[image: Balisage logo]Balisage: The Markup Conference

Mending Fences and Saving Babies
Robin Berjon
freelance
W3C

<robin@berjon.com>

International Symposium on HTML5 and XML
August 4, 2014

Copyright © 2014 Robin Berjon

How to cite this paper
Berjon, Robin. "Mending Fences and Saving Babies." Presented at: International Symposium on HTML5 and XML, Washington, DC, August 4, 2014. In Proceedings of the Symposium on HTML5 and XML.
 Balisage Series on Markup Technologies vol. 14 (2014). https://doi.org/10.4242/BalisageVol14.Berjon01.

Abstract

 The harshest squabbles are fraternal, and as fraternal squabbles go, the one between the
 proponents of XML and HTML has been at times quite brutal. This kerfuffle has opened large
 rifts in what is largely a like-minded community. The differences between XML and HTML are
 genuine, especially when considering not just the markup but the full family of technologies
 that have grown around them. But do they really justify animosity? Both XML and HTML have
 created strong solutions to varied problems often ignored by other angle bracketists. Their
 many commonalities mean that the XML and HTML communities need not throw away one another’s
 babies in a big slosh of bathwater. It is time for a candid conversation about flaws and
 limitations, and from there to mend fences.

 In this paper we look at some mythical preconceptions that each community has about the
 other, go through a number of topics that show where there is value in “looking over the
 fence”, and reach what is hopefully a pragmatic conclusion as to what each community needs
 to do.

Balisage: The Markup Conference

 Mending Fences and Saving Babies

 Table of Contents

 	Title Page

 	Introduction

 	Myths of the Markup Community

 	How JavaScript Is Saving the Document

 	HTML in an XML pipeline

 	Extending HTML: Web Components

 	Conclusion

 	About the Author

 Mending Fences and Saving Babies

Introduction

 One of the original hopes for XML and its family of technologies was that it would be the
 markup infrastructure for the Web. This goal was notably materialised in the suite of XHTML
 specifications, in SVG and MathML, as well as in the use cases considered for a number of XML
 technologies such as XSLT, XSL-FO, XLink, and many others.

 This dream, however, has failed. XML is without a doubt a very successful set of technologies
 and benefits from a healthy community and powerful tooling. It is nevertheless close to absent
 from Web content.

 The failure of this dream, and the way it was brought about, has created a lot of animosity in
 the broader markup community. XML aficionados feel they have been cheated out of their future
 by HTML, browser vendors, and whoever is even remotely associated with today’s Web. On the
 other side, HTML people feel they had to fight XML bitterly in W3C and in their daily jobs in
 order for Web technology to have the properties they felt were needed for its success.

 In the aftermath of this dispute, the two communities are largely estranged from one another.
 XML heads hold their noses at JavaScript and at HTML parsing; HTML people fashionably
 disparage XML in much the same way that one makes fun of Java.

 It is this paper’s position that this attitude is hurting both. While it seems unlikely — and
 not even desirable — that some form of grand merge of XML and HTML would take place, there is
 nevertheless value in opening up a bidirectional discussion between the two communities so
 that they may learn from one another’s tools and ideas, mending fences as it were so that each
 side stops throwing away babies with bathwater.

Myths of the Markup Community

 Without getting into excessive details about myths, rumours, and hearsay it is useful to take
 a quick look at the myths that the XML and HTML communities entertain about one another. If
 nothing else, it tells us where each is coming from and can help avoid clichés as well as map
 out places of genuine contention.

 To the HTML crowd, XML is essentially overly strict, full of overly complicated
 solutions that are perceived to be either enterprise-like (invented to give Java a
 reason to exist) or completely academic and impractical.

 There is no doubt that technologies such as XML Schema, not to mention the whole SOAP stack,
 have a lot to do with this perception. But as we will see below, the famed Desperate
 JavaScript Hacker (who in today’s world has come to replace the Desperate Perl Hacker) does
 not have a monopoly on useful technologies, and some tools that may be pitched in a manner
 reminiscent of enterprise-speak — likely because that is where they can be sold today — can
 have value in many other contexts.

 Conversely, to XML people HTML is messy, hackish, cannot be parsed or processed
 reliably, isn’t extensible, and is plagued with tools designed by and for amateurs,
 chief amongst which stands JavaScript, often considered to be a toy language.

 Again, there are genuine issues that brought about this perception. For the longest time, HTML
 was indeed impossible to parse properly, and it is only now acquiring extensibility. The fact
 that its tooling is accessible to beginners — a strength — entails that there are many
 beginners dabbling in it. But the sheer scale of the Web and its obvious ability to deliver
 complex, major, highly successful projects put together with the massive creativity of its
 communities of developers should give indication that it may not be entirely stupid and
 unreliable.

 Covering all of the ways in which one community could inform the other would require more
 space than there is here. We can, however, look at a few examples in the hope that it will
 whet the readers’ curiosity.

How JavaScript Is Saving the Document

 There are few communities in which JavaScript is more reviled than amongst document lovers.
 By its very dynamical and interactive nature, it is seen to single-handedly destroy a
 document’s meaning and any hope for the processing of data outside the visual, interactive
 mediation of the browser.

 In many a case, and for a large class of documents, that has indeed be the case. Since any
 HTML page may be a document just as well as an application, and since the difference between
 the two is blurry at best, one cannot in general process HTML in a meaningful manner outside
 of the browser.

 This can be contrasted with what was a large part of the vision of XML on the Web. The idea,
 at least that of many, was that one could produce purely semantic content in the form of an
 XML document, and then attach to it some XSLT that would transform it for clients that
 required such transformations. This was seen as providing a separation of concerns superior to
 that afforded by HTML+CSS since one can easily introduce elements more meaningful than, say,
 div. (How the actual semantics of a given arbitrary markup
 language were supposed to be conveyed to users, tools, or the accessibility layer was,
 however, largely swept under the rug as a problem to be solved at a later date.)

 It may therefore come as a shock to some that, today, JavaScript is paving the way for a
 return of that very usage.

 Single Page Applications (SPA) are Web applications in which all of the resources that define
 a page (the HTML chrome, JavaScript, CSS, etc.) are loaded once and then used as a shell
 inside of which content can change. A well-known advantage of SPAs is that they massively
 increase performance and thereby provide users with a better, snappier experience. They also
 avoid having to deal with application logic that is split between client and server, and are
 therefore very much desirable for developers — even in cases where the application is largely
 content-oriented (e.g. a blog). Note that, contrary to still-popular belief, SPAs can be made
 URL-friendly through use of the History API.

 To date, SPAs have mostly been used in the production of very application-oriented content.
 The reason for that is because the robotic crawlers used by search engines have so far been
 unable to process them, and no one wants their content kept away from search engines. This
 situation is changing. Increasingly, crawlers are able to process JavaScript-heavy pages, and
 do so. This opens up the door to far broader deployment of SPAs, and since they are often
 more convenient for developers the odds are strong that they will come to dominate even
 content-based sites.

 This essentially brings about the content/transformation distinction that XSLT and XML were
 aiming for on the Web. One can maintain (and make available) a set of “pure” documents that
 the SPA then renders on the client. The content may be simplified, semantic, possibly enhanced
 HTML that adequately captures the intended meaning (and is happily devoid of all the
 navigation and useless paraphernalia that most pages would normally contain). It can also be,
 for more data-oriented content, JSON. And naturally, if desired, it can be XML. In all cases,
 XSLT cannot be expected to be natively available for transformation, but there exist many
 solutions that can be picked based on what best matches one’s needs. (The author routinely
 uses jQuery as a transformation language precisely for this sort of task.) If one prefers XML,
 there are even XSLT and XQuery libraries available — it becomes up to you to use the browser
 just as a VM, and deploy whichever technology you prefer.

 The attentive reader will note that even if SPAs effectively make the client-side XSLT
 publishing workflow a reality, they still do not solve the problem of properly conveying
 arbitrary semantics that was mentioned above. Hopefully, though, in being successful they will
 make the problem more salient and thereby bring about a solution.

HTML in an XML pipeline

 HTML was initially supposed to be defined as an application of SGML. But few implementations
 effectively followed that path, and it quickly grew to be defined solely as a set of hacks
 and bugs mimicked from others’ bugs, leading to the well-known “tag soup” situation that
 essentially made it scrapable at best only through regular expressions.

 While that situation prevailed for a long time, it no longer reflects reality. The HTML
 parsing algorithm has now been fully defined, and is highly interoperable. It certainly has
 its complex, dirty corners, but those only need to be implemented once. And in many ways, they
 are no worse than some of the warts found in the likes of XML or SGML.

 Today, when applying an HTML parser, you obtain real, usable DOMs that are guaranteed to be
 interoperably the same across implementations. The HTML DOM even benefits of a mapping to
 XML known as the “Infoset coercion” rules. As a result, largely any tool that you can apply to
 XML can be applied equally well to HTML provided you front your pipeline with an HTML parser.
 No need to even stick to the so-called “polyglot” syntax (which has issues of its own).

 As things stand today, processing a large HTML corpus remains painful. There are full-text
 indexers, but they rarely afford much flexibility in taking the structure into account. One
 can naturally parse the HTML and process the DOM, but doing that for every search on a large
 corpus is of course prohibitively expensive. It is possible to produce ad hoc indices built
 with such processing, but that removes the benefits from arbitrary querying. In other words,
 there is no such thing as an “HTML database” to match the existing XML databases.

 In developing Web standards, we regularly need to look at large HTML corpora to determine
 whether a given usage is common or how people actually use the technology (for instance, a
 dump of the front pages of the top million sites). The tool we use for this? Typically:
 grep.

 Yet a lot of data is captured as HTML. Huge corpora contain a humongous amount of information,
 for instance in tables, that is being locked there.

 That’s a situation for which something like XQuery could prove itself extremely useful. There
 is, in fact, very little that prevents one from loading HTML directly into an XML database
 and processing it. Yet few do it, likely because of the “X” in “XQuery”, serving as a
 scarecrow. As Liam Quin recently put it, it may have been better for XQuery to be called
 something like “Fast Forest”.

 Slightly to the side of HTML, but by and large in the same technological bucket, a similar
 situation applies to JSON. There do exist JSON databases — many of them actually — but their
 query abilities are often poor to laughable. Solutions built atop XQuery, such as JSONiq,
 would without a doubt solve many real problems that people are facing when managing their
 JSON data. Yet the mutual ignorance is such between our communities that such tools remain
 largely confidential.

 Another great example of technology built for XML being applied to HTML comes from DeltaXML.
 Producing meaningful diffs of HTML content is, today, largely a painful situation, especially
 if the HTML is irregular, large, and heavily marked up. That is a problem largely solved for
 XML and HTML could benefit greatly from it becoming more available.

Extending HTML: Web Components

 A strong point of contention between XML and HTML is the notion of extensibility, or more
 precisely of extensibility carried out by arbitrary third-parties with no requirement to
 work their way through a centralised standard. In other words, “distributed extensibility”.

 XML’s solution to distributed extensibility is XML Namespaces. For all that they may be
 reviled, namespaces do work in bringing distributed extensibility to XML — but only in a
 limited sense.

 Extensibility can happen at many levels: the syntax, the vocabulary, the meaning, the styling,
 the behaviour… Neither XML nor HTML have extensible syntax and there seems to be only limited
 demand for that. Namespaces deliver vocabulary extensibility: you can create your own
 vocabulary easily, and if you’re not entirely daft you can do so in a manner that won’t
 conflict with anyone else. However, namespaces stop there. Even without considering the
 problems inherent in interactive behaviour, just discovering how two vocabularies mixed
 together need to be processed is an unsolved problem and requires resorting to ad hoc
 development. This situation is worsened by the fact that some schema languages, most notably
 XML Schema, don’t even consider XML to be extensible by default.

 HTML does not have a real solution at the vocabulary level (unless you count prefixing your
 elements in a global namespace a solution). It does, however, have an approach from the other
 end of the spectrum: Web Components.

 There is not enough space in this paper to provide a full-fledged introduction to Web
 Components (for more on the topic, I recommend the
 webcomponents.org website) but the part that
 is essential for this discussion should be easy to grasp without a full understanding of the
 technology.

 Essentially, the point at which HTML behaviour is integrated into a browser engine is through
 the HTMLElement interface. That is where the common APIs hang off of, where CSS
 applies, where integration with the class and ID system happens, and much more. What Web
 Components enable is essentially for developers to create their own arbitrary elements by
 subclassing HTMLElement and providing their own implementation, injected into the
 runtime.

 Once that has been done, the new element becomes treated just like any other built-in element.
 What’s more, thanks to the concept of shadow trees (essentially subtrees of the DOM that can
 be hiding recursively behind regular DOM nodes) it is possible to intermix Web Component
 content and regular HTML at will.

 It is therefore interesting to note that neither XML nor HTML have solved the distributed
 extensibility problem across the board. Each has solved it from the end that made most sense
 to its more common usage. Because of a difference in use cases, depending on where you stand
 either one may be seen as extensible and the other not, or vice-versa.

 But this difference of viewpoint leads not necessarily to an opposition but rather to
 complementarity. It is important to know and to understand both so that one may be able to
 rely on either when the applicable need arises rather than shun half of the solution space.

 In my XML Prague 2014 paper “Distributed
 Extensibility: Finally Done Right?” I go so far as to point out how one could transform
 XML-namespaced content into a syntax friendly to Web Components in order to implement the
 behaviour of an XML language; and provide indications as to how the two could be integrated
 more closely together. Deciding whether that is wise or not is left as an exercise for the
 reader, but it does point to complementarity rather than opposition.

Conclusion

 We hope to have shown through this overview that there is value for anyone sitting on one side
 of the fence to go look at what is going on on the other side, assuming that the “others” may
 in fact be smart people with somewhat different needs rather than dumb people who just don’t
 “get it”.

 A good example here is SVG. While originally defined in XML, and in fact deeply steeped in XML
 technology throughout, it struggled for years to reach any decent level of usage. At some
 point came the realisation that “SVG isn’t about
 XML, or even syntax, it’s about sassy, sexy, wicked cool graphics that make you go
 wow.”

 Ever since adopting the changes that make it usable equally well in XML and HTML contexts,
 SVG has undergone a period of blooming and has grown to be a solid part of the Web platform.
 There are several more such stories waiting to be written.

Balisage: The Markup Conference

Mending Fences and Saving Babies
Robin Berjon
freelance
W3C

<robin@berjon.com>

 Robin Berjon is a freelance consultant carrying out research, prototyping, and
 standardisation in Web, mobile, and XML technologies. He has worked on both Web and XML
 standards for over a decade, and is currently trying to herd HTML5 to Recommendation as
 part of the W3C team. He lives in Paris, France, with his wife, two daughters, and a
 rather idiotic cat.

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

