[image: Balisage logo]Balisage: The Markup Conference

Representing concurrent document structures using Trojan Horse markup
C. M. Sperberg-McQueen
Founder and principal
Black Mesa Technologies LLC

Balisage: The Markup Conference 2018
July 31 - August 3, 2018

Copyright ©2018 by the author.

How to cite this paper
Sperberg-McQueen, C. M. "Representing concurrent document structures using Trojan Horse markup." Presented at: Balisage: The Markup Conference 2018, Washington, DC, July 31 - August 3, 2018. In Proceedings of Balisage: The Markup Conference 2018.
 Balisage Series on Markup Technologies vol. 21 (2018). https://doi.org/10.4242/BalisageVol21.Sperberg-McQueen01.

Abstract

	The need for markup to handle multiple concurrent document
	structures has been clear at least since SGML introduced the
	CONCUR feature to support such markup. Few SGML users found
	the use of CONCUR necessary, few products ever supported it,
	and the designers of XML dropped it as an unnecessary
	complication. But those who need concurrent markup really
	need it. Fortunately, the functionality of CONCUR can be
	recreated more or less successfully in XML: one document
	structure can use conventional XML, while others use
	Trojan-Horse markup (DeRose 2004). Rabbit/duck grammars can
	be used to validate the document and to guide the creation of
	conventional schemas for use in editing tools.
	

Balisage: The Markup Conference

 Representing concurrent document structures using Trojan Horse markup

 Table of Contents

 	Title Page

 	Introduction
 	Project context

 	Requirements

 	Related work

 	Document structure
 	Concurrent trees and sharing of leaf nodes

 	Sharing of internal nodes (elements)

 	Illustration of concurrent trees with shared elements

 	Mutual visibility of different views

 	Serial form
 	Trojan Horse markup

 	Illustration

 	Interpretation of tags in the input

 	All-recessive form

 	Well-formedness checking and simple validation
 	Logical well-formedness checking

 	Simple validation

 	Conclusions and future work

 	About the Author

 Representing concurrent document structures using Trojan Horse markup

Introduction
Project context
The project Annotated Turki Manuscripts from the
 Jarring Collection Online (ATMO) is digitizing a number
 of Central Asian manuscripts collected in the first half of the
 twentieth century by the Swedish ethnographer and Turkic
 philologist Gunnar Jarring.[1]
 A number of previously undigitized documents have been scanned,
 and the project has put digital facsimiles of them
 online. One is shown in Figure 1.
 Figure 1: Digital facsimile
[image:]
One page of a digital facsimile from the ATMO
	project (Jarring Prov. 351, fol. 4a).

 Further, the project is transcribing as many newly scanned
 manuscripts as resources allow, and a number of transcriptions
 are also available on the project's site. For as many of the
 transcribed manuscripts as we can manage, the project is also
 translating and providing word-by-word (or to be more precise,
 morpheme-by-morpheme) linguistic annotation.
In order to simplify both the creation of the literatim
 transcripts and their later comparison with the scanned images of
 the originals, the transcriptions use the markup defined by the
 Text Encoding Initiative (TEI P5) for close
 transcriptions of physical sources, with elements for writing
 surfaces (here mostly pages), zones (regions of the surface used
 for writing), and lines. A line by line transcription of the
 page shown in Figure 1 is shown in Figure 2.
 Figure 2: Literatim transcript
[image:]
Portion of line by line transcription from the
	ATMO project (Jarring Prov. 351, fol. 4a). For the
	convenience of some readers, a transliteration into Latin
	characters with diacritics is shown as well as the original
	Perso-Arabic script.

 The linguistic annotation, however, is based on the linguistic
 structure of the texts and requires elements for sentences (or
 sentence-like units), words, and morphemes. As may be seen in
 Figure 3, the text is displayed sentence by
 sentence, with Latin transliteration, segmentation into
 morphemes, part of speech for each morpheme, and interlinear
 gloss for each morpheme shown immediately below each word, and a
 prose gloss for the entire sentence shown below the sentence,
 followed by any notes applicable to the sentence.
 Figure 3: Linguistic annotation
[image:]
Portion of a linguistically annotated text from
	the ATMO project (Sentence 44 of Jarring Prov. 351). The
	material in red is written in red ink in the manuscript. Note
	that because most of the material is in Latin script, words
	are displayed left to right, not right to
	left.

 A display of the material oriented to speakers of
 Uyghur or to area specialists with non-linguistic interests
 (e.g. historians of religion or folklore) will require (or at least
 benefit from) markup for a third set of textual structures, with
 elements for texts (some manuscripts contain anthologies of
 multiple texts), headings, paragraphs, verse stanzas, verse lines,
 etc. Figure 4 shows a sample text-oriented
 display, with the original Perso-Arabic script on the right,
 the English sentence-by-sentence translation on the left, and
 the Latin transliteration between the two.
 Figure 4: Reading text
[image:]
Portion of a bilingual text display from
	the ATMO project (part of Jarring Prov. 351). As in the
	linguistic analysis, the English gloss is shown on a green
	background and notes on a blue background.

 No two of these views nest neatly with each other.
The ATMO project thus exhibits in a particularly
 straightforward and striking form the problem of
 overlapping hierarchies which the SGML and XML
 communities have been discussing since the 1980s.[2]

	This paper first describes the specific requirements to be met
	by the markup for the ATMO project; the following sections
	describe how the project is going about meeting those
	requirements. Sections are devoted to the abstract structure
	assumed for documents, the serialization forms used to
	represent that structure in XML, and the mechanisms employed
	for well-formedness checking and (very briefly) validation;
	these are all based on those of XML, but require some
	description of the application conventions employed and how
	they deal with multiplicity of document structures.
	
	The paper concludes with some indications of further work
	to be done and/or to be reported on in other papers.

Requirements

	For transcription (and for the presentation of transcripts for
	those interested in the physical organization of the
	manuscript), the ATMO project uses markup whose elements
	identify important units in the topography of the manuscript
	exemplar: pages, regions on the page (header area including
	folio numbers and page numbers, right margin, main writing area,
	left margin, footer including catch-words), lines, and
	highlighted areas within the lines. For tabular material,
	extensive use is made of TEI's rend attribute, to
	allow the display stylesheets to approximate the layout of the
	exemplar.[3]

For linguistic annotation and for presentation of
 annotated material for readers with linguistic interests, a
 close reproduction of the physical organization of the
 manuscript is not helpful; the key units of organization are
 sentences, words, and morphemes. Like many documentary
 linguistic projects, ATMO segments words to identify
 inflectional (but not derivational) morphemes and annotates each
 segment.
For presentation of the texts in regularized spelling and
 for readers interested primarily in the cultural, ethnographic,
 anthropological, religious, or historical import of the
 material, neither the close reproduction of the physical
 organization of the manuscript nor an exclusive focus on
 sentences would be helpful; the kind of logical
 structure typically captured in document-oriented SGML
 and XML vocabularies is more useful: texts or works, paragraphs
 or other blocks, phrases of various kinds should be
 identified.
In prose, where sentences normally nest within paragraphs
 or similar units, the text-oriented and
 sentence-oriented structures are often compatible and can be
 combined in a single tree structure. In verse, however, the two
 structures do not nest.
It may be noted in passing that in the ATMO project these
 three structures compete with or overlay each other only in the
 main part of the document; the TEI header will be the same in
 all views. In XML terms, the competing structures all occur
 only within a container element; in the
 case of ATMO the container is the tei:text or
 tei:sourceDoc element. Within the container, again
 some elements may be common to all structures.
From these observations several requirements arise, which
 in turn entail or suggest others:

 	Any of the three structures (which I will call page,
	 sentence, and paragraph) should be visible and processable
	 when needed.

	Because we do not have the resources needed to re-create
	 the XML software stack from the ground up, a second
	 requirement is that if possible, all document representations
	 used in the project should be XML.

	Taken together, the two requirements just mentioned
	 seem to suggest that we use XML representations in which one
	 of the structures (I'll call it the dominant structure) is represented
	 more or less conventionally, representing each structural
	 unit of the dominant structure with one XML element (and
	 vice versa), and the other two structures (the recessive structures) are represented
	 in some other way (with milestone elements, fragmentations,
	 stand-off markup, or some other technique).
Terminological note: for brevity, I will sometimes refer
	 to elements or nodes appearing in a recessive structure as
	 recessive elements, and to the markup
	 delimiting such elements as recessive
	 markup, and similarly for dominant
	 elements and dominant
	 markup.
We meet this requirement using Trojan-Horse markup
	 (DeRose 2004) for the recessive
	 structures.

	Because we do not wish to privilege any one structure by
	 making it permanently dominant, we would like to be able to
	 view and process any document with any of the three structures
	 as the dominant one.

	Because we do not wish to have to perform triple
	 maintenance on documents, we do not want to have three
	 parallel static representations for each document which must
	 be maintained in parallel; instead, we want to be able to
	 translate from any of the three forms to either of the other
	 two (changing from one dominant structure to another),
	 without information loss.[4]
	
We meet this requirement with XSLT transformations which
	 accept a document with one dominant and any number of
	 recessive structures and write out an equivalent document with
	 a dominant structure identified by a run-time
	 parameter.[5]

	Because each of the three structures is reasonably
	 simple and well understood, we would like to be able to
	 validate the markup for each structure using a conventional
	 grammar-based schema language.
We meet this requirement by translating a set of
	 document grammars defining the individual views into a set of
	 related schemas (one for each dominant structure).

	Because most of the uses we imagine for the project's
	 data involve one or the other of these views, but not more
	 than one, it is probably not an absolute requirement, for the
	 ATMO project, that multiple structures be visible and
	 processable at the same time. But neither is it an absolute
	 requirement that recessive structures be invisible to
	 processing: A requirement to see all structures at once can
	 in principle easily arise whenever multiple structures are
	 of interest: all it takes is beginning to wonder whether any
	 two structures are completely orthogonal to each other or
	 not. So we would tentatively like if possible both to be
	 able to perform tasks that require taking more than one
	 hierarchical structure into account and to completely ignore
	 the recessive structures.
We believe we have met this requirement but do not
	 have space to demonstrate how; we hope to report on
	 processing techniques for concurrent documents in later
	 work.

Related work
A full account of the last thirty years' work on
 non-hierarchical document structures would require more space
 and time than are currently available; there are reasonably
 good surveys of older literature in DeRose 2004
 and Witt 2004.
The possibility of marking up multiple concurrent document
 structures was built into ISO 8879:1986. The
 potential use of CONCUR in a digital-humanities context was
 discussed by Sperberg-McQueen / Huitfeldt 1999. The work described here
 resembles the CONCUR feature of SGML in describing multiple
 trees over the same sequence of text nodes; it differs in
 guaranteeing that recessive structures are visible even to
 software processing the dominant structure. (ISO 8879 can be
 read as allowing or requiring only the dominant structure to be
 visible; see Barnard et al. 1988.)

In the early years of the century, Patrick Durusau and
 Matthew Brook O'Donnell brought forward a series of proposals
 for dealing with multiple hierarchies in an XML context.
 Bottom up virtual hierarchies (Durusau / O'Donnell 2001) are represented by
 dividing a document into atomic pieces none of which spans any
 element boundaries in any concurrent structure, and supplying an
 XPath expression for each atom and each hierarchy, indicating
 the position of the atom in that hierarchy (e.g. /pages
 /page[1][@id='p1'] /line[2][@id="l2"] /w[1] to indicate
 the first word on the second line of the first page and (for the
 same word) /text /para[1][@id='p1'] /w[16] to
 indicate that it is the sixteenth word of the first paragraph of
 the text. This representation makes possible certain kinds of
 cross-hierarchy searches, but the notation is verbose and
 it is not completely trivial to reconstruct a conventional XML
 representation for any of the hierarchies, nor to detect errors
 in the XPath expressions.
 Just-in-time trees (Durusau / O'Donnell 2002a,
 Durusau / O'Donnell 2002b) are represented
 with a kind of tag-salad of XML tags used without regard to
 XML's nesting constraints; a specialized scanner can read the
 document under the control of a document grammar, identify
 the tags relevant to that grammar, and pass them to a
 SAX-based validator as start- and end-tag events; other
 tags can be suppressed or treated as character data.[6]
 This technique allows multiple hierarchies to be marked up in a
 single source, but the fact that the document in its raw form is
 not well-formed and requires a special-purpose parsing setup
 makes it awkward. In later work (Durusau / O'Donnell 2003, Durusau / O'Donnell 2004), Durusau and
 O'Donnell's examples show the use of well-formed XML input using
 a form of Trojan Horse markup (on which see below), and return
 to the idea of annotating each atomic piece of the document with
 information on its structural locations, with sample table
 structures that could be managed in any relational database
 system. This final form of Durusau and O'Donnell's work is very
 similar to that proposed here, as regards the serialization of
 the document (especially to the shallow form
 described below [section “All-recessive form”]). There are
 differences in processing and philosophical viewpoint. Durusau
 and O'Donnell propose search mechanisms based on relational
 databases rather than XQuery (not then completed), and they
 argue that it is best to regard hierarchical structures as
 things imposed on documents during processing and not intrinsic
 to the documents. In contrast, the work reported here starts
 from the belief that the multiple hierarchies are immanent in
 the document and made explicit by markup, not imposed
 externally.

Other work on software for XML-like markup extended
 to support concurrent structures has been described by
 Jagadish et al. 2004,
 Dekhtyar / Iacob 2005,
 Hilbert / Schonefeld / Witt 2005,
 Schonefeld / Witt 2006, and
 Schonefeld 2007. None of these
 approaches has gained very wide acceptance, perhaps
 due to the experimental nature of most of the implementations.

Trojan Horse markup was described by DeRose 2004, generalizing and improving on the idea
 of using empty elements to mark boundaries for logical units
 which do not fit into the dominant hierarchy (for which see
 i.a. Barnard et al. 1995 and the TEI). The work
 described here differs in using Trojan Horse markup not for
 single logical units which do not fit the dominant hierarchy,
 but for a complete recessive structure. The attributes used for
 coreference are also placed in a th namespace to
 eliminate the risk of conflict with user-defined
 attributes.
Wendell Piez has described using XML infrastructure for
 processing non-hierarchical (LMNL) data (Piez 2012, Piez 2014); our work
 resembles his in exploiting the XML software ecology. The data
 model used here, however, is not LMNL but concurrent trees, and
 it is defined in terms of XML and XDM representations.

Document structure
ISO 8879 introduced the notion that a markup language can
 not only be defined as a set of character sequences but can also
 be associated naturally both with an abstract data type which
 represents the structure of the marked up document and with a
 mechanism for validating marked up documents. The following
 sections follow this pattern in describing explicitly the abstract
 data type for document structure, the serial form, and the
 mechanisms for well-formedness checking for the markup used by the
 ATMO project. It is hoped that later work will have space for
 fuller discussion of validation against schemas and the challenges
 of processing data with concurrent structures.
Concurrent trees and sharing of leaf nodes
The structure we postulate for documents is in essence
 that of the SGML feature CONCUR: multiple element trees sharing
 leaf nodes; see ISO 8879:1986 and Sperberg-McQueen / Huitfeldt 1999 for descriptions. Later work on the same or
 very similar data structures includes Dekhtyar / Iacob 2005, Hilbert / Schonefeld / Witt 2005, Schonefeld / Witt 2006, and Schonefeld 2007.
CONCUR has sometimes been described (by the current author
 and by others) as involving multiple element trees drawn over
 the same frontier of text nodes, comments, and processing
 instructions. This is a reasonable first approximation, but in
 fact the data structure implied by ISO 8879 is slightly more
 complicated: when CONCUR is used, it is not guaranteed or
 required that each document type have exactly the same character
 data.[7] There are two sources of variation. First, SGML's
 rules for record-end suppression depend crucially on the
 relative location of the record-end in question and the nearest
 markup. Since in a document marked up with CONCUR, some markup
 is applicable to (visible in) only one document type; record
 ends affected by that markup will be suppressed in that document
 type and visible in others. Second, there is no requirement
 that a given general entity name be given the same declaration
 in different document types; if the replacement text for entity
 E differs in different DTDs,
 then the concurrent trees will have different frontiers at any
 point where entity E is
 referred to.
It would thus be more precise to say that concurrent
 markup describes multiple element trees over a frontier of text
 nodes, comments, and processing instructions which is shared
 in whole or in part. In any one
 tree, all leaf nodes (indeed, all nodes, if we assume an
 XDM-like data model) are totally ordered, and any leaf nodes
 shared among trees have the same relative ordering in all trees.
 (I.e., if N1 and N2 are present both in document type
 X and in document type
 Y, and N1 << N2 in X,
 then N1 << N2 in Y.)
It is not obvious at first glance that the ATMO project
 needs to allow different structures to cover different sets of
 leaf nodes; we defined the abstract model as allowing that
 possibility just in case that requirement showed up in later
 work. It did: when words are broken across line breaks, and
 even more obviously when broken across page breaks (so that the
 first part of the word and its ending may be separated by a
 catchword, a page number, a folio number, and other material in
 the top margin of the new page), the page view requires that
 each word fragment appear on the page where it is written in the
 manuscript, while the text and sentence views need the word to
 appear as an undivided whole. Annotations applicable only to a
 single view of the document would also be a use case for
 different views having slightly different character-data
 content.
Variations in whitespace, on the other hand, we hope to
 succeed in ignoring permanently.

Sharing of internal nodes (elements)
ISO 8879 can (as already noted above) be read as allowing an
 SGML processor to make just one of the available document types
 available for processing; it can also be read as allowing a
 processor to make multiple document types available. Since 8879
 does not constrain the interface offered by an SGML parser to its
 consumer (or even require that there be such an interface —
 the standard does not require that an SGML application be
 divisible into an SGML parser and a
 consumer), it is unspecified whether markup shared between
 document types is treated by the interface as being the
 same in all applicable document types or not. It is
 similarly unspecified whether the nodes that might appear in a
 data structure representing the document are shared between
 document types or not.
For purposes of the ATMO project, we do want some nodes to
 be shared across views: we wish to regard elements representing
 individual texts (in a manuscript which contains several
 distinct texts), paragraphs, headings, tables, and notes as
 occurring in all views: the text and sentence views should not
 have distinct but similar sets of paragraphs, but the same set of paragraphs. (Of course, such
 identity of elements across views is not readily detectable by
 inspection of the markup or by validation; node identity arises
 as an issue only in the context of processing with the XDM or
 some other object model. And even there, there is no way at the
 XDM level to express the identity of elements across different
 XDM documents representing different views of the manuscript: no
 XDM node occurs in more than one document.

Illustration of concurrent trees with shared elements
An example may be helpful as an illustration of the data
 model. Consider the following haiku by Bashō as translated
 by Harold G. Henderson (Henderson 1958, p. 48), marked up
 with its metrical structure (line group, line):
 <text xmlns="http://www.tei-c.org/ns/1.0">
 <body xml:id="body">
 <head xml:id="h1">The Village Without Bells</head>
 <lg xml:id="lg1">
	<l xml:id="L1">A village where they ring</l>
	<l xml:id="L2">no bells! — Oh, what do they do</l>
	<l xml:id="L3">at dusk in spring?</l>
 </lg>
 </body>
 </text>

 If instead we mark up the sentences, we will have something
 like this:
 <text xmlns:tei="http://www.tei-c.org/ns/1.0">
 <body xml:id="body">
 <head xml:id="h1">The Village Without Bells</head>
 <ab xml:id="ab1">
	<s xml:id="s1">A village where they ring no bells! — </s>
	<s xml:id="s2">Oh, what do they do at dusk in spring?</s>
 </ab>
 </body>
 </text>

The metrical and the sentence structures of the document
 relate to each other as shown in Figure 5 below.
 Figure 5: Two concurrent structures
[image:]

	Circle-and-arrow diagram showing the metrical and sentence
	structures of the Basho haiku.
	Nodes in the metrical structure have single ovals and are shaded
	pink, those in the sentence structure have two and are shaded
	blue, and nodes appearing in both structures have three (and are
	unshaded).

Mutual visibility of different views
ISO 8879 seems clearly to expect that even if multiple
 document types are processed at the same time, any nodes not
 shared (and the tags which mark their boundaries) will be
 visible only in the document types to which they belong.
 Concretely, this means that in the example given above, the
 nodes for tei:body and tei:head are
 shared between the sentence and meter structures, and the
 boundary markers for the end of sentence 1 and the beginning of
 sentence 2 are not children of the tei:l element
 for line 2. That is a convenient arrangement for many kinds of
 processing, but it is also sometimes convenient for a process to
 know not only about one dominant view but also about the other
 recessive views of the document as well.
For the ATMO project, the initial expectation was that we
 would prefer that each view know nothing about the others, so
 that any tags relevant only for recessive views would be
 invisible, as would any text nodes not part of the dominant
 view. As will be seen below, however, the XML representation we
 have chosen entails the opposite: all text nodes and all tags
 are visible whether they are dominant or recessive. Once we got
 over the embarrassment of having failed to implement the
 intended design fully, however, experience taught us that this
 is often helpful in ways not anticipated at first. In the web
 display of any view, for example, the recessive markup can be
 used to provide hyperlinks to alternative views of the location
 being displayed; this would be much less convenient if recessive
 markup were invisible. Nor does the presence of recessive
 markup typically present any serious convenience: if it did, we
 could write general-purpose filters to strip out recessive
 markup from a document before processing it, but in practice it
 has proven to be just as simple for the process to have its own
 code to ignore explicitly those recessive tags it is not
 interested in.

Serial form
The serial form of the project's documents is XML, in which
 one dominant hierarchical
 structure is represented by XML elements in the straightforward
 conventional way (one XML element per node in the logical
 structure) and other recessive
 structures are represented by Trojan Horse elements, using
 essentially the notation proposed by DeRose 2004
 and used in OSIS (Durusau 2005).
Trojan Horse markup

	Trojan Horse markup is a systematic application of an idea that
	was current in markup folklore no later than the 1980s and
	instantiated by a number of element types defined in the TEI
	Guidelines.[8] The TEI, for example, defines empty elements to
	mark boundaries of specific kinds: pb,
	cb, and lb mark page, column, and line
	breaks, and the more general milestone element
	marks boundaries of arbitrary kinds. These elements are
	designed for marking boundaries in a complete tesselation of the
	data (when a page break occurs, one page ends and another
	begins); they do not provide clean methods of marking the start
	and end of a region which is not immediately preceded and
	succeeded by other regions of the same kind. Nor do they have
	good ways of providing values for all the attributes which could
	appear on the logical element being represented. Like the
	element types just mentioned, Trojan Horse markup uses empty
	elements to mark the start and end of regions which cannot be
	represented as XML content elements, but does not define special
	element types for the purpose. Instead, it uses empty instances
	of the normal element type for the kind of textual feature being
	recorded, and marks them as special by using the attributes
	sID and eID to signal that the empty
	element in question marks the start or the end of a virtual
	element rather than a content element. Matching start- and
	end-markers will have the same value for these attributes, which
	allows reliable identification of pairs.

	OSIS defines twelve element types as
	milestoneable (representable using Trojan Horse
	markup). It uses the mechanism, for example, to represent
	verses which cross paragraph boundaries:
	<p> ...
 <verse sID="Esth.2.8" osisID="Esth.2.8"/>
 When the king ordered the search for beautiful women,
 many were taken to the king's palace in Susa, and Esther
 was one of them.
 </p>
 <p>Hegai was put in charge of all the women,
 <verse eID="Esth.2.8"/>
 <verse sID="Esth.2.9" osisID="Esth.2.9"/>
 and from the first day, Esther was his favorite. He began
 her beauty treatments at once. He also gave her plenty
 of food and seven special maids from the king's palace,
 and they had the best rooms.
 <verse eID="Esth.2.9"/>
</p>

We make several small changes to the notation described by
 DeRose and used in OSIS:
 	We place the sID and
	 eID attributes in a namespace (here conventionally
	 bound to the prefix th).

	We add a soleID attribute for use
	 on empty recessive elements which we wish to represent
	 with sole tags rather than start/end pairs.

	We add an attribute named th:doc to each
	 Trojan-Horse empty element, which contains a set of tokens
	 identifying the structures of which the virtual element is
	 part (in the ATMO project, we use the abbreviations P, T,
	 and S for the page, text, and sentence views). The
	 th:doc attribute simplifies the XSLT transform
	 to change dominant hierarchies. Any elements with more than
	 one name in the value of their th:doc attribute
	 are logically shared across those document types.

It should be noted that other XML-based serializations are
 also possible (and many appear to have been invented more or less
 ad hoc). The Trojan-Horse empty elements can be replaced by
 elements in the Trojan Horse namespace named
 th:start, th:end, and
 th:sole, or by processing instructions with the
 target th (i.e. Trojan Horse). These have the
 advantage that they require little or no change (respectively) to
 any pre-existing schemas for the various hierarchies. They have
 the disadvantage that to eyes accustomed to scanning conventional
 XML, they are less legible. As Derose pointed out when introducing
 the notation, The advantage that (unlike generic
 milestones) Trojan milestones look like element tags (that is,
 they have the same GI) should not be underestimated (DeRose 2004).
In what follows, I refer to Trojan Horse elements which
 mark the start of an element in a recessive structure as
 start-markers, those which mark
 the end of an element in a recessive structure as end-markers, and elements so marked as
 logical or virtual elements. Elements
 conventionally marked up with XML start- and end-tags I will
 refer to as content elements
 (even if in some particular cases they are empty).

Illustration
Using Trojan Horse markup, we can represent both the
 metrical structure and the sentence structure in the example shown
 above. When the metrical structure is dominant, the document
 might look like this:[9]	

 <text xmlns:tei="http://www.tei-c.org/ns/1.0"
 xmlns:th="http://www.blackmesatech.com/2017/nss/trojan-horse"
 th:doc="meter sentence">
 <body th:doc="meter sentence" xml:id="body">
 <head th:doc="meter sentence" xml:id="h1"
 >The Village Without Bells </head>
 <lg th:doc="meter" xml:id="lg1">
 <ab th:doc="sentence" th:sID="ab1" xml:id="ab1"/>
 <l th:doc="meter" xml:id="L1">
 <s th:doc="sentence" th:sID="s1" xml:id="s1"/>
 A village where they ring
 </l>
 <l th:doc="meter" xml:id="L2">
 no bells! —
 <s th:doc="sentence" th:eID="s1"/>
 <s th:doc="sentence" th:sID="s2" xml:id="s2"/>
 Oh, what do they do
 </l>
 <l th:doc="meter" xml:id="L3">
 at dusk in spring?
 </l>
 </lg>
 <s th:doc="sentence" th:eID="s2"/>
 <ab th:doc="sentence" th:eID="ab1"/>
 </body>
 </text>

 When the sentence-structure is dominant:

 <text xmlns:tei="http://www.tei-c.org/ns/1.0"
 xmlns:th="http://www.blackmesatech.com/2017/nss/trojan-horse"
 th:doc="meter sentence">
 <body th:doc="meter sentence" xml:id="body">
 <head th:doc="meter sentence" xml:id="h1"
 >The Village Without Bells </head>
 <lg th:doc="meter" th:sID="lg1" xml:id="lg1"/>
 <ab th:doc="sentence" xml:id="ab1">
 <l th:doc="meter" th:sID="L1" xml:id="L1"/>
 <s th:doc="sentence" xml:id="s1">
 A village where they ring
 <l th:doc="meter" th:eID="L1"/>
 <l th:doc="meter" th:sID="L2" xml:id="L2"/>
 no bells! —
 </s>
 <s th:doc="sentence" xml:id="s2">
 Oh, what do they do
 <l th:doc="meter" th:eID="L2"/>
 <l th:doc="meter" th:sID="L3" xml:id="L3"/>
 at dusk in spring?
 <l th:doc="meter" th:eID="L3"/>
 <lg th:doc="meter" th:eID="lg1"/>
 </s>
 </ab>
 </body>
 </text>

Interpretation of tags in the input

	Each tag in the document is either
	
		
 dominant markup: an XML
 start-, end-, or sole-tag used
 conventionally and representing the
 beginning, end, or location of a node in the dominant
 structure, or

	
 recessive markup: a
 empty Trojan-Horse element representing (or
 corresponding to) a start-, end-, or sole-tag in a
 recessive structure.

	 The difference between them is visible on an examination of
	 the tag in question, without reference to context:[10]
		Start- and sole-tags with th:sID or
 th:eID attributes are Trojan-Horse markup and
 relate to the recessive structures identified by the
 th:doc attribute.

	Start- and sole-tags with neither
 th:sID nor th:eID attributes
 relate to the dominant structure.

Note that strictly speaking some of the information recorded
 is redundant and could be omitted: because the Trojan-Horse
 elements correspond 1:1 to tags in a well-formed XML document with
 a different dominant structure, each Trojan-Horse element marking
 the end of a region closes the most recently begun matching
 region; we could thus omit the th:sID and
 th:eID attributes if we wished. We could similarly
 omit th:doc on end-tag elements. These omissions
 would not, however, save as many characters as one might think:
 without th:sID and th:eID we would need
 to add some other simple signal to distinguish Trojan-Horse
 elements from conventional elements. In practice, the redundant
 co-indexing of th:sID and th:eID is
 convenient for processing software, as it makes it easy to find
 the matching tag in a pair. The redundant specification of
 th:doc on end-tag elements similarly makes processing
 slightly simpler in the transforms which switch from one dominant
 structure to another.

All-recessive form
It can sometimes be convenient to have no dominant
 hierarchy at all, and to represent all three hierarchies as
 recessive using Trojan Horse elements. The haiku example
 looks like this in this shallow form:

 <tei:text xmlns:tei="http://www.tei-c.org/ns/1.0"
	 xmlns:th="http://www.blackmesatech.com/2017/nss/trojan-horse"
	 th:doc="meter sentence">
 <tei:body th:doc="meter sentence" th:sID="body" xml:id="body"/>
 <tei:head th:doc="meter sentence" th:sID="h1" xml:id="h1"/>
 The Village Without Bells
 <tei:head th:doc="meter sentence" th:eID="h1"/>
 <tei:lg th:doc="meter" th:sID="lg1" xml:id="lg1"/>
 <tei:ab th:doc="sentence" th:sID="ab1" xml:id="ab1"/>
 <tei:l th:doc="meter" th:sID="L1" xml:id="L1"/>
 <tei:s th:doc="sentence" th:sID="s1" xml:id="s1"/>
 A village where they ring
 <tei:l th:doc="meter" th:eID="L1"/>
 <tei:l th:doc="meter" th:sID="L2" xml:id="L2"/>
 no bells! —
 <tei:s th:doc="sentence" th:eID="s1"/>
 <tei:s th:doc="sentence" th:sID="s2" xml:id="s2"/>
 Oh, what do they do
 <tei:l th:doc="meter" th:eID="L2"/>
 <tei:l th:doc="meter" th:sID="L3" xml:id="L3"/>
 at dusk in spring?
 <tei:l th:doc="meter" th:eID="L3"/>
 <tei:lg th:doc="meter" th:eID="lg1"/>
 <tei:s th:doc="sentence" th:eID="s2"/>
 <tei:ab th:doc="sentence" th:eID="ab1"/>
 <tei:body th:doc="meter sentence" th:eID="body"/>
 </tei:text>

As may be observed, in this form the container element
 (here tei:text) contains a flat sequence of empty
 elements and text nodes, with no further nesting; for this
 reason we call this the shallow
 form of the document. (It is called a
 flattened form in Birnbaum et al. 2018.)
 Translation from one dominant hierarchy to another is
 conveniently achieved by a two-step translation first into
 shallow form and then into the new dominant hierarchy.

Well-formedness checking and simple validation
Logical well-formedness checking
One immediate consequence of the syntax used here is that
 it is possible to construct well-formed XML documents which are
 not logically well formed. A
 document is logically well formed if the markup for each
 hierarchy (dominant or recessive) is well formed: each
 start-marker has exactly one corresponding end-marker, and vice
 versa, and start- / end-marker pairs nest properly, and the same
 is true for start- and end-tags. A document that is not
 logically well formed is logically ill formed. Logical
 ill-formedness will be manifest as XML ill-formedness if the
 markup for the dominant hierarchy is made recessive and the
 markup for some recessive hierarchy is made dominant.

Unfortunately, neither XML editors nor XML parsers will
 detect logical ill-formedness in a recessive hierarchy. And we
 cannot simply make each recessive hierarchy dominant in turn in
 order to check well-formedness using an XML parser: our
 transformations are written in XSLT, which normally produces no
 ill-formed output: if the recessive hierarchy is logically ill
 formed in the input, the transformation will either fail or
 (worse) succeed with erroneous output.
It is imperative, therefore, to develop tools for checking
 the well-formedness of documents in this format. As the examples
 above show, even in simple cases the density of markup can be very
 high, and without the aid of an editor in maintaining well
 formedness, it is very easy to make the kind of errors familiar to
 anyone who has had to deal with attempts to edit XML documents in
 editors without sufficient XML awareness.[11]

The current state of our well-formedness checking
 is represented by an XSLT stylesheet whose core is given by the
 following template:
 <xsl:template match="/">
 <report
 xmlns:tei="http://www.tei-c.org/ns/1.0"
 xmlns:p5="http://www.tei-c.org/ns/1.0"
 xmlns:bmt="http://blackmesatech.com/2015/nss/digifacs"
 xmlns:atmo="http://uyghur.ittc.ku.edu/2015/ns/0.1">

 <head>Well-formedness report for Trojan-Horse markup</head>

 <p>Input document: <xsl:value-of select="document-uri()"/></p>
 <p>$doctype parameter: <xsl:value-of select="$doctype"/></p>
 <p>$nesting parameter: <xsl:value-of select="$nesting"/></p>
 <p>Date, time: <xsl:value-of
 select="adjust-dateTime-to-timezone(current-dateTime(), ())"/>.</p>

 <xsl:variable name="results" as="element()*">
	<start-IDs>
	 <xsl:call-template name="check-SIDs"/>
	</start-IDs>
	<end-IDs>
	 <xsl:call-template name="check-EIDs"/>
	</end-IDs>
	<sole-IDs>
	 <xsl:call-template name="check-SoleIDs"/>
	</sole-IDs>
	<xsl:variable
 name="lDT" as="xs:string*"
 select="if (exists($doctype))
 then (for $i in 1 to string-length($doctype)
 return substring($doctype,$i, 1))[normalize-space()]
 else distinct-values(
 for $a in descendant::*/attribute::th:doc
 return tokenize($a,'\s+'))"/>
 <xsl:for-each select="$lDT">
 <xsl:call-template name="check-balance-on-doc">
 <xsl:with-param name="doctype" select="."/>
 <xsl:with-param name="nesting" select="$nesting"/>
 </xsl:call-template>
 </xsl:for-each>
 </xsl:variable>
 <xsl:variable name="c" as="xs:integer"
 select="count($results//error)"/>
 <summary>
 <xsl:value-of select="concat($c,
 if ($c eq 1) then ' error '
 else ' errors ',
 'found.')"/>
 </summary>
 <details>
 <xsl:sequence select="$results"/>
 </details>
 </report>
 </xsl:template>

As can be seen, it generates an XML document with a report
 on the well-formedness of the input. Initially it reports on
 its input and parameters: $doctype requests
 well-formedness checking for one particular document type
 (default is all), and $nesting determines whether
 each content element in the input with Trojan Horse children is
 checked independently for well-formedness; documents in shallow
 form set $nesting to respect and those
 with a dominant hierarchy set it to ignore.
Separate named templates[12]
 then check the start- and
 end-markers of the document to confirm that:
 	Each th:sID value is unique among start-
	 or sole-markers; each th:eID value is unique
	 among end-markers.

	Each start-, sole-, or end-marker is empty.

	No element has more than one of th:sID,
	 th:eID, th:soleID among its
	 attributes.

	Each th:sID matches at least one th:eID.
Each th:eID matches at least one th:sID.

	Each th:sID matches at most one th:eID.
Each th:eID matches at most one th:sID.

	When th:sID and th:eID
	 match, the two markers have the same generic identifier,
	 the th:sID precedes the th:eID,
	 and the th:doc attributes match.

Another named template then checks to see that the
 sequence of start- and end-markers for a given document type
 form nesting elements: it progresses through the sequence of
 markers, pushing th:sID values onto a stack
 and checking, when it encounters an end-marker, that the
 th:eID attribute on the end-marker
 matches the value at the top of the stack. It can thus report
 on errors of nesting in the recessive views.

Simple validation
It is straightforward (or more precisely: it is as
 straightforward as document design ever gets) to specify a basic
 document grammar for each structural view of the document, in
 which the elements of that structure (including any common
 elements) are defined and elements of other structures are
 ignored. In the discussion that follows, we assume that such
 grammars are available. For purpose of the discussion it does
 not matter whether the grammars are expressed in DTD notation,
 Relax NG, or XSD.
Given such basic grammars, validation of the markup
 described above can be achieved in any of several ways.
The simplest approach is to validate each view separately.
 For each structure S marked up
 in the document:
 	First, translate the document into a form where
	 S is dominant.

	Then use a simple transformation to omit all recessive
	 markup (or translate it into processing
	 instructions).

	Finally, validate against the basic document grammar for
	S.

For example, the basic grammar for the metrical
 structure of the haiku example might be (in DTD
 notation):
 	

	 <!ELEMENT text (body) >
	 <!ELEMENT body (head?, lg+) >
	 <!ELEMENT head (#PCDATA) >
	 <!ELEMENT lg (l+) >
	 <!ELEMENT l (#PCDATA) >
	

The basic grammar for the sentence structure might be:	
	
	 <!ELEMENT text (body) >
	 <!ELEMENT body (head?, ab) >
	 <!ELEMENT head (#PCDATA) >
	 <!ELEMENT ab (s+) >
	 <!ELEMENT s (#PCDATA) >
	

	
This approach has the advantage of simplicity in the
 grammars: each basic grammar can essentially ignore the other
 grammars. It has the disadvantage that XML editors can no
 longer validate the document usefully, because there is no
 document grammar that actually describes even approximately
 the set of acceptable documents.
A more convenient validation process can be achieved by
	making an augmented document
	grammar for each structural view, which accounts for both the
	dominant structure and the Trojan-Horse markup for recessive
	structures. Because the augmented grammar includes
	declarations for recessive markup, it can be applied without
	pre-processing the document to strip recessive markup. This
	makes it possible to use the augmented grammar in schema-aware
	XML editors.
The set of base grammars satisfies the definition in
	Sperberg-McQueen 2006 for a set of rabbit/duck grammars. All
	common elements and elements in the dominant structure are
	first-class elements, and all other elements are third-class.
	We achieve a single augmented schema by making all recessive
	elements second-class and accounting for their start- and
	end-tags in the content models of the dominant structure.
		For each structure S, make a list of all element types
 present in other structures, for which recessive markup
 may appear in view S (and
 declarations for which thus need to appear in the
 augmented schema). Call this list R (for
 recessive).
Note that some element types may be present as
	 content elements in all structures: for the ATMO project,
	 the TEI header and the TEI note element (with
	 all its possible descendants) are such elements. Note,
	 however, that some instances of such element types may be
	 present in some structures but not all: the main
	 paragraphs of the text (not inside notes) will be content
	 elements in the text and sentence views, but virtual
	 elements marked by Trojan Horse markup in the page view.
	 The p element and its descendants, therefore,
	 must appear in the list R
	 constructed for the page view.

	Augment the document grammar for S (call the augmented grammar
	 S′) by allowing
	 start- or end-tags for all elements in R at any location in any content
	 model.[13]
	

	 This is equivalent to adding all the elements of
	 R as inclusion
	 exceptions on the SGML content model for the container
	 element(s). In Relax NG, the desired effect can be
	 achieved using the interleave operator (except when
	 RNG's ambiguity rules mean that it cannot). In other
	 schema languages (XML DTDs, XSD), systematic changes
	 will need to be made to content models.[14]
	

	
Validation against the modified document grammar
	S′ is possible without
	a prior transformation to strip out recessive markup, and thus
	S′ can be used to
	guide a validating XML editor.
An SGML DTD with an augmented form of the metrical
	grammar might be:
<!ELEMENT text (body) +(ab | s)>
<!ELEMENT body (head?, lg+) >
<!ELEMENT head (#PCDATA) >
<!ELEMENT lg (l+) >
<!ELEMENT l (#PCDATA) >

An XML DTD will require more changes:
<!ENTITY % R "ab | s" >
<!ELEMENT text (body)>
<!ELEMENT body ((%R;)*, (head, (%R;)*)?, (lg, (%R;)*)+) >
<!ELEMENT head (#PCDATA | %R;)* >
<!ELEMENT lg (l, (%R;)*)+ >
<!ELEMENT l (#PCDATA | %R;)* >

Our current validation practice uses augmented grammars,
	but our method of generating them is slightly less systematic
	that could be desired and has run into a number of snags. We
	continue to seek improvements, but resource constraints may
	limit our ability to refine the process.
For project participants, it would perhaps be simplest
	and most convenient to use a validator built to understand
	rabbit/duck grammars and Trojan-Horse markup, capable of
	validating multiple document grammars in parallel. A
	prototype of such a validator was described in Sperberg-McQueen 2006, but it is not deployable on the ATMO server.
	In any case, for editing an augmented grammar appears to be
	the best approach that is currently feasible.

Conclusions and future work
The paper has presented an account of one technique for
 representing multiple hierarchies systematically in XML and
 processing documents so marked up using an XML tool
 chain.
Within the project, it remains to make full use of the
 technique, and in particular to create a search interface
 that allows the user to exploit the presence of multiple
 overlapping tagged structures in the documents.
It would also be helpful to automate the creation
 of schemas more fully.
More generally, and beyond the confines of the ATMO
 project, several topics invite further examination. The ability
 to validate documents with concurrent hierarchies marked up in
 this way in a single pass would be helpful; even more helpful
 would be techniques for writing schemas in conventional schema
 languages to enforce validity or at least well-formedness with
 respect to recessive views, so that XML-aware editors could be
 warned against changes that destroy logical well-formedness. If
 such schemas could be generated by deterministic processes
 operating on simple base schemas, so much the better.
The ability to query richly marked up documents with
 multiple concurrent hierarchies is of interest not only to the
 ATMO project but to others. It seems clear that such queries
 can be supported in principle, but it is less clear how to make
 such queries convenient and intuitive to the end user, or how to
 make XPath / XQuery / XSLT formulations of cross-hierarchy
 searches convenient and intuitive to the XML programmer. In
 particular, providing tools for XPath-style navigation in the
 presence of multiple hierarchies would be challenging and
 interesting.
We can perhaps take query as a bellwether for the general
 problem of processing concurrent structures, but it is possible
 that other forms of processing may turn up requirements not
 visible in search and retrieval applications. Peter Sharpe of
 SoftQuad pointed out a number of years ago that even standard
 operations like cut and paste take on new complications in the
 presence of concurrent structures; there may be other operations
 we take for granted in the conventional XML context that
 similarly become more complicated in documents like those
 described here.

References
[Barnard et al. 1988] Barnard, David;
	 Ron Hayter;
	 Maria Karababa;
	 George Logan and
	 John McFadden.
	 SGML Markup for Literary Texts.
	 Computers and the Humanities
	 22 (1988): 265-276. doi:https://doi.org/10.1007/BF00118602.
	
[Barnard et al. 1995] Barnard, David,
	 Lou Burnard,
	 Jean-Pierre Gaspart,
	 Lynne A. Price,
	 C. M. Sperberg-McQueen,
	 and
	 Giovanni Battista Varile.
	 Hierarchical encoding of text: Technical problems and SGML solutions.
	 Computers and the Humanities
	 29 (1995): 211-231. doi:https://doi.org/10.1007/BF01830617.
	
[Birnbaum et al. 2018]
	 Birnbaum David J.,
	 Elisa E. Beshero-Bondar,
	 and
	 C. M. Sperberg-McQueen.	
	 Flattening and unflattening XML markup: a Zen garden of XSLT and other tools.
	 To be
	 presented at Balisage: The Markup Conference 2018,
	 Washington, DC.
	 On the Web in the preliminary proceedings.
	
[Dekhtyar / Iacob 2005]
	 Dekhtyar, Alex,
	 and
	 Ionut Emil Iacob.
	 2005.
	 A Framework For Management of Concurrent XML Markup.
	 Data and Knowledge Engineering
	 52.2: 185-215. doi:https://doi.org/10.1016/j.datak.2004.05.005.
	
[DeRose 2004]
	 DeRose, Steven.
	 2004.
	 Markup overlap: A review and a Horse.
	 Paper given at Extreme Markup Languages 2004,
	 Montréal, sponsored by IDEAlliance.
	 On the Web at http://conferences.idealliance.org​/extreme​/html​/2004​/DeRose01​/EML2004DeRose01.html
	
[Durusau / O'Donnell 2001]
	 Durusau, Patrick, and
	 Matthew Brook O'Donnell.
	 2001.
	 Implementing concurrent markup in XML.
	 Paper given at Extreme Markup Languages 2001,
	 Montréal, sponsored by IDEAlliance.
	
	 Slides on the Web at
	 http://www.durusau.net/publications​/Implementing_concur.pdf.
	
[Durusau / O'Donnell 2002a]
	 Durusau, Patrick, and
	 Matthew Brook O'Donnell.
	 2002.
	 JITTS (Just-In-Time-Trees).
	 Talk given at New York XML Special Interest Group, January
	 2002.
	 Slides on the Web at
	 http://www.durusau.net/publications​/NY_xml_sig.pdf.
	
[Durusau / O'Donnell 2002b]
	 Durusau, Patrick, and
	 Matthew Brook O'Donnell.
	 2002.
	 Coming down from the trees: Next step in the evolution of markup?
	 Late-breaking paper given at Extreme Markup Languages 2002,
	 Montréal, sponsored by IDEAlliance.
	 Slides on the Web at
	 http://www.durusau.net/publications​/Down_from_the_trees.pdf.
	
	
[Durusau / O'Donnell 2003]
	 Durusau, Patrick, and
	 Matthew Brook O'Donnell.
	 2003.
	 Restoring the primacy of PCDATA.
	 Paper given at XML Europe 2004,
	 sponsored by IDEAlliance.
	 Available on the Web at
	 http://www.durusau.net/publications​/Primacy_of_PCDATA.pdf.
	
[Durusau / O'Donnell 2004]
	 Durusau, Patrick, and
	 Matthew Brook O'Donnell.
	 2004.
	 Tabling the overlap discussion.
	 Paper given at Extreme Markup Languages 2004,
	 Montréal, sponsored by IDEAlliance.
	 Available on the Web at
	 http://conferences.idealliance.org​/extreme​/html​/2004​/Durusau01​/EML2004Durusau01.html.
	
[Durusau 2005]
	 Durusau, Patrick.
	 2005.
 OSIS users manual (OSIS Schema 2.1.1).
	 The canonical location on the Web appears to be
	 http://www.bibletechnologies.net​/utilities​/fmtdocview.cfm​?id=28871A67​-D5F5​-4381​-B22EC4947601628B&method=title
	 but the site is intermittently unavailable. Another copy
	 is at
	 http://ebible.org/osis ​/OSIS2_1 ​ UserManual_​ 06March2006_​-_with_​ O'Donnell_​edits.PDF.
	
[Haentjens Dekker / Birnbaum 2017]
	 Haentjens Dekker, Ronald, and
	 David J. Birnbaum.
	 It's more than just overlap: Text As Graph.
	 Presented at Balisage: The Markup Conference 2017,
	 Washington, DC, August 1 - 4, 2017.
	 In
	 Proceedings of Balisage: The Markup Conference 2017.
	 Balisage Series on Markup Technologies, vol. 19 (2017).
	 doi:https://doi.org/10.4242/BalisageVol19.Dekker01.
	
[Henderson 1958]
	 Henderson, Harold G.
	 An introduction to haiku.
	 (Garden City, New York: Doubleday, 1958).
	
[Hilbert / Schonefeld / Witt 2005]
	 Hilbert, Mirco,
	 Oliver Schonefeld,
	 and
	 Andreas Witt.
	 Making CONCUR work.
	 In Proceedings of Extreme
	 Markup Languages 2005. On the Web at
	 http://conferences.idealliance.org​/extreme​/html​/2005​/Witt01​/EML2005Witt01.xml
	
[ISO 8879:1986]
	 International Organization for Standardization (ISO).
	 1986.
	 ISO 8879-1986
	 (E). Information processing — Text and Office Systems —
	 Standard Generalized Markup Language (SGML). International
	 Organization for Standardization, Geneva, 1986.
	
[Jagadish et al. 2004]
	 Jagadish, H. V.,
	 Laks V. S. Lakshmanan,
	 Monica Scannapieco,
	 Divesh Srivastava,
	 and
	 Nuwee Wiwatwattana.
	 2004.
	 Colorful XML: One hierarchy isn't enough.
	 Proceedings of the 2004 ACM SIGMOD International
	 conference on management of data, Paris,
	 sponsored by the Association
	 for Computing Machinery Special Interest Group on Management of Data.
	 New York: ACM Press.
	 doi:https://doi.org/10.1145/1007568.1007598.
	
[Piez 2012]
	 Piez, Wendell.
	 Luminescent: parsing LMNL by XSLT
	 upconversion.
	 Presented at Balisage: The Markup Conference 2012,
	 Montréal, Canada, August 7 - 10, 2012.
	 In
	 Proceedings of Balisage:
	 The Markup Conference 2012.
	 Balisage Series on Markup
	 Technologies, vol. 8 (2012).
	 doi:https://doi.org/10.4242/BalisageVol8.Piez01.
	
[Piez 2014]
	 Piez, Wendell.
	 Hierarchies within range space:
	 From LMNL to OHCO.
	 Presented at Balisage: The Markup Conference 2014,
	 Washington, DC, August 5 - 8, 2014.
	 In
	 Proceedings of Balisage:
	 The Markup Conference 2014.
	 Balisage Series on Markup
	 Technologies,
	 vol. 13 (2014).
	 doi:https://doi.org/10.4242/BalisageVol13.Piez01.
	
[Schonefeld 2007]
	 Schonefeld, Oliver.
	 2007.
	 XCONCUR and XCONCUR-CL:
	 A constraint-based approach for the validation of concurrent markup.
	 In Datenstrukturen für linguistische Ressourcen
	 und ihre Anwendungen /
	 Data structures for linguistic resources and applications:
	 Proceedings of the Biennial GLDV Conference 2007,
	 ed. Georg Rehm, Andreas Witt, Lothar Lemnitzer.
	 Tübingen: Gunter Narr Verlag.
	 Pp. 347-356.
[Schonefeld / Witt 2006]
	 Schonefeld, Oliver,
	 and
	 Andreas Witt.
	 2006.
	 Towards validation of concurrent markup.
	 Extreme Markup Languages 2006.
	
[Sperberg-McQueen / Huitfeldt 1999]
	 Sperberg-McQueen, C. M.,
	 and
	 Claus Huitfeldt.
	 1999.
	 Concurrent document hierarchies in MECS and SGML.
	 Literary & Linguistic Computing
	 14.1: 29-42. doi:https://doi.org/10.1093/llc/14.1.29.
	
[Sperberg-McQueen 2006]
	 Sperberg-McQueen, C. M.
	 Rabbit/duck grammars: a validation method for overlapping structures.
	 In Proceedings of Extreme Markup Languages 2006.
	 On the Web at
	 http://conferences.idealliance.org​/extreme​/html​/2006​/SperbergMcQueen01​/EML2006SperbergMcQueen01.html.
	
[TEI P5]
	 Text Encoding Initiative Consortium.
	 2018.
	 TEI P5:
	 Guidelines for Electronic Text Encoding and Interchange.
	 Version 3.3.0, last updated 31 January 2018.
	 Available on the Web at
	 http://www.tei-c.org/release/doc​/tei-p5-doc/en​/html​/index.html
	
[Witt 2004]
	 Witt, Andreas.
	 2004.
	 Multiple hierarchies: new aspects of an old solution.
	 Paper given at Extreme Markup Languages 2004,
	 Montréal, sponsored by IDEAlliance.
	 Available on the Web at
	 http://www.mulberrytech.com​/Extreme​/Proceedings​/html​/2004​/Witt01​/EML2004Witt01.html
	

[1] Many of the manuscripts in the Jarring Collection were
 acquired during Jarring's 1929-1930 stay in Kashgar, a city on
 the Silk Road in what is now the Xinjiang Uyghur Autonomous
 Region in the far western portion of the People's Republic of
 China. Some of the manuscripts are in Persian, Arabic, or other
 languages, but most are in the language of Kashgar's main
 indigenous population, the Uyghurs, which Jarring called Eastern
 Turki or just Turki. It is a matter of some interest whether the
 language of these manuscripts should be identified as modern
 standard Uyghur (ISO language code uig) or as Chaghatay, the
 language of the Chaghatay Khanate, the latest common ancestor of
 modern standard Uyghur and of modern Uzbek. For what it's worth,
 the linguists in the ATMO project lean on linguistic grounds
 toward the latter classification.
 Jarring later had a distinguished career in the Swedish
 foreign service and at the United Nations. Near the end of his
 career he donated his collection of manuscripts to the
 University Library in Lund, Sweden, where they now form the
 nucleus of the Jarring Collection.
The ATMO project has received funding from the Henry Luce
 Foundation. The author thanks the Luce Foundation for their
 financial support and my collaborators in the project
 (especially Prof. Arienne M. Dwyer, Dr. Alexandre Papas, Akbar
 Amat, and Gulnar Eziz) for the intellectual challenges of the
 collaboration.

[2]
	The earliest discussion I am aware of in a scholarly journal
	is that of Barnard et al. 1988, though there is
	earlier work in a master's thesis written under David
	Barnard's supervision. The discussion of the problem and
	potential solutions continues; see for example [Haentjens Dekker / Birnbaum 2017].

[3]
	 The use of rend to distinguish things for which
	 standard XML practice would prescribe different element types
	 is suboptimal; it has unavoidable similarities to the practice
	 sometimes described as a kind of thought experiment: could we
	 use a vocabulary with just one element type e,
	 distinguishing different kinds of structure only by use of a
	 type, class, or role
	 attribute? The answer turns out to be yes, but you
	 won't enjoy it very much.
	
	 The awkwardness can probably be taken as a sign of flaws in
	 the original document analysis within the ATMO project; one of
	 the challenges in tagging hitherto unavailable material,
	 however, is that the material one is going to tag may not be
	 conveniently accessible. For the ATMO project, a systematic
	 survey of the topographic structures found in the manuscripts
	 would have required an extended visit to Sweden.
	

	 A retrospective redesign of the markup and retagging of the
	 transcripts would probably be desirable but is unlikely to be
	 feasible. The most recent revision of the page-view schema
	 does, however, fix the most egregious problem of the initial
	 schema by allowing tables to appear within zones of writing.
	

[4] There is a certain potential for confusion in having
	 documents in three formats, any one of which may be the most
	 recently edited master copy, with changes
	 that must promptly be propagated to the other two copies.
	 To reduce this confusion, we have in fact chosen as a matter
	 of policy to identify one or other other form as the
	 standard master (or just default) format; any
	 changes most easily made with a different dominant hierarchy
	 should be followed immediately by automatically re-updating
	 the default master form. The goal of the markup design
	 described here is to allow decisions about master form and
	 maintenance rules to be made on other grounds, and not to be
	 foreclosed by by limitations of the markup design.
[5] On the topic of such transformations and their
	 algorithms see now the paper Birnbaum et al. 2018
	 elsewhere in this year's Balisage conference.
[6] They could also be treated as sole tags, in which
 case the stream seen by the SAX-based consumer would
 be very similar to that in the proposal made here. But
 this possibility was not mooted explicitly by Durusau and
 O'Donnell.
[7] The author is grateful to Lynne A. Price for patient
 explication of these details in conversations spanning a number
 of years.
[8] The name Trojan Horse markup is a jocular
	reference to Troy Griffitts, a participant in the development of
	the Open Scripture Information Standard, whom DeRose credits
	with the basic idea.
[9] N.B. I have inserted line breaks and indentation here and
 in other examples for ease of reading. If the details of
 whitespace may be meaningful at the application level, less
 convenient indentation may be needed.
[10] I apologize if I appear to belabor this point, but
	 experience has shown that even normally acute observers have
	 objected to Trojan-Horse markup on the erroneous supposition
	 that it introduces ambiguity. The claim is based on a
	 fundamental misunderstanding.
[11] This is true even for experienced XML users. Early in the
 process of deploying the format described in this paper, the
 author was obliged to make some relatively simple, mechanical
 edits in a recessive hierarchy. Because the inter-format
 transformations were not yet all ready, it was not feasible to
 transform that recessive hierarchy to make it dominant, so he
 edited the elements in the recessive hierarchy by hand. The
 process involved splitting each tei:surface element
 in two and supplying new hyperlinks to point to a new set of
 page images to replace the old set of images of two pages at a
 time. Although the process was essentially mechanical and was
 executed using a simple editor macro, the end result had two
 errors in its logical well formedness, which cost a full day and
 half in debugging time, and which were found only after the
 well-formedness checker described in this section had been
 written.

[12] The named templates not described are not shown
 here, but the entire stylesheet is available for inspection
 at http://uyghur.ittc.ku.edu​/lib​/th-wf-checker.xsl

[13]
		In this simple approach, the dominant grammar will not
		distinguish between start- and end-tags for recessive
		elements; in the notation defined by Sperberg-McQueen 2006, this amounts to saying
		tag(x) can be used, but not
		stag(x) or etag(x).
	
[14]
		 The simplest approach is to replace every primitive
		 content token T
		 with the expression (T, (%R;)*), where
		 %R; is an or-group containing every
		 element in R.
		 Additionally, replace every content model M thus modified with the
		 expression ((%R;)*, M).
		

Balisage: The Markup Conference

Representing concurrent document structures using Trojan Horse markup
C. M. Sperberg-McQueen
Founder and principal
Black Mesa Technologies LLC

C. M. Sperberg-McQueen is the founder and principal of
 Black Mesa Technologies, a consultancy specializing in helping
 memory institutions improve the long term preservation of and
 access to the information for which they are
 responsible.
He served as editor in chief of the TEI Guidelines from
 1988 to 2000, and has also served as co-editor of the World
 Wide Web Consortium's XML 1.0 and XML Schema 1.1
 specifications.
	

Balisage: The Markup Conference

content/images/Sperberg-McQueen01-005.png

content/images/Sperberg-McQueen01-004.png
«

W™ oiatltaosimis and wanscrivt X []

c @

uyg

hur.ittc.ku.edu/ma

phlegm.its nature is cola.iis piace is in the
lung Its taste is bitter Fourth is melancholy.

Its taste is salty.The physician (hakim)
Galen (ilinos) said that if one's mouth
tastes bitter, their phlegm is excessive.If
one's mouth tastes sweet, blood is
excessive. f one's mouth tastes salty, then
their melancholy is excessive.If someone
suffers from fever, if the body becomes
heavy, the mouth becomes sweet, [and]
one suffers from headache, all these
Isymptoms] are due to their blood.And a
sore throat, backache, sore eyes, heart
palpitations, and earaches are all due to
blood.If someone is prone to headaches, it
is called sheqiyce (<442 per. ‘temple!).If the
mouth becomes dry, if one often becomes
thirsty, i the throat becomes dry, the face
yellows and the mustache and beard
become white, ilik titrmak (St 5 S4),
becomes feverish (»3,4), if the hip aches,
if food is not digested, all of these are due
o bile.And [if] the mouth tastes bitter,
saliva flows, the mustache and beard
become white, f one] suffers from
stomachache, swelling (edema (&), [or]
measles, all of these are due to phlegm.

iscripts/Jarring_Prov_351.text.»

Bo%

Swr bwhwr Jalnws hakm aytwr hr km nynk
a0zy aly bwish blgm zyadh bwiwr 4
hrkm nynk agzy tatly bwish qan zyadh
bwlwr hrkm nynk agzy Swr bwlish swda
zyadh bwlwr akr kmrshnynk astyma
bwlmaqy tn agyr bwimagy agzy tatlyg
bwimaq ba agrymaq bwlar hm-~hsy
qandyn pyda bwiwr w ynh bwgwz
agrymaq awja agrymaq w kwz agrymag
ywrak salmaq qwlaq agrymaq bwlarmw.
qandyn bwlwr akr kmrshnynk basy twla
agrash any Sqyqh drlar 5 akr agz
qwrwmaq twla aws~amaq w bgwz
qwrwmaq ywzy sryg bwimag w saj sqal fat
agar maq w aylk tytrmak mér tab* Irzh
bwlmaq w yan basy agrymag fam
synkmaslyk bwlar sfra dyn bwlwr w ynh w
ynh 4 w ynh agyz alyg bwimaq agyzdyn
sw kimak sa] sqal agarmaq w qwrsaq
agrymaq w astsqa w kimh kdw danh
bwimag bwlar hm~hsy bigm dyn pyda
bwlwr w ynh adyznynk 3wr bwimagy
naxwilwg w kwz xyrh bwimag w Sb kwr
bwlmaq w fkry dar bwimaq w afth twiy
kwrmak twla swzlamak w sry

fn) 5221 833 S Sl S sl b 5ot
A B 531 S5 S8 4 sl o ikl
0355 Do ddy 55 51 S8 S8 sl od3 I8
Ay 321 5 g Ll S8 81 5ol
s i Yy Gl 2 4 By 55 52
355 3 B el Gl 21 3545 5 3503 30
G0 oY 33 G 1 GV e S G 21
2 1Y 5 e S S50
543 Gl V5 Barsh #1815 N

5 G S8 8 Qi gl G i 530 Brrsh
G 21 s oty 5 By 33 45 5 Sl SU
44534 3 b a8 b Y KL i
i3] By gl 32145 5
3 Bl e £n S e
il 5 Gl 21 G b
Gy iy s S 408
5325l 13 0 i
G Ry 52 ST
13558 Bl 58 i 5 Gl o 3555
a3 SV 3 VSl S g8 4] Gy

4 Galen: Claudius Galenus, Roman physician, b. 130 CE in Pergamum, on Aegean coast in Asia Minor (moden Turkey) The substance turnajabin ‘manna’ appears
repeately in this and other Eurasian healing manuscripts. (tar-angubin ‘Manna' Steingass 1892/1998:: 297, < 'wet honey) i.e. camel-thorn (Alhag persarum)
extract [ADI; *Persian Manna is the most economically important manna in Iran which is collected mainly in Iran and Transoxiana. I is exudates from stems and
leaves of camel's thorn (Alhagi persarum Boiss. & Bush.), probably by action of an insect. It forms sweet, semisolid resinous tears on the shrubs. Persian manna has
different uses in Persian traditional medicine, ethnomedicine and sweetmeats. Among the variaus effects atributed to Persian manna, laxative and cholagogue
properties are more prominent than the others. On the basis of indications and contraindication described in old writings, it is used as an immunostimulant agent.
Phytochemical profile of tis manna shows some controversies between studies that are discussed briefly." (abstract from Ramezany, Fard, Narges Kiyani, and
Masoumeh Khademizadeh. “Persian Manna in the Past and the Present: An Overview.” American Journal of Pharmacological Sciences 1.3 (2013):35-37. Online:

hitpy/lpubs sciepub.comiajps/1/3/1/ ANAD]

Glosses needed: ilik tirmak (-8 5 -S3); . also alucha ‘drupelet’

5 AD: probably

shagiqat fissure; side of the head, temple! (Steingass 1892/1998::751)

content/images/Sperberg-McQueen01-003.png
<« c @ ku.edu 0% | - @ T N o =

!
w ynh adyz &yy bwlmag agyzdyn
w ynh adyz &y bwlkmag agyzdyn

CONJ AV N Al X-GER N-ABL

and again mouth bitter X-GER mouth-ABL

e S gl i 3 Busd
sw kmak sa sqal agarmag W qwrsag
sw klmak sa sqal agar-maq w qwrsag
N Vi-GER N N Vi-GER CONJ N
saliva flow-GER hair beard becomewhite-GER and stomach
Bl 5 Gl B s S
agymag w assqa w krmh kdw danh
agry-maq w assga w kimhkdwdanh
ViGER CONJ N CON N
ache-GER and edema or measles
Bl B ot o8 ik s BY
bwimag bwlar hm-hsy blgmdyn pyda bwlwr
bwl-mag bwlar hm-hsy blgm-dyn pyda bwl-wr-0
X-GER DEM.PL QNT-3POSS N-ABL AJ LVN-IPFV.DIR-3

X-GER these all3POSS phlegm-ABL appear LVN-IPFV.DIR-3

CONJ

And [if] the mouth tastes bitter, saliva flows, the mustache and beard become
white, [if one] suffers from stomachache, swelling (edema (i), [or] measles,
all of these are due to phlegm.

(45)

3 & Sl B s 33k 80
w b Aqvzovol d bulzaoy naxwilwa

content/images/Sperberg-McQueen01-002.png
Digital facsimile and transeript X

uyghurittc.ku.edu/manuscri 80% -9 N @
£
wynh

i gl S g 0321 G] 381425 1
1 wynh agyz alyg bwimaq adyzdyn sw kimak s sqal
s Sy G G] By 5 G 2
2 agarmaq w qwrsaq agrymaq w astsqa w krmh kdw danh
3 ST A 5 e g 09 i s VGl 3
3 bwimag bwlar hm~hsy blgm dyn pyda bwlwr w ynh agyznynk 3wr
SR Bl oS oty Gl 355 5 GASAS Ry 4
4 bwimagy naxwilwa w kwz xyrh bwimag w 3b kwr bwlmaq w fkry dar
oy S e Y F S 5 G Gy 5
5 bwimaq w afth twiy kwrmak twla swzlamak w sr'y
Sy S S Gl i VB 6
& bwlmag bwlar hm~hsy swdadyn bwiwr akr kmrsh gan wiw
S Gl s s sl A a7

7 bwlswn dyb xtirmay hndy w ailwjh ny klab &bt
S sy i Gl I S 5 8
& qylb aw] kwn nasthda ayésh gan saf bwiwr akr
) G) gl A G S e 9
9 sfra sakyn bwlswn dysh alyg anarny tatlyq anary
0ol Jia a2 B o DS S 10
10 brabr qylb Kiab hm brabr qlyb br kéh qwydyl andyn
e 195 0 o ol da Ay eSS T
11 kyn trmfhbyn brlh hl glyb aw] kwn natda ayjsh
2
2

content/images/Sperberg-McQueen01-001.png
I Digtal facsimie of manuscript - X

ku.edu; B eo% e O T

\ Digital facsimile of manuscript Jarring Prov.
351 (fol. 4a)

Chaghatay 2.0
About

People

Annotated Turki Manuscripts from the
Jarring Collection Online

Manuscripts

About

Handbooks

‘ W //?//u// S
Technical I

"/»/,M%)W” L | VR
Upyghur Light Verbs Project | ; ,,J)’AJU ?‘L s ‘/’) & | 122
- E pars °/~”“}/
Linguistics _ i
Technical i

o) Perd G AT Y |

S, Yy i) s et P Jol) Gy >
«p::)rb//uz./@/)/// £ I

2y

4J

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

