manages the different SCXML interpreters that are active at any time such that every
			instance of the SCXML interpreter maintains its own state, for example, the state of one
			specific game instance. The current state as well as the next
			possible events out of this state of every interpreter are additionally saved in
			XML-format to retrieve this information by keeping Java Binding calls as minimal as
			possible.
Two case studies with different levels of complexity in terms of system behaviour,
			Tic-Tac-Toe and Blackjack, demonstrate the validity of the approach. In both cases, the
			declarative modeling of the behaviour of the Model component as statecharts, the
			representation of the behaviour models as SCXML documents and their interpretation with
			the Apache Commons SCXML interpreter facilitate a model-driven approach which also
			highlights the added value of statecharts. First of all, using statecharts for
			describing and modeling the behaviour of a system fully captures how the system should
			behave under certain conditions and events in a standardized manner. This creates a
			clear picture for everyone dealing with the system where no room for misunderstanding is
			left. This can be demonstrated when modeling the behaviour of the game
				Blackjack [G18] which is shown in the
			figure below.Figure 14: Statechart for the game Blackjack
[image:]

As the game Blackjack has non-trivial behaviour (there are several actions players can
			take under certain conditions), statecharts are the appropriate tool for modeling as
			they provide a rich set of features like higher order states that allow the creation of
			a logical hierarchy of states. One example for this are the two states
			“GAME_RUNNING” and “GAME_OVER” which are obviously on the same
			level of abstraction while “GAME_RUNNING” consists of several lower order
			states describing when the game Blackjack is currently being played. Another benefit of
			this approach is that all necessary main functions which are needed to implement the
			system are kind of predefined within the statechart in the form of events that connect
			the states. This improves the understanding of the system and allows for a more
			structured way to implement it.
SCXML supports all the semantics introduced by statecharts and thus, the encoding to
			SCXML is straightforward. Furthermore, the implementation of Apache Commons SCXML allows
			to call Java functions within state transitions out of an SCXML [A17]. This is important as every interpreter instance has to be
			able to call the corresponding application functions which are located in an XQuery
			module in our case. This is realized by sending HTTP requests from a custom Java
			function to the function in the XQuery module by using RestXQ annotations [G18].This approach also allows to send any number
			of HTTP requests within one state transition meaning that several XQuery functions can
			be called independently. As a result the SCXML interpreter fully controls how the system
			behaves and which functions are called when a certain event occurs and states are
			changed.
This model-driven approach achieves a strict separation between behaviour and
			implementation of the system logic as the behavioural component is completely expressed
			within the statechart and the encoded SCXML. Through this separation the implementation
			of the system logic gets much clearer and more compact as the behaviour is controlled
			separately. This effect was observed even with a comparatively simple system like
			TicTacToe but gets even more impressive and useful for more complex systems.
We currently investigate how to transfer the work that was done for Model components
			that run in an XML database system on the server to GUI components that run in a web
			browser. The goal, again, is a declarative approach that generates code from models. We
			intend to model the behaviour of GUI components with statecharts, encode the statecharts
			with SCXML and have them executed by SCXML interpreters. Since there are a number of
			promising SCXML processors written in JavaScript [G18], the language of web browsers, we expect the
			integration of SCXML processors into the client side of the X stack to be
			straightforward.

Conclusion and future work
In this paper, we have extended our coherent and coordinated set of practices for
			developing XML-powered web applications from models by taken a closer look at
			technologies for graphical user interfaces. The practices draw on previous work and have
			been and are being vetted with case studies. As always, proven principles and practices
			from software engineering have been a source of inspiration.
We have presented a number of GUI technologies that are useful for our purposes. They
			have different strengths and weaknesses, so we still need to come up with a framework to
			mix and match these technologies.
	We have looked at GUI technologies in browsers in the context of the trusted
					MVC architectural style, which allows to decouple the user interface from the
					other components of an application. We have defined requirements for GUI
					technologies and we have investigated and evaluated a number of specific
					technologies.

	A number of GUI technologies are still under consideration, most notably
					SaxonJS and React. We are also interested in ways to deal with time in GUIs and
					for enriching GUIs with post-WIMP interaction methods and computational
					capabilities.

	Previously, we have shown how RestXQ annotations of XQuery functions enable us
					to rely on pure HTTP communication between clients and servers (no frameworks!)
					We have extended this declarative approach to communication over the STOMP and
					WebSocket protocols for server push, introducing a newly developed HTML
					component called WebSocket Element [U18]
					that initiates communication to a server and handles the incoming XML data. This
					is a declarative way to integrate AJAX-like calls into a web page with the added
					feature of allowing for incoming data from servers that are not preceded
					one-on-one by requests from the client. The BaseX server is now enabled for
					server-push communication through RestXQ-like annotations and a new WebSocket
					module. This work is was inspired by previous theses at TUM [C17,U18]

	The complexity of event-based systems such as model or user interface
					components can be reduced by introducing the concept of behaviour that is
					modeled by statecharts. We have demonstrated how SCXML-encoded statecharts can
					be instantiated dynamically and executed with XML technology in a model
					component by interfacing to the fully functional SCXML processor of the Apache
					Commons SCXML project [G18]. Further
					work will look into JavaScript SCXML processors that can be integrated into a
					GUI component in a browser.

All solutions are based on W3C or industry standards and use freely available software
			components.
The main motivation for this work is to be able to generate serious games as web
			applications from models. Systematic analysis of user interactions with these games are
			used to determine variants of games in an adaptive fashion, to improve usability and to
			further learning.
Another motivation for this line of work has been to support XML experts as end-user
			programmers
In teaching a lab course on XML technology, we have continued to make the experience
			that no-frills web applications, reduced to essentials, which do not require any
			frameworks, are a useful and appreciated pedagogical approach for teaching computer
			science students. Students who only use X stack technologies for web application
			projects develop practical skills in SVG, XQuery and XSLT. Our austerity requirement proves to be an effective pedagogical tool for
			raising the level of conceptual knowledge, appreciation and practical competence in the
			area of XML technologies. This is the not-so-hidden agenda in the lab. We consider this
			outcome more valuable than instructing students in another short-lived web application
			framework.

Bibliography
[A17] The Apache Software Foundation.
				Apache Commons SCXML. [online]. [cited 5 December 2017].
				http://commons.apache.org/proper/commons-scxml.
[ABCES17] Zahra Al-Awadai; Anne
			Brüggemann-Klein; Michael Conrads; Andreas Eichner; Marouane Sayih. XML
				Applications on the Web: Implementation Strategies for the Model Component in a
				Model-View-Controller Architectural Style. In Proceedings of Balisage: The Markup Conference 2017. Balisage Series on
			Markup Technologies, vol. 19 (2017). [online]. [cited 2 April 2019]. 	https://www.balisage.net/Proceedings/vol19/html/Bruggemann-Klein01/BalisageVol19-Bruggemann-Klein01.html. doi:https://doi.org/10.4242/BalisageVol19.Bruggemann-Klein01.
[B15] Jim Barnett (Editor-in-Chief). State
				Chart XML (SCXML): State Machine Notation for Control Abstraction. W3C
			Recommendation 1 September 2015. [online]. [cited 11 April 2016].
				http://www.w3.org/TR/2015/REC-scxml-20150901/.
[B16] Anne Brüggemann-Klein. The XML
				Expert's Path to Web Applications: Lessons Learned from Document and from Software
				Engineering. In Proceedings of XML In, Web Out:
				International Symposium on sub rosa XML. Balisage Series on Markup
			Technologies, vol. 18 (2016). [online]. [cited 22 July 2017]. 	https://www.balisage.net/Proceedings/vol18/html/Bruggemann-Klein01/BalisageVol18-Bruggemann-Klein01.html. doi:https://doi.org/10.4242/BalisageVol18.Bruggemann-Klein01.
[B19] BaseX Team. WebSockets
				documentation. [online]. [cited 9 April 2019].
				http://docs.basex.org/wiki/WebSockets.
[BD09] Bernd Brügge; Allen Dutoit.
				Object-Oriented Software Engineering Using UML, Patterns, and Java.
			Prentice Hall, 2009.
[BRHS12] Anne Brüggemann-Klein; Jose Tomas
			Robles Hahn; Marouane Sayih. Leveraging XML Technology for Web
				Applications. In Proceedings of Balisage: The Markup
				Conference 2012. Balisage Series on Markup Technologies, vol. 8
			(2012). [online]. [cited 22 July 2017]. doi:https://doi.org/10.4242/BalisageVol8.Bruggemann-Klein01. Updated version available on request from
			brueggemann-klein@tum.de.
[BSW00] Jan Bosch; Clemens
			Szyperski; Wolfgang Weck. Component-Oriented Programming. In European Conference on Software and Data Technologies.
			Springer, 2000.
[C17] Michael Conrads.
				Multi-Client Web Applications with XML Technologies. Master Thesis
			Technical University of Munich, 2017.
[CIU19] Alexis Deveria. Can I
				use Custom Elements? [online]. [cited 9 April 2019].
				https://caniuse.com/#search=Custom%20Elements.
[D97] Andries van Dam. Post-WIMP User
				Interfaces. In Communications of the ACM
			Vol. 40 No. 2, 1997. [online]. [cited 5 July 2019].
				http://immi.inesc.pt/immi04/artigos/p63-van_dam.pdf. doi:https://doi.org/10.1145/253671.253708.
[E04] Eric Evans. Domain-Driven Design:
				Tackling Complexity in the Heart of Software. Addison-Wesley,
			2004.
[E13] Jens Erat. Fine Granular
				Locking in XML Databases. Bachelor Thesis University of Konstanz,
			2013.
[E17] Andreas Eichner. SCXML in
				Web-Based Applications. Master Thesis Technical University of Munich,
			2017.
[F00] Roy Thomas Fielding.
				Architectural Styles and the Design of Network-based Software
				Architectures. PhD Thesis University of California, Irvine
			2000.
[F02] Martin Fowler. Patterns of
				Enterprise Application Architecture. Addison-Wesley, 2002.
[F18] Johannes Finckh.
				Erweiterung der Client-Kommunikation in BaseX um die Funktionalität von
				WebSockets. Master Thesis University of Konstanz, 2018.
[G10] Florent Georges. HTTP Client
				Module. [online] [cited 3 April 2017].
				http://expath.org/spec/http-client.
[G17] Christian Grün and Team BaseX. The XML
				Database. [online]. [cited 28 March 2017].
				http://basex.org.
[G18] Christina Grubmüller.
				Statecharts in XML-Based Web Applications. Bachelor Thesis Technical
			University of Munich, 2018.
[H99] Ian Horrocks. Constructing
				the User Interface with Statecharts. Addison-Wesley, 1999.
[HP98] David Harel; Michal Politi.
				Modeling Reactive Systems with Statecharts: The STATEMATE Approach.
			McGraw-Hill, 1998. [online] [cited 19 2016]
				http://www.wisdom.weizmann.ac.il/~harel/reactive_systems.html.
[HW12] Tom Hughes-Croucher; Mike Wilson.
				Node: Up and Running: Scalable Server-Side Code with JavaScript.
			O'Reilly, 2012.
[M19] Microsoft. Edge Platform
				Status Custom Elements. [online]. [cited 9 April 2019]. 	https://developer.microsoft.com/en-us/microsoft-edge/platform/status/customelements/?q=custom%20elements.
[R10] Johan Roxendal. Managing Web
				Based Dialog Systems Using StateChart XML. Bachelor Thesis University of
			Gothenburg 2010.
[R11] Jonathan Robie et al. (Editors).
				XQuery Update Facility 1.0. W3C Recommendation 17 March 2011.
			[online]. [cited 22 July 2017].
				https://www.w3.org/TR/xquery-update-10/.
[R14] Jonathan Robie et al.
				(Editors). XQuery 3.0: An XML Query Language. [online]. [cited
			22 July 2017]. https://www.w3.org/TR/xquery-30/.
[S15] Christoph Schütz. An SCXML Interpreter
				in XQuery. [online]. [cited 7 April 2017].
				https://github.com/xtoph85/SCXML-XQ.
[SKB14] Marouane Sayih; Martin Kuhn; Anne
			Brüggemann-Klein. GameX — Event-Based Programming with XML Technology. In
				Proceedings of Balisage: The Markup Conference
				2014. Balisage Series on Markup Technologies, vol. 13 (2014). [online].
			[cited 20 April 2016].				http://www.balisage.net/Proceedings/vol13/html/Bruggemann-Klein01/BalisageVol13-Bruggemann-Klein01.html. doi:https://doi.org/10.4242/BalisageVol13.Bruggemann-Klein01.
[SSHK15] Martina Seidl; Marion Scholz;
			Christian Huemer; Gerti Kappel. UML@Classroom. An Introduction to Object-Oriented
				Modeling. Springer-Verlag, 2015.
[U18] Philipp Ulrich.
				Model-Driven Development of Multi-Client Web Applications with XML
				Technology. Bachelor Thesis Technical University of Munich,
			2018
[WC19] Webcomponents Team.
				Webcomponents. [online]. [cited 5 April 2019].
				https://www.webcomponents.org/
		
[WSM13] Vanessa Wang; Frank Salim; Peter
			Moskovits. The Definite Guide to HTML5 WebSocket. APress 2013.
		

Balisage: The Markup Conference

Graphical user interfaces in the X stack
Zahra Al-Awadai
Technical University of Munich (TUM)

<alawadai@in.tum.de>

Anne Brüggemann-Klein
Technical University of Munich (TUM)

<brueggemann-klein@tum.de>

Christina Grubmüller
Technical University of Munich (TUM)

<christina.grubmueller@tum.de>

Philipp Ulrich
Technical University of Munich (TUM)

<philipp.ulrich@tum.de>

Balisage: The Markup Conference

content/images/Bruggemann-Klein01-007.png
<ws-stream id = "myID" url = "ws://localhost:8984/ws" subscription = "/global®
xslt = "/myxsl.xslt" xslparam = “color = red" geturl = "/start">Hello</ws-stream>

content/images/Bruggemann-Klein01-006.png
$(function () {
endpoint = Endpoint();
endpoint.start(insertResponse, undefined, subscribe);

s

function subscribe(){
let JSONObject = {"type": "subscribe", "data": gameID,"clientID": playerID};
endpoint.SEND(JSONObject);
endpoint.GET("/rps/draw/" + gameID, insertResponse);

function insertResponse(e) !
if(e !== null){
response = JSON.parse(e.data)
$("#gameWindow") .html response.data);

content/images/Bruggemann-Klein01-009.png
declare
srest:2oST
Soutput:method(
srestipath("/ttt/Join/ {SplayerID}")
function ttt:join(splayerlD as xs:string) [
let request:hostnane ()
let re ()
let £n:concat (hostnae,
let swebsocketURL := £
let sgetURL := fn:concat(”
let ssubscription
let sheml
<ntal>
<head>
<titlesTic-Tac-Toe</title>
<script sre="/static/tictactoe/dS/jquery-3.2.1.min. Is"></script>
<script sro="/static/tictactoe/dS/stomp. Js"></script>
<script sre="/static/tictactoe/dS/ws-elenent. Js"></script>
<link rel="stylesheet’ type="text/css’ hre
</neaa>
<oay>
<ws-strean id
</boay>
</ntm1>
return sheml.

{swebsocketURL} " subscription

"/static/tictactoe/CSS/ttt_style.css"/>

{ssubscription}” geturl

[5getTRL) />

content/images/Bruggemann-Klein01-008.png
WebSocket

updates
Element = View
WebSocket HTTP
Web server
WebSocket
et RestxQ
Controller

% API

Model

content/images/Bruggemann-Klein01-003.png
—Game over!
Range
Number of guesses so far
Maximal number of guesses

Game result
Secret number is

play again quit

—Debugging Info

<screenInfo>
<type>resultScreen</type>
<id>1130090149972</id>
<range>20</range>
<guessesSoFar>3</guessesSoFar>
<maxGuesses>5</maxGuesses>
<gameEval>WIN</gameEval>
<secret>2</secret>

</screenInfo>

Game Overy

play again

quit

content/images/Bruggemann-Klein01-002.png
type (|

Ko..1 0.1 4
gameEval guessEval

content/images/Bruggemann-Klein01-013.png
GAME_RUNNING

addPlayer

startRound [playerCount > 0]

removePlayer

bid [lastPlayer = false]

bid/[lastPlayer = true]

PLAY_CARDS
\ \
PLAYERPHASE
e \ N
INITAL_CARDS
. insure [dealerHasAce = true &&
enoughMoneylnsure = true] SHOW CARDS <
INSURANCE I
\ J
J
double stand [lastPlayer
[enoughMoneyDouble . = false]
S truel [astPlayey/= false] it
ready\ [value <= 21]
HIT

DOUBLE

stand\[lastPlayer =

true]

ready [value > 21 &&
lastPlayer = false]

[lastPlayer = true]

SHOW_RESULT

lastPI

ready [value > 21 &&

ayer = true]

newRound

quit

GAME_OVER d@

content/images/Bruggemann-Klein01-005.png
<ws-stream id = "myID" url = "ws://localhost:8984/ws" subscription = "/global">Hello</ws-stream>

content/images/Bruggemann-Klein01-004.png
class Todo_List extends HTMLElement {}
customElements.define("todo-1list", Todo_List);

content/images/Bruggemann-Klein01-010.png
declare
srest:path("/ttt/araw")
srestiGET
function trt:dravGame ()
let $stylesheet
let susIDs := totws:getiDs()
return
(for $wsID in swsIDs
where trtwsiget (swsID, "applicat ") = e
let splayerID := tttws:get(swsID, "playerID”)
let sdestinationPath := fn:concat("/ttt/", splayerID)
let smap := map(“playerID":splayerID}
let stransformedGame := xslt:transform(stitigame, $stylesheet,smap)
return (tttws:send (stransformedGare, sdestinationPath)))

£n:doc.

-/static/tictactoe/XSL/ttt_game.xs17)

content/images/Bruggemann-Klein01-001.jpg
View/ GUI

HTTP
22

Web server

Restx) | 1

Application

Controller

e

Model

content/images/Bruggemann-Klein01-012.png
Client (Web
Browser)

Client (Web
Browser)

Client (Web
Browser)

SCXML Interpreter HTTP + RestXQ
SCXML Files

Communication
(Java)

Controller Communication XML Database
(XQuery) (SCXML Data)

Application XML Database
(XQuery) (Game Data)

SR e |

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Bruggemann-Klein01-011.png

