[image: Balisage logo]Balisage: The Markup Conference

Where Are All The Bugs?
Introspection in XQuery
Mary Holstege
Principal Engineer
MarkLogic Corporation

<mary.holstege@marklogic.com>

Balisage: The Markup Conference 2013
August 6 - 9, 2013

Copyright © 2013 Mary Holstege

How to cite this paper
Holstege, Mary. "Where Are All The Bugs?." Presented at: Balisage: The Markup Conference 2013, Montréal, Canada, August 6 - 9, 2013. In Proceedings of Balisage: The Markup Conference 2013.
 Balisage Series on Markup Technologies vol. 10 (2013). https://doi.org/10.4242/BalisageVol10.Holstege01.

Abstract
In a large code and complex code base, it becomes unfeasible to
manually develop tests for every feature and combination of
features. The key to quality assurance in this context is automation and focus.
Automatic generation of tests creates its own problems, however, as the
execution of a complete cross-product of all interactions will take too long to
execute, and small defects can give rise to large numbers of regression
failures that must be manually analyzed. Manually identifying the interactions
is itself a challenging undertaking, as is automatically generating
meaningful test cases. It becomes important to make smart
choices about what to expend effort on so as to minimize the risk of undetected
code defects.

This paper reports on an attempt to find areas to focus testing on in a
large XQuery code base by performing XQuery introspection on that code base,
treating the set of functions and parameter and return types as vocabularies, and
computing TF-IDF scores over the terms in those vocabularies. To the extent
that function names and types follow classic Zipf distributions,
using TF-IDF scoring over those vocabularies makes mathematical sense.
Terms that score high will be those that are common enough to be important
(high term frequency) but not so ubiquitous that they tend not to be covered by
other tests (high inverse document frequency).

Balisage: The Markup Conference

 Where Are All The Bugs?

 Introspection in XQuery

 Table of Contents

 	Title Page

 	Introduction

 	Background
 	The Code Base

 	Zipf's Law and TF-IDF Scoring

 	Distribution of Sequence Types
 	Type Scores

 	Techniques

 	Distribution of Functions
 	Function Scores

 	Techniques

 	Summary and Conclusions

 	About the Author

 Where Are All The Bugs?
Introspection in XQuery

Introduction
Ensuring that software works properly can be a difficult undertaking.
When a code base is small and worked on by a handful of people,
you can manually generate tests with good confidence that they cover the ground.
As the code base grows it develops more complex interactions,
includes more features, and is modified by more and more developers.
The code develops unused byways and tangles of dependencies.
It becomes unfeasible to
manually develop tests for every feature and combination of features.
Complete automated testing of all possibilities also becomes increasing less
feasible:
developing cases, executing them, and analyzing the results becomes more and
more time consuming. The sad truth about QA is that the difficulty of ensuring
that software works correctly does not scale linearly with the size of the code base.

Analysis of code usage patterns can help focus attention where testing can do
the most good. Code analysis can also provide a different perspective on the
code that can lead to uncovering potential issues as well. For example, a
function that is not called much probably doesn't need a lot of testing. Testing is
designed to limit risk, and the risk of a bug in a rarely used function is
commensurately low. On the other hand, a function that is widely called may
also not need a lot of additional testing on the grounds
that it is already tested in the process of testing its callers. So again, from
a risk perspective, the risk of not adding additional tests for that function
is also low. Beyond simple
testing, analysis of usage patterns can perhaps highlight areas where APIs can
be simplified by removing unnecessary options and alternatives.

The schema types and elements used in function argument and return types form
an important part of the API. Analysis of the usage patterns of declared types
and elements against the available pool exposed by the in scope schemas can
also provide insights into possible API simplification, or testing focus.

The idea explored here is that (a) functions and types form
vocabularies of sorts
and the distribution of usage of those vocabularies follows the well-established
laws for natural language vocabularies (i.e. Zipf's law) and as such
(b) TF-IDF score calculations over those vocabularies make mathematical
sense and (c) high scoring items make interesting and useful targets for
testing.

This paper describes a case study in analyzing a large XQuery code base
using XQuery and XML Schema introspection in an attempt to determine where to
focus testing efforts, based on this idea. For functions at least, there seems
to be some reason to conclude that the idea holds promise. Types, less so.

Several extensions to XQuery are required to perform this introspection:
a schema component API, functions to provide lists of available functions and
return types and argument types of functions. It is also convenient, in order
to implement the entire processing reasonably efficiently in XQuery, to have
map data types, a structured dump of the parse tree of XQuery modules,
filesystem access functions, and the ability to evaluated constructed XQuery
functions.

Background
About ten years ago, a handful of developers worked on a couple thousand
lines of XQuery code, and one person manually constructed the tests to add to
automatic regression suites. All was well. As time went by, the code grew and
became more complex, the number of people manually constructing tests
increased, with additional people to manually analyze regression failures. Some
tests are automatically generated, but such tests tend to raise analysis costs
when something does fail. The time has come to think about new approaches and
find ways to focus effort.

The Code Base
The code base consists of about 630 thousand lines of
XQuery code, divided roughly evenly between an old and much modified
schema-driven GUI
application for database configuration and management, more recent REST endpoint
implementations and web applications, and a collection of library modules
(including some main modules used in triggers). In total there are a little over
1500 XQuery module files, defining over 68 thousand functions. In addition, the
particular XQuery implementation associated with this collection of XQuery
modules also provides a little over 1800 built-in functions. XML schemas are
actively used to strongly type parameters: there are over 150 schema files
exposing over 12 thousand global element declarations, 26 thousand named simple
type definitions, and 7 thousand named complex type definitions. The bulk of
these schemas
relate to XHTML, however. Setting that aside there are over 50 schema files
exposing over 7 thousand global element declarations, almost 18 thousand named
simple type
definitions, and 3 thousand complex type definitions.

This is a live and
active body of code, ranging in age from code first written ten years ago to
functions still just being implemented today. A peculiar problem with this
particular code base is the range of syntax in play: The code ranges from
XQuery 1.0 compliant code to code using some XQuery 3.0 features or
anticipatory XQuery extensions (similar to although not necessarily identical
to proposed XQuery features) and some very old code still using some 2003 draft
syntax. Relying on the XQuery engine itself to analyze such diverse code is
helpful, because the engine already has to reconcile the syntactic differences
internally. This peculiarity does mean that third party code analysis tools
cannot be used.

Figure 1: Detailed statistics
	XQuery code
	Total	1559	363497
	Group	Files	Lines of code
	Admin GUI	740	116714
	Libraries	333	137983
	REST endpoints and applications	387	101322
	Misc. other	99	7478

	Schema Types
	Count	Total	Non-XHTML Total
	Files	158	56
	Global element declarations	12324	7338
	Named simple type definitions	26536	17866
	Named complex type definitions	7038	3009

	Functions
	Group	Number of Functions
	Built-in functions (C++)	1849
	XQuery module functions	68191

Zipf's Law and TF-IDF Scoring
Zipf's law is an empirical observation Zipf49 that
in a natural language corpus, the distribution of word frequencies (number of
occurrences, that is) varies in
inverse proportion to the rank of the word in frequency order.
Mathematically, Frequency(R) = Frequency(1)/Rk where
Frequency(R) is the frequency of the word of rank
R and k is some constant.
If you graph the distribution on log-log axes, you get a straight line.
Such distributions are very common across various fields and
applications. This paper will consider sequence types used in function
parameters and return types as forming one vocabulary, and the names of
functions themselves forming another, and look at the frequency distribution of
these terms in the corpus of XQuery modules.

TF-IDF scoring has become a standard technique for computing relevance
 of documents to full-text queries since it was introduced in 1972
 Jones72. TF stands for "term frequency" and is a count of
 how often a particular term occurs in a particular document. In the context
 of full-text search a term is typically a single word, but other terms for
 phrases or wildcards are possible. IDF stands for "inverse document
 frequency" and is the number of documents a term occurs in, as a fraction of
 the total number of documents in the corpus. The "inverse" part of IDF means
 that this number is divided, so that higher document frequencies lead to
 smaller scores.

When TF-IDF scores are used to compute relevance to a query, the term
 and document frequencies of each query term are combined together.
 The technique is based on a particular probabilistic model of documents,
 but the intuition behind it is simple enough: more occurrences of a query
 term makes a document more relevant, and occurrences of query terms that only
 occur in a few documents makes a document more relevant.

Various modifications and extensions of the
 technique are currently ubiquitous in modern search engines. It has also been put
 to related purposes, such as computing document similarities and
 clustering. In these applications there may not be a query per se, but the
 set of terms is taken from the documents themselves.

Here, I will attempt to use TF-IDF scores of function calls and types as
 a way of selecting "interesting" functions and types on which to focus QA attention.
 In this model, the XQuery modules play the role of documents, function calls or types
 play the role of terms, and the terms are taken from the documents
 themselves, as one would see in a clustering or similarity application.

First, we will look at the actual distributions of types and functions,
to see if computing scores makes sense at all. Where it makes sense to do so,
we will look at computed scores qualitatively and quantitatively to try to see
whether the high scoring items are indeed interesting targets for testing focus.

Distribution of Sequence Types
XQuery XQuery30 functions may have declared
sequence types for their parameters and their return values. XQuery sequence
types may be either simple type names XSD11.2 or node
tests of some kind. It is
possible to define sequence types that name a complex type without naming a
specific element. XQuery
3.0 F&O30 also allows for functions tests.
XQuery sequence
types also have cardinality indicators, with '?' meaning a sequence of 0 or 1
instances of the base type, '*' meaning any
number, '+' meaning 1 or more, and no indicator meaning exactly 1. When no
explicit sequence type declaration is given, the sequence type is the most
generic, matching anything: item()*.

Figure 2

declare function my:example($x, $y as xs:string?) as element(my:result)

The declaration of an example function. The parameter $x
has the (default) sequence type item()*, $y has the
sequence type xs:string?, and the returned value has the sequence
type element(my:result).

In this code base and the underlying XQuery engine associated with it,
the built-in functions return 196 distinct declared sequence types while the
XQuery modules use 629 distinct declared sequence types. In this particular
XQuery implementation, it is not possible to declare different named element
sequence types for parameters or return types of built-in functions.
That is, a built-in function may be declared as returning
element()
but not element(my:result).
If we consolidate all the element sequence
types for module functions, there are only 103 distinct declared sequence types.

Obviously, the sequence types used in the API form but a small part of
the total set exposed through the schemas. Only 3 named complex types are
explicitly used, from the complete set of 3 thousand (non-XHTML) named complex
types. Only 474 named elements are explicitly used, from the complete set of 7
thousand. Only 49 named simple types are explicitly used by module
functions. The overabundance of named schema components is partly because named
types and are used implicitly in the schema-driven configuration and
administration UI, and partly a matter of stylistic preference for global
element declarations and for declaring functions using generic element tests
(e.g. element()) rather than specific complex types
(element(*,my:example)). Regardless, it doesn't look like it would
be helpful to pay special attention to types or elements that are not
specifically referenced in function signatures.

Figure 3: Sequence type distribution (return values)
[image:]
[image:]
The frequency distribution of return value sequence types
 shown
on a double log scale. The horizontal axis is the rank and the vertical axis is
frequency. The top graph shows the distribution for built-in
functions; the bottom graph shows the distribution for module functions.

The return type frequency distribution curves in
 Figure 3 do show that these return types mostly follow a
 power law distribution, although for built-in functions there is
 very substantial drop-off at ends, possibly as a consequence of the
relatively small vocabulary size.

The distribution of function parameter sequence types looks very
 similar to that of function return value sequence types, including the
 drop-offs at the extremes for built-in functions, as shown in Figure 4
Figure 4: Sequence type distribution (parameters)
[image:]
[image:]
The frequency distribution of parameter sequence types
 shown
on a double log scale. The horizontal axis is the rank and the vertical axis is
frequency. The top graph shows the distribution for built-in
functions; the bottom graph shows the distribution for module functions.

The top five return value and parameter sequence types share some
 overlap between built-ins and module functions, although there are some
 interesting differences. The atomic types map:map and
 cts:query are special built-in types, the former anticipating
 XQuery maps, and the latter in support of full-text queries. Given the
 importance of full-text queries to this implementation, the strong showing
 of cts:query is unsurprising. The strong showing of
 map:map demonstrates the utility of this feature. In both
 cases the distribution does suggest that these are important types and
 should be the focus of some QA effort.

 In this
 code base it appears that developers use strong types on parameters more
often than on
 function return values (as indicated by the higher prevalence of
 item()* for function return values but not for parameters).
 Simple types dominate the distribution for parameter types but less so for
 return types. The high frequency of empty-sequence() in return
 types is a consequence of the fact that the implementation supports
 functions that update the data store, so many functions are called for
 effect rather than for the return value.

Table I
Top 5 sequence types in various categories.

	Return types (modules)
	Overall	item()*, empty-sequence(), xs:string, node(), element(configuration)
	Simple types	xs:string, xs:boolean, xs:string*, xs:string?, xs:unsignedLong
	Other	item()*, empty-sequence(), node(), element(configuration), node()*
	Simple types (ignoring cardinality)	xs:string, xs:unsignedLong, xs:boolean, cts:query, map:map
	Return types (built-ins)
	Overall	item()*, empty-sequence(),
xs:string, xs:string*, cts:query
	Simple types	xs:string, xs:string*, cts:query, xs:boolean, xs:unsignedLong
	Other	item()*, empty-sequence(), element()*, element(), node()*
	Simple types (ignoring cardinality)	xs:string, xs:unsignedLong, xs:integer, cts:query, xs:boolean
	Parameters (modules)
	Overall	xs:string, xs:unsignedLong, map:map, item()*, xs:string?
	Simple types	xs:string, xs:unsignedLong, map:map, xs:string?, xs:boolean
	Other	item()*, node(), element(configuration), node()?, element()
	Parameters (built-ins)
	Overall	xs:string, xs:string*, xs:QName*, xs:string?, xs:anyAtomicType?
	Simple types	xs:string, xs:string*, xs:QName*, xs:string?, xs:anyAtomicType
	Other	item()*, node(), node()?, node()*, item()

Type Scores
 Given that the distribution of types follows a classic
 Zipf distribution, it is not unreasonable to apply the probabilistic
 document model on which TF-IDF scoring is based.

The score of a particular term t that occurs at least
 once in the corpus of N documents is given by the following
 equation, where log is the natural logarithm,
 TF(t) is the number of occurrences of t, and
 DF(t) is the number of documents in which t
 occurs.
Equation (a)

 score(t) = log(1+TF(t)) / log(DF(t)/N)

The sequence types with the highest scores are almost all
 distinctly named elements, typically those used as important API
 elements. On the other hand, it must be said that there doesn't seem to
be any qualitative difference between distinctly named elements with high
scores and those with much lower scores. Various kinds of options
elements are scattered throughout the range of scores, for
example. element(xproc:xslt) has a much higher score than
element(xproc:xquery) but again, it is hard to see a difference in
the QA needs of these two sequence types. What are we to make of the fact that
xs:long has a much lower score than xs:integer? Not
much, I think. Perhaps the vocabulary of sequence types is too small to be
useful.

Figure 5: Sequence Type Scores

39.10 element(configuration)
33.70 element(opt:options)
31.55 element(forest:forest-status)*
30.14 element(flexrep:configuration)
28.85 element(plugin:plugin-model)?
28.66 element(opt:constraint)
28.18 element(rsrc:resources)
27.74 element(alert:config)
27.26 lnk:uri
27.09 element(sec:external-security)
...
14.10 xs:integer
14.04 xs:float
...
12.45 element(xproc:xslt)
12.30 xs:integer*
12.12 xs:double
...
8.33 xs:date
7.86 xs:long
...
7.35 element(xproc:string-replace)
7.35 element(xproc:xquery)
...
4.79 cts:element-attribute-value-query
4.79 element(project)*
4.64 xs:long*
4.41 cts:word-query
4.36 function(*)+
4.35 text()
4.23 element(test)*
4.07 map:map*
4.03 function()
4.00 cts:element-value-query

The scores for the top 10, bottom 10, and some selected sequence
types in between are shown, rounded to 2 decimal places.

Techniques
Type frequencies for built-in functions were computed using
 some introspection APIs: a function to enumerate all the defined
 functions, and accessor functions for the return type, the arity of the
 function, and the parameter types. Function accessors defined by Holstege
 Holstege and function introspection functions defined
 in XQuery 3.0 F&O30 do not quite do the job. The
 accessors defined by Holstege only give the atomic type names, not the
 full sequence types, while the XQuery 3.0 functions only give access to
 the function name and its arity. I used three additional
 built-in extension functions, one to enumerate the set of functions, and
 two to give the sequence types as string values.
 Maps kept running totals of the usage of each sequence type.

Computing type frequencies for module functions requires a little
 more. There are two approaches: (1) use an evaluation function that
 imports a given module and uses the same approach as for built-ins, but
 only considering functions in the proper namespace, (2) dump out the
 module parse tree in a structured form and analyze it for the necessary
 information. In this case, I used the second approach, using a built-in
 extension function that dumped out the parse tree. The format of this
 dump was not, alas, XML, so fishing information out of the text relied
 heavily on the XQuery 3.0 function analyze-string.

Doing everything in XQuery was convenient. Doing so meant using
 non-standard features such as maps and access to filesystem information.
 The filesystem access gave me the equivalent of a recursive
 find. It was handy, but not
 strictly necessary: one could instead use shell scripts to gather up the
 set of module names to process them, and then pass that to the analysis
 module. Strictly speaking, maps are not necessary either, but they made
 it much easier to write the analysis modules.

Distribution of Functions
Function call distributions show the same characteristic Zipf
 distribution as types (see Figure 6, although with a
 bit of a drop-off at the upper end of the curve. The majority of the top
 10 functions are XQuery standard built-in functions, although map-related
 functions occur at rank 8 and 9. The top 10 most frequently called
 functions are:
string, concat, empty,
exists, xs:QName, error,
data, map:put, map:get,
and not.

Figure 6: Function call distribution
[image:]
The frequency distribution of function calls
 shown on a double log scale. The horizontal axis is the rank and the vertical axis is
frequency.

Quite a few functions are not used within the code base at
 all. A total of 497 built-in functions are unused, although only 16
 module functions are unused. Given that there is a much larger number of
 declared module functions, the disproportionate nature of this result
 demands comment. It turns out that the unused built-in functions include a
 number of accessor functions for special types (defined for API
 completeness), some specialized functions that just happen not to be used
 in the applications in this code base (geospatial functions, for
 example), and the
 constructor functions for some built-in types including some relatively
 uncommon types such as xs:NOTATION. Figure
 Figure 7 gives a rough break down.

Figure 7
Table II
Characterization of the built-in functions unused in any
 module in the code base.

	Group	Percent
	Accessors and constructors for special built-in types	30.6
	System management and operations	16.3
	Advanced specialized functions	14.7
	Assorted standard functions	13.8
	Mathematical functions	9.5
	Assorted standard XQuery functions	6.4
	Debugging/profiling	5.4
	In active development	2.4

The fact that certain specialized functions are not called
 anywhere in the code base is not a problem, per se, but the fact that
 out of an assortment of special built-in types of a particular class
 (geospatial, for example) only a couple are not represented at all
 may warrant further investigation. It may be a sign of missing
 functionality in higher level APIs.
The situation with the unused module functions is better: all but
 one of the
 unused functions have to do with features under active development or
 testing/debugging code. The remaining unused function, however, looks
 like it does represent a genuine oversight.
Function Scores
 Again, since the function call distribution follows a classic
 Zipf distribution, it is not unreasonable to apply the probabilistic
document model on which TF-IDF scoring is based.

Figure 8: Function Scores

43.02 agui:navItem
42.49 admin:database-set-value
41.43 agui:navItemClosed
41.35 admin:gr-config
40.60 admin:database-get-value
39.75 agui:reindex-done
39.48 admin:db-config
38.99 admin:appserver-set-value
38.48 admin:appserver-get-value
38.04 aws:add-param
...
7.35 agui:buildHTTPServer2
7.35 converters:set-response-content-type
7.35 utils:distinct-values
7.35 conf-server:create-server
7.35 pipeline:xquery
7.35 agui:get-action
7.35 entity:call-calais
7.35 search-ast:do-parse
7.35 compile:build-zip
7.35 forest:get-default-rep

The scores for top 10 and bottom 10 functions are
shown, rounded to 2 decimal places. Function namespaces have been abbreviated
to prefixes.

A look at the functions with the highest scores was encouraging:
 the number one
 function, called navItem, is in a notorious part of the code
 that has been subject to much revision and bug fixes. The function with
 the third highest score was its companion function
 navItemClosed. Other functions in the top ten were
 service functions used within administrative API. These service
 functions are called from many places, but only from within that one
 module. However, that one module is very large. Document size
 normalization is a common modification to TF-IDF scoring. Perhaps a similar
 normalization here would be useful.
 Most of the top 50 functions are other service functions for
 other modules that have similar calling patterns. Are these good
 functions to focus extra testing effort on? Perhaps. Directed testing of
 such functions is likely to expose important bugs, but
 probably normal API testing would have accomplished the same thing.
 The fact that only one or two modules uses these functions does increase
 the risk that fewer developers are calling them and therefore they are more
 likely to be making (possibly unwarranted) assumptions about how they
 will be used.

At the other end of the
 scale, with very low scores, are widely used functions with names like
 buildHTTPServer2 (widely used throughout the Admin UI) and
 do-parse (a key function for the search APIs) and rarely
 used functions such as call-calais and
 create-server. Are these good functions to avoid expending
 extra testing effort on? Perhaps. Certainly the very widely used functions
 would have been exercised many times in many different contexts through normal
 API testing. The rare functions have demonstrably few interactions with the
 rest of the code, so presumably the risk of not expending a lot of effort on
 testing them is low.

Quantifying the usefulness of this approach is difficult. Getting a
 concrete measure for the bugginess of a particular function is hard
 as bug reports are linked only weakly to particular files, much less
 individual functions within those files. Here we will take the number of
 source control revisions within the scope of a particular function as a
 measure of how likely it is to need fixing. This is obviously an
 imperfect measure, as source changes may reflect new functionality, or
 trivial formatting changes. It is also a manually intensive measure to
 obtain. The following graph shows statistics for functions that were used
 more than once in the corpus that were defined in
 the same module as the top scoring function.
 It is an admittedly very small data set.

Figure 9: Revisions as a function of score
[image:]
The number of revisions made to functions as a function
 of score.

The correlation of score to the numbers of revisions is positive,
 although not strong (R2=0.3048).
 There are other associations we might expect to have stronger or more
 meaningful correlations. For example, one might think that the number
 of revisions would correlate with the age of a function, so that older
 functions would tend to have more revisions associated with them. This
 seems to be the case. For this little data set, the number of revisions
 does have a stronger relationship to age, using a power
 function (R2=0.6777),
 as shown in Figure 10.

Figure 10: Revisions as a function of age
[image:]
The number of revisions made to functions as a function of
 the age (minimum revision number) of the function. A power curve gives
 the best fit.

Similar relationships held for functions in the hand-generated data
 for a couple of other modules as well, with scores showing a weak direct
 relationship with R2 values
 around 0.3 and age showing an inverse relationship with
 R2 values about double that.

 However, neither of these correlations holds up well on a larger data set
 across modules, as you can see in
 Figure 11 and
 Figure 12. The best fit line in
 both cases has R2 of essentially
 zero, virtually indistinguishable from the mean value line. The data
 behind these numbers is much messier than the hand-generated set, as
 the automated detection of function boundaries is much more error-prone
 and tends to pull in large comment blocks and non-function declarations.
 Nevertheless, it is implausible to suggest that such factors
 overwhelm what would otherwise be an interesting correlation. A manual
 check of the statistics for a particular module from the automated
 data set showed only small deviations from the statistics from the
 manual procedure.

Figure 11: Revisions as a function of score
[image:]The number of revisions made to functions as a function of
 the score, using a larger but messier data set.

Figure 12: Revisions as a function of age
[image:]The number of revisions made to functions as a function of
 the age (minimum revision number), using a larger but messier data set.

Techniques
Some of the same introspective functions for computing
 the distribution of sequence types in modules were used to compute the
 distribution of function calls in modules. The key technique
 involved analyzing the structured dump of the module parse tree for
 function calls, using maps to store running totals, and using
 filesystem access functions to recursively find and process all modules
 in the code base.

Computing the revisions within a particular function involved
 using the source control system's ability to produce the source code
 annotated with revision numbers. The resulting output was
 chopped up into individual functions manually, with a little help from
 Emacs keyboard macros. A shell script counted up the number of distinct
 revision numbers as well as the minimum revision number for the
 function using standard Unix tools such as awk,
 sort, uniq, head, and
 wc.

The larger data set began with a file containing the annotated
 source files concatenated together. The XQuery function
 tokenize was used to chop up the file first into subfiles
 (by looking for the xquery version declaration) and then into
 functions (by looking for declare function, and finally into
 individual lines of code, from which the revision number was obtained.
 Maps were used to collect minimum, maximum, and
 counts of revision number.

Summary and Conclusions
XQuery introspection can be used to provide a fresh slant on a code
base, even a fairly large one. An analysis of unused schema components
(elements and types) proved largely uninteresting because stylistic
considerations for schema writing dominated actual usage requirements in the
APIs. The fact that certain extension types (in particular maps) were so common
suggests that there is a real need for providing such types as part of standard
XQuery. TF-IDF scores of sequence types did not produce any interesting
information.

The analysis of function usage points in a different direction.
A look at unused functions can highlight some interesting problems, but the
most frequently used functions are mainly basic standard XQuery functions.
Looking at a combination of frequency of use and rarity across modules using
TF-IDF scoring can pinpoint some interesting functions that warrant more QA
attention. This is a qualitative judgement. Attempts to quantify the
correlation of score to quality failed, using the number of revisions applied
to the function as a proxy for quality. Relationships within one module at a
time hold up better, but are still weak.

One common
modification to TF-IDF scoring is to normalize the TF values by the size of the
document. Since the high scoring functions included many that were only found in
a very large module, perhaps applying a similar normalization here would lead
to better results.

To perform introspection of XQuery from within XQuery, a number of
extension functions are useful:

	Function accessors
		list available functions as function items

	return name of function item (XQuery 3.0 function-name)

	return arity of function item (XQuery 3.0 function-arity)

	return sequence type of return value of a function item

	return sequence type of specific parameter of a function item

	get type name from sequence type

	Type accessors
		list global element declarations for a particular schema

	list named simple type definitions for a particular schema

	list named complex type definitions for a particular schema

	Parse tree accessors
		return the parse tree for a particular module in structured form, preferably XQuery

OR:
	list the functions declared in a particular module as function items

	list the functions called in a particular module

	File system accessors
		list contents of a particular directory

	determine whether a particular file is a directory

	Maps
	Provide a convenient means of keeping running totals
keyed to function names, for example

References
[Holstege]
 Holstege, Mary.
 Type Introspection in XQuery.
 Presented at Balisage: The Markup Conference 2012, Montréal, Canada, August
7 - 10, 2012. In Proceedings of Balisage: The Markup Conference 2012. Balisage
Series on Markup Technologies, vol. 8 (2012). http://www.balisage.net/Proceedings/vol8/html/Holstege01/BalisageVol8-Holstege01.html. doi:https://doi.org/10.4242/BalisageVol8.Holstege01.
[Jones72]
 Jones, Karen.
 A statistical interpretation of term specificity and its
application in retrieval. Journal of Documentation 28 (1): 11–21.
 http://www.soi.city.ac.uk/~ser/idfpapers/ksj_orig.pdf. doi:https://doi.org/10.1108/eb026526.
 1972.

[F&O30]
 W3C: Michael Kay, editor.
 XPath and XQuery Functions and Operators 3.0
 Candidate Recommendation. W3C, January 2013.
 http://www.w3.org/TR/xpath-functions-30/

[XSD11.2]
 W3C: David Peterson, Shudi (Sandy) Gao 高殊镝, Ashok Malhotra,
C.M. Sperberg-McQueen, and Henry S. Thompson, editors.
 W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes.
 W3C. April 2012.
 http://www.w3.org/TR/xmlschema11-2/
	
[XQuery30]
 W3C: Jonathan Robie, Don Chamberlin, Michael Dyck, John Snelson, editors.
 XQuery 3.0: An XML Query Language
 Candidate Recommendation. W3C, January 2013.
 http://www.w3.org/TR/xquery-30/

[Zipf49]
 Zipf, George Kingsley.
 Human Behaviour and the Principles of Least Effort.
 Addison-Wesley, 1949.

Balisage: The Markup Conference

Where Are All The Bugs?
Introspection in XQuery
Mary Holstege
Principal Engineer
MarkLogic Corporation

<mary.holstege@marklogic.com>
Mary Holstege is Principal Engineer at MarkLogic
Corporation. She has over 20 years experience as a software engineer in and
around markup technologies and information extraction. She holds a Ph.D. from
Stanford University in Computer Science, for a thesis on document
representation.

Balisage: The Markup Conference

content/images/Holstege01-004.png
10000

1000 1

100

10

01

10

100

1000

content/images/Holstege01-003.png
10000

1000

100

10

01

R?=0.9458)

10

100

1000

content/images/Holstege01-002.png
10000

1000

100

1

1 10 100 1000

content/images/Holstege01-001.png
1000

100

10

01

R*=09257

10

100

1000

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Holstege01-009.png
50
as
a0
35
30
25
20
15
10

o
o

B
s -
s o
o
o e
o o
B oog so0 o
o
02,9 <o

s

20000 40000 60000 80000 100000 120000 140000 160000

content/images/Holstege01-008.png
10

15

20

25

content/images/Holstege01-007.png
20

18

16

1

12

LR

0 20000 40000

60000

80000

100000

120000

content/images/Holstege01-006.png
R2=03

20

18

16

14

12

10

® o v N o

45

40

35

30

25

20

15

10

content/images/Holstege01-005.png
100000

10000

1000

100

10

01

10

100

1000

10000

