[image: Balisage logo]Balisage: The Markup Conference

Markup to generate markup to generate markup
Using XML to create and maintain LaTeX packages and
 classes
Peter Flynn

Balisage: The Markup Conference 2013
August 6 - 9, 2013

Article copyright © 2013 by Silmaril Consultants.
Application code copyright © 2013 by Peter Flynn, released under the terms of the LaTeX Project Public License.

How to cite this paper
Flynn, Peter. "Markup to generate markup to generate markup." Presented at: Balisage: The Markup Conference 2013, Montréal, Canada, August 6 - 9, 2013. In Proceedings of Balisage: The Markup Conference 2013.
 Balisage Series on Markup Technologies vol. 10 (2013). https://doi.org/10.4242/BalisageVol10.Flynn01.

Abstract
This paper presents an experiment in using DocBook5 to
	mark up and maintain LaTeX classes and packages in the
	literate-programming style, using XSLT2 to generate the
	standard format of distribution files suitable for the CTAN
	repository. It identifies several benefits in automation and
	reusability of code; a number of areas where a customisation
	layer for DocBook would be useful; and a few unresolved
	restrictions that package and class authors or maintainers
	would need to be aware of when editing XML.

Balisage: The Markup Conference

 Markup to generate markup to generate markup

 Using XML to create and maintain LaTeX packages and
 classes

 Table of Contents

 	Title Page

 	Background
 	Packages and Classes

 	Automation requirement

 	Implementation
 	Metadata

 	Annotated code
 	Options

 	Package specification

 	Modular code

 	User documentation
 	Preamble

 	Armoring the text

 	Inlines

 	Automation
 	Development from pilot to production

 	Markup load

 	Tag abuse

 	Conclusions

 	About the Author

 Markup to generate markup to generate markup
Using XML to create and maintain LaTeX packages and
 classes

Background
The LaTeX document preparation system provides a framework
 of commands (markup) for the TeX typesetting program, designed
 to shield the writer from the need to know the internal
 programming required to format a document ([Lamport1986], [Lamport1994]). It has been in widespread use in
 scientific, technical, and academic publishing since 1986, and
 more recently has experienced growth in the Humanities and in
 general publishing ([Boggio2006], [Ubuntu2012]).
LaTeX relies for its extensibility on a library of over
 4,000 style packages and document classes, which provide additional
 markup functionality, layouts, typography, and variant behaviour. The
 ltxdoc document class supplies features for maintaining
 these packages and classes in a literate programming style using
 interleaved code and annotation with end-user documentation in a
 single-file wrapper. The syntax to achieve this, however, is
 complex, as documentation must be shielded from interpretation
 as code, and vice versa.
Packages and Classes
A document class is a collection of macros
	providing both formatting and markup for a specific class of
	documents, such as the articles for a particular journal, the
	books by a particular publisher, the theses for a particular
	university, or any of over 400 other types of document. It is
	broadly equivalent to a DTD or Schema, although without
	prescription, and with formatting specifications embedded. The default
	document classes (report, book, article, and letter) are
	stylistically minimalist but provide sufficient markup for
	draft purposes.
A style package is a collection of macros
	providing a specific variant on formatting, such as hyperlinks
	in a PDF, the styling of footnotes or references, the use of
	additional typefaces, or any of over 3,600 other typographic
	or markup possibilities. There is no direct equivalent in the
	XML field, but a package can be regarded as broadly equivalent
	to a CSS or XSLT2 fragment, implementing a particular
	formatting requirement.
Document classes and packages are typically distributed as
	DocTeX (.dtx) files, which contain the LaTeX
	code implementing the features, interleaved with annotation
	in a literate programming manner, plus user documentation
	about how to use the additional markup provided ([Carlisle2007]). An installer (.ins)
	file uses LaTeX to extract the code as a class
	(.cls) or style package (.sty) file
	from the .dtx file, and LaTeX can then be run
	on the .dtx file directly to produce both user
	documentation and code annotation.[1]
This method has proved a very reliable and
	compact means of distribution, but at the cost of some
	additional complexity in the construction of the master
	.dtx file:
	documentation and annotation must be armored against
	 extraction as code by prefixing each line with
	 percent-space (%␣);

	macro code must be identified for extraction by
	 prefixing the \begin and \end
	 commands (equivalent to start and end tags) with percent
	 and exactly four spaces (%␣␣␣␣);

	the regular comment character (%) must
	 therefore be treated specially in some circumstances (doubled
	 or tripled);

	there are special tags (in pointy brackets!) like
	 %<*driver> and
	 %</driver> to identify certain
	 sections or lines of the file that need extracting or
	 ignoring in certain circumstances.

Against this must be set the advantages of robustness once
	constructed; the availability of all LaTeX facilities for
	writing and formatting the documentation; some added
	document-management features (version control,
	change-recording, checksumming, indexing of commands used in
	the code, etc), and the extensive supporting documentation
	([LaTeX2006], [Mittelbach2004],
	[Lehmann2011]).

Automation requirement
In 2005, I undertook to create a new thesis document class
	in my university which would implement stricter controls on
	the content and sequence of front matter (title page, legal,
	table of contents, declaration of originality, etc), and
	particularly on the naming and identity of schools,
	departments and research centers, and the bibliographic
	reference format used by each. Many users had become
	accustomed to designing their own title page, and to the
	re-wording of the names of their unit to suit their own
	perceptions or requirements. In some cases this involved
	inventing entirely new department names or descriptions of
	their degrees, which conflicted with the university's
	statutory requirements. While the new class would initially
	only affect the title page and preliminaries of a thesis, this
	is exactly where the Library catalog staff look for the
	metadata (in the case of electronic submissions, the PDF
	metadata is also required to provide the same
	information).
The data on course names and codes, the abbreviations and
	full titles of degrees, and the official names of departments
	and centers were all available from the institutional
	database, but were subject to annual change, as there were
	complex and overlapping administrative and pedagogical
	requirements to be satisfied. This data needed to be converted
	to the parameter syntax used by LaTeX on an ongoing basis to
	make it usable as selectable options by users, so a more
	robust and programmatic solution was needed to automate the
	process. The data was already available in a consistent XML
	format, so XML and XSLT2 were obvious candidates for the task.
	As a long-time user of XML for documentation, I felt it would
	be an advantage from the maintenance point of view to use the
	same syntax and method for writing the documentation, and this
	led to the experiment in using DocBook and generating the
	.dtx file with XSLT2.
Beyond the title page and the settings for margins and
	type size, the remainder of a student's thesis document would
	be largely unaffected, as LaTeX's report
	document class and existing packages already provided all the
	facilities needed. However, it had become clear from local
	LaTeX training sessions that some requirements of thesis
	writing would benefit from more automation, and that better
	use could be made of the layout specifications, which were,
	and remain, relatively lax ([Flynn2012]), so
	the decision was taken to experiment with using DocBook for
	the whole project.

Implementation
The use of XSLT2 to generate XML from XML is standard
 practice, and its use to generate LaTeX from XML is also
 well-established. However, in this case, the resulting LaTeX
 (.dtx) was going to be used to generate more
 LaTeX code (the .cls document), which itself
 would generate ancillary LaTeX files (Table of Contents,
 Index, etc) as well as the student's thesis final PDF.
Metadata
A .dtx file is made up of a number of
 well-defined sections:
	an initialization block;

	the LaTeX Preamble for the documentation;

	a character checksum table;

	a change history;

	an indexing control block;

	the user documentation;

	the annotated code;

	any ancillary files to be distributed with the class
	 or package.

The design of a DocBook document does not of course align
	directly with this, but there is provision in one form or
	another for most of it, and XSLT2 can easily vary the order of
	processing. The initial metadata (mostly effectivities) is
	stored in the book root element start-tag:

<book xml:id="uccthesis" version="1" revision="03" xml:lang="en"
 xml:base="ucc" remap="a4paper,12pt" arch="class" audience="lppl"
 condition="2009/09/24" conformance="LaTeX2e" os="all"
 security="2070" userlevel="cls" vendor="UCC" status="beta">
	The xml:base specifies the ultimate
	 destination directory within TeX's installation tree;

	The remap attribute is [ab]used to hold
	 document-class options for LaTeX so that the target
	 document format can be switched between US Letter and ISO
	 A4, and the base font size changed.

	The audience attribute is used to select
	 a boilerplate license document (here, the LaTeX Project
	 Public License).

	The security attribute holds a checksum
	 which is validated during LaTeX processing, and which
	 must be updated after changes to the code (or set to 0 to
	 disable it).

	The conformance and
	 condition attributes hold the version and
	 date of LaTeX required.

The info/cover element type was used to hold
	the document management data, principally the metadata, the
	lists of packages required by both the documentation and the
	class or package file itself; a file list for the manifest;
	and any setup commands for the documentation. The title,
	author, contact details, Abstract/Summary, and revision
	history are in the info container in the
	conventional manner.
Working from the DocTeX and ltxdoc
	specifications, with existing classes as examples, it was then
	possible to construct the .dtx initialization
	block as a literal result template, using the ID and
	version values from the book element's
	attributes. The preliminary LaTeX comments and the ‘driver’
	block are shielded from processing by a conditional which
	always evaluates to false:

% \iffalse meta-comment
%
% Extracted from uccthesis.xml
[...licensing and descriptive comment...]
% \fi
% \iffalse
%<*driver>
\ProvidesFile{uccthesis.dtx}
%</driver>
%<class>\NeedsTeXFormat{LaTeX2e}[2009/09/24]
%<class>\ProvidesClass{uccthesis}[2012/12/18 v1.03 Typesetting a UCC thesis with LaTeX]
...
% \fi

Annotated code
The annotated code is stored in chapter
	elements in a part element with an ID of
	code. These can be subdivided into sections and
	subsections according to the modularity and complexity of the
	code. The annotations get output as part of the formatted
	documentation: the code gets extracted to the class or package
	file. The ltxdoc package uses LaTeX
	\sections as its top level, so a DocBook chapter
	is mapped in the XSLT to a LaTeX section, a
	sect1 to a \subsection and so
	on.
Options
The .dtx format requires any user-selectable
	 options for the class or package to be declared and activated
	 before any requisite style or utility
	 packages are loaded, so the first chapter would typically
	 contain the option code.
The large number of special-purpose definitions needed
	 for the departmental controls in the UCC Thesis class were
	 stored in methodsynopsis elements in external
	 file entities per Faculty. This is probably the most blatant
	 piece of tag abuse, but the structure seemed to offer an
	 acceptable way to store the data transformed from the
	 administrative system's export format:

<methodsynopsis xml:id="physio" arch="med">
 <methodname>Vancouver</methodname>
 <methodparam>
 <parameter role="department" remap="Department of">Physiology</parameter>
 <initializer>vancouver</initializer>
 </methodparam>
</methodsynopsis>
	each department gets an ID value which becomes the
	 departmental class option entered by the student
	 (physio);

	the school to which the department belongs
	 (med) is stored in the arch
	 attribute;

	the method name becomes the printable name of the
	 bibliographic format required
	 (Vancouver);

	the method parameters hold the type of
	 organisational unit (department), the
	 prefix for printing on the title page (Department
		of), and the actual name of the organisational
	 unit (Physiology);

	the initializer element is used for name of the
	 BibTeX style for this discipline
	 (vancouver).

The XSLT transforms these to package options which define
	 the official name of the department and fix the
	 bibliographic format in that discipline. These are output
	 before the annotated code itself starts, as described
	 above.

%␣␣␣␣\begin{macrocode}
\DeclareOption{physio}{%
 \department{Physiology}
 \@usebib{vancouver}{Vancouver}{}
}
%␣␣␣␣\end{macrocode}

Package specification
Classes and packages, as well as documentation, often
	 use frequently-occurring sets of utility and style packages,
	 with commonly-used setup commands before and after package
	 invocation. To avoid class and package authors having to
	 retype similar blocks of code for every class or package
	 they create, an ancillary file prepost.xml
	 stores an author's package preferences. The two lists of
	 packages (for the documentation, and for the class or
	 package itself) are therefore given in an XML structure
	 rather than just typed in LaTeX format as code, so that
	 preferences can be looked up and implemented. We used
	 segmented lists in constraintdef elements
	 in the info/cover to do this.

<info>
 <cover>
 <constraintdef xml:id="clspackages" linkend="options">
 <segmentedlist>
 <segtitle>Packages needed for this class</segtitle>
 <seglistitem>
 <seg>fix-cm</seg>
 </seglistitem>
 <seglistitem>
 <seg role="textwidth=159mm,textheight=229mm">geometry</seg>
 </seglistitem>
 <seglistitem>
 <seg>graphicx</seg>
 </seglistitem>
 [...]
 </segmentedlist>
 </constraintdef>
 [...]
 </cover>
</info>
Each seglistitem specifies a package
	 required in the seg element. The
	 role attribute holds any package options
	 needed.[2] A similar construct is used with an ID of
	 docpackages for any packages required for the
	 documentation.
The linkend attribute specifies the ID of a
	 chapter or section in the annotated code after which the
	 package loading commands are to be output.

\usepackage{fix-cm}
\usepackage[textwidth=159mm,textheight=229mm]{geometry}
\usepackage{graphicx}
...

Modular code
Code can be given in programlisting
	 elements interspersed with para and other
	 documentary elements of annotation. The amount of annotation
	 and frequency of interruption is unrestricted: the
	 ltxdoc extraction process simply stitches
	 together all the code and outputs it; and the documentation
	 formatting treats the code as verbatim blocks (line-numbered
	 for convenience).
However, the literate-programming format
	 for the uses annotation elements to define the
	 LaTeX commands and environments being provided. The
	 role attribute defines the class of object
	 being annotated, and the xreflabel attribute
	 gives its name. Each such annotation element
	 can contain paragraphs, lists, etc, plus the
	 programlisting code, broken into whatever
	 granularity is needed to explain what is being done.

 <annotation role="environment" xreflabel="epigraph">
 <para>Define an environment for Epigraphs. These would normally go immediately after the
 <command>chapter</command> command. This is basically the <envar>quotation</envar>
 environment modified, but it has to allow for <emphasis>either</emphasis> manual
 <emphasis>or</emphasis> automated citation (because it may just be a phrase needing
 no citation), whereas a normal quotation <emphasis>must</emphasis> be cited. It
 therefore has <emphasis>two</emphasis> arguments, described below:</para>
 <remark version="0.92" revision="2011-05-31">Added Epigraphs.</remark>
 <programlisting>
\newenvironment{epigraph}[2][\relax]{%
 </programlisting>
 <para>Record the argument values now, because they are needed in the end of the
 environment, so they have to pass across the group boundary. The compulsory
 argument is for a &BiBTeX; citation key, so that a proper citation can be
 formatted; the optional argument is for when a pre-formed,
 <wordasword>full</wordasword> (actually often simpler, non-rigorous) citation
 is wanted.</para>
 <programlisting>
 \gdef\@fullcite{#1}%
 \gdef\@quotcite{#2}%
 </programlisting>
 ...
 </annotation>
The remark element is used for noting
	 updates: these get extracted to the revision history. The
	 annotations are output using the armored ltxdoc
	 code; the actual lines of code from the
	 programlisting elements are output
	 unarmored for extraction. This results
	 in LaTeX code in the .dtx as shown
	 below:

% \begin{environment}{epigraph}
% Define an environment for Epigraphs. These would normally go immediate after the
% \DescribeMacro{\chapter}\verb`\chapter` command. This is basically the
% \DescribeEnv{quotation}\texttt{quotation} environment modified, but it has to
% allow for \emph{either} manual \emph{or} automated citation (because it may
% just be a phrase needing no citation), whereas a normal quotation \emph{must} be
% cited. It therefore has \emph{two} arguments, described below:\par
% \changes{v0.92}{2011/05/31}{Added Epigraphs.}
% \begin{macrocode}
\newenvironment{epigraph}[2][\relax]{%
% \end{macrocode}
% Record the argument values now, because they are needed in the end of the environment,
% so they have to pass across the group boundary. The compulsory argument is for a
% \BibTeX{} citation key, so that a proper citation can be formatted; the optional
% argument is for when a pre-formed, `full' (actually often simpler, non-rigorous)
% citation is wanted.\par
% \begin{macrocode}
 \gdef\@fullcite{#1}%
 \gdef\@quotcite{#2}%
% \end{macrocode}
...
% \end{environment}
The formatted result in the documentation PDF is shown
	 in Figure 1, where the marginal
	 annotation of the commands being documented can be
	 seen.
Figure 1
[image:]

The ltxdoc package provides only two
	 documentary environments for annotated code:
	 macro and environment. The
	 dox utility package has been used to provide
	 additional environments for other declarations such as
	 counters, classes, options, templates, etc.

User documentation
User documentation is similarly stored in a
	part element, this time with the ID of
	doc. In the .dtx file, the user
	documentation starts with an unarmored
	LaTeX Preamble where settings and packages needed for
	formatting the documentation are specified, followed by a
	self-reference to the same .dtx file in place of
	the actual text. This enables LaTeX to read the Preamble and
	then switch to armored mode to input the same document to
	process the armored documentation at high speed (doing it all
	in a single pass would entail a more computationally-intensive
	process).
Preamble
Using the remap attribute from the
	 book root element shown earlier (for any
	 changes to the ltxdoc options) we can now
	 output the start of the documentation and add the
	 \usepackage commands for the packages
	 specified. These are given in exactly the same way as those
	 for the code (above), stored in a separate
	 constraindef element, and they use the same
	 prepost.xml lookup mechanism for commonly-used
	 options.
Unlike with the code, however, this mechanism is largely
	 automated for documentation. This provides for a
	 configurable basic set of packages (defined in
	 prepost.xml) as well as the detection of
	 packages required for specific formatting choices in the
	 documentation. For example, using a compact list in the
	 documentation (the spacing="compact" attribute
	 on a list container) will automatically ensure that the
	 relevant package (enumitem, in this case) is
	 included in the .dtx file without the author
	 needing to take any action (and removing it, should compact
	 lists cease to be used).

%<*driver>
\documentclass[a4paper,12pt]{ltxdoc}
\usepackage[utf8x]{inputenc}
\usepackage[T1]{fontenc}
\usepackage[textwidth=159mm,textheight=229mm]{geometry}
\usepackage{graphicx}
\usepackage{fancyvrb}
[...]
Some additional ltxdoc commands are added
	 to control the behaviour of the documentation
	 cross-referencing and indexing. The \DocInput
	 command then makes the .dtx file input itself
	 as described earlier.

[...]
\EnableCrossrefs
\CodelineIndex
\RecordChanges
\begin{document}
\raggedright
\DocInput{uccthesis.dtx}
\end{document}
%</driver>
This driver block is followed by three
	 blocks not illustrated here:
	a character checksum table as a protection against
	 file corruption in data transfer (output in a literal
	 result template in the XSLT2 program);

	a list of \changes commands for the
	 Change History (taken from the DocBook
	 revisionhistory and remark
	 elements);

	and a standard block of hard-coded
	 \DoNotIndex commands to prevent
	 ltxdoc indexing non-relevant internal
	 LaTeX commands.

Armoring the text
After all this automated Preamble we can output the
	 \title and \author, an Abstract or
	 Summary, and then the chapters or sections of documentation
	 text. These are all standard DocBook, handled with XSLT2
	 templates in the conventional manner, with the exception of
	 adding the %␣ armor.
The armoring means that
	 <sect1><title>Introduction</title>...
	 is output as %␣\subsection{Introduction} (as
	 noted above, the hierarchy is offset by one level to
	 accommodate ltxdoc's default format). All text
	 nodes are handed to a text() template which
	 passes the content through a recursive named template
	 filter, honoring hard-coded newlines but adding the
	 %␣ prefix. The template also handles TeX
	 special characters in filenames and other literals,
	 detecting a parent::programlisting (where
	 armoring is not required). It also removes any leading
	 white-space after a newline (inserted by Emacs'
	 psgml-mode's pretty-printing). The
	 final token output is always a newline, so that we can start
	 any element which occurs in element content with the
	 armour.
Verbatim code in programlisting examples
	 presented a special case: not only must the code itself
	 not be armored, the processor must
	 be able to escape from the armored text mode, otherwise the
	 verbatim material itself would still contain leading
	 % signs.

<variablelist>
 <varlistentry>
 <term><envar>dedication</envar></term>
 <listitem>
 <para>The <envar>dedication</envar>
	environment is for you to add a dedication.</para>
 <programlisting annotations="dedication" language="LaTeX">
\begin{dedication}
...
\end{dedication}
 </programlisting>
 </listitem>
 </varlistentry>
[...]
This is done by escaping the
	 %<*ignore> tag separately with the
	 same \iffalse...\fi method seen earlier (the
	 same is done for the end-tag). Between them comes the
	 unarmored verbatim content (formatted
	 here with the listings package, which automates
	 per-language colored pretty-printing of the code).

% \item[Dedication:] The \texttt{dedication}
% environment is for you to add a dedication.
% \iffalse
%<*ignore>
% \fi
\begin{lstlisting}[language={[LaTeX]TeX},emph={dedication}]
\begin{dedication}
 ...
\end{dedication}
\end{lstlisting}
% \iffalse
%</ignore>
% \fi
This results in formatting like this (minus the color,
	 and using this conference's default
	 variablelist layout):
	Dedication:
	The dedication environment is for you
		 to add a dedication.

\begin{dedication}
 ...
\end{dedication}
		

A bibliography, if one is used, is output in a similar
	 manner to the verbatim code mentioned above, using the
	 %<*ignore> tags and the
	 VerbatimOut environment from the
	 fancyvrb package. When LaTeX is run on the
	 .dtx file, this extracts the bibliographic
	 content to an external (.bib) file so that it
	 on a subsequent pass it can be reprocessed with BibTeX or
	 biblatex to recreate its own
	 bibliography.

Inlines
A number of elements in mixed content are used to
	 identify terms and values for indexing. The
	 envar element type is used to identify a
	 LaTeX environment name; classname for a
	 document class name, package for a package
	 name, and option for an option.

Automation
The advantages of literate programming ([Knuth1992]) — modular construction, hermetic
 testability, debugging tools, interspersed documentation, even
 pretty-printing — are well known ([Thompson2000]) and well-criticised (static
 representation; lack of folding structures, version control,
 alternate views of variables). In itself, literate programming
 does not solve any specific requirement for automation (although
 modularity may contribute to this). In developing this method, one
 of the objectives was to remove as much as possible the tedious
 and repetitive typing that program development and documentation
 writing engenders.
Development from pilot to production
The original thesis document class was successfully
	implemented, and the XML-based system as described is used to
	maintain it. The 50 or so class options specifying department
	and degree are used to simplify and rationalize the setup for
	the department name, title-page layout, and style of
	references, while the class itself presets the rest of the
	formatting; see Figure 2).
Figure 2: Thesis set-up
	
	
\documentclass[history,phd]{uccthesis}
\begin{document}
\title{The Application of XML to the Lexicography
 of Old, Middle and Early Modern Irish}
\author{Julianne Nyhan}
\qualifications{BA}
\professor{Prof Dermot Keogh}
\supervisor{Prof Donnchadh Ó Corráin}
\date{June 2005}
\maketitle
...
\end{document}

	 	
	 [image:]

	

However, that class was a pilot: the result is that this
	XML-based mechanism is usable for the creation and maintenance
	of almost any LaTeX class or package. The system is used for
	all the author's classes and packages, and has significantly
	reduced development time on a new class or package. In the
	development of additional classes or packages in a series or
	suite (such as occurs in corporate use) the reduction is
	greater because of the ease and reliability with which modules
	of code can be included (as entities or XIncludes). The reuse
	of imported data specifications also has an important place in
	industrial documentation, where sets of part numbers or known
	production components need to be pre-specified, and the system
	has now been adapted twice to use this method.

Markup load
Many of the templates in the XSLT2 program make decisions
	about the markup they should emit according to the content of
	the element type they match. As an example, a
	firstterm element type can be made to identify
	from its position if it is indeed the first occurrence, and if
	so, to add a bold LaTeX \index entry rather
	than a plain one. The careful author can add an attribute to
	suppress this behaviour in cases where a first or early
	occurrence may be used en passant.
In a more complex environment, such as a footnote or the
	term element of a variablelist
	containing code requiring a monospace font and LaTeX's
	verbatim formatting, the template will choose not to use
	LaTeX's \verb command because of its fragility
	inside other markup, and to use \texttt (simple
	monospace) instead, or even \url, according to
	content. This is something which would otherwise require the author to
	remember that certain special characters cause LaTeX
	problems when treated verbatim.
Cross-references which cannot be automated by LaTeX's
	otherwise excellent varioref package (such as
	references to an unnumbered list item, where by definition no reference
	number exists) are pre-empted in the XSLT2 code and the reference
	switches to the fmtcount package, which phrases
	a counter value as a spelled-out ordinal: see the third
	 item in the list on p.42.
The objective in all these cases is to relieve class and
	package authors of the need to work manually around LaTeX's
	oddities and allow them to write unhindered, for example, by
	the need to remember that such-and-such a reference was to a
	table, or a figure, or a subsubsubsection, or a call-out; and
	to have the reference auto-adjust its semantics if the target
	element type gets changed.
As an example of the use of markup, the formatted
	annotation output (code documentation) usually requires a
	wider left margin than the user documentation because code
	fragments are identified by a marginal note showing the
	LaTeX command name. In order to accommodate the widest name
	used, a new value for the margin is calculated in the XSLT2
	program, using the longest value of the various commands
	explained in the annotations. This ensures that an
	unexpectedly long command name will not extend beyond the
	left-hand edge of the page. This calculation, straightforward
	in XSLT2, would be computationally challenging in LaTeX and
	would need to be written to use the second pass of the
	document normally associated with LaTeX tables of content
	and cross-references. This calculation can therefore be done
	first, before processing the content of the part
	element for annotated code.
The use of XML also makes it straightforward to query the
	document structure for control purposes. For example, using
	standard command-line tools such as the LTxml toolkit
	provides, a list of macros and environments defined can be
	extracted, or a list made of the packages used:

$ lxprintf -e annotation "%s (%s)\n" @xreflabel @role uccthesis.xml | sort
ackname (macro)
acknowledgements (environment)
author (macro)
bibliography (macro)
bibname (macro)
cjk (option)
dedication (environment)
department (macro)
draft (environment)
epigraph (environment)
...
$ lxprintf -e \
'constraintdef[@xml:id="clspackages"]/segmentedlist/seglistitem' \
"%s\n" seg uccthesis.xml
inputenc
fontenc
geometry
lmodern
url
graphicx
array
calc
soul
textcomp
ucccrest
setspace
float
$

Tag abuse
We said earlier in section “Annotated code” that some
	element types have been used for purposes not envisaged by
	DocBook, and that part of this experiment was to identify what
	the nature of these use cases in class and package maintenance
	was likely to be. As there are areas of DocBook into which the
	present author has never had need to stray, suggestions are
	welcomed for element types with a better fit. A future task is
	to write an RNG specialist modification layer for the DocBook
	schema to create some additional element types to avoid the
	current level of abuse.
	exceptionname
	Used to hold keywords of RFC 2119:1997 ([Bradner1997]) for direction on requirement or
	 optionality. Formatted as small caps.

	methodsynopsis
	Holds the structured data for the naming departments
	 and degrees (here; extensible to other structured data).

	entry
	In a table, the attributes wordsize,
	 charoff, char, and
	 morerows are used to hold dimensions required
	 for LaTeX to format a multi-row column containing a large
	 vertical brace.

	classname, package,
	 option, envar
	These are used to identify LaTeX class, package,
	 option, and environment names or values.

	annotation
	Used as the container for modules or fragments of
	 annotated code. In the info/cover element,
	 this is used for the wording of the Notice which goes in
	 the Preamble of the .ins file.

	cover
	Holds the setup specifications for packages.

	constraintdef
	Holds the structured lists of packages needed for
	 documentation and for the class or package being written.

	procedure
	Used in the prepost.xml file to store
	 the default settings for frequently-used packages with
	 any ancillary commands needed before and after package
	 load.

	cmdsynopsis
	Within a constraintdef in a
	 procedure/step, holds commands which need
	 to be ouput before (or after) a command.

	type
	In documentation, marks a span for which special
	 typographical treatment is needed. The role attribute
	 must be set to font and the remap attribute
	 must be set to the NFSS2e three-character
	 fontname code.

At the moment, the XSLT also generates a shell script file
	which can be used to build the relevant LaTeX distribution
	package (a specially-formed zip file). This needs to be
	replaced by a parameterised Makefile, using the
	latexmk script.

Conclusions
The experience of this experiment has been fourfold:
	It is certainly possible to use XML to define and
	 maintain LaTeX document class and package data and
	 documentation, and to use XSLT2 to create the distribution
	 files. In conjunction with a small shell script or Makefile
	 and a suitable repository mechanism (eg Subversion, GIT,
	 etc), a fairly complete process can be defined for
	 versioning and production of LaTeX document classes and
	 packages.

	The benefits of reusability appear only when using this
	 method for handling a number of classes or packages, where
	 there is some re-use of commonly-occurring constructs
	 (macros, environments, utilities, etc), or where the class
	 or package is part of a series sharing common attributes.

	It does require significant knowledge of XML and
	 DocBook, regardless of the editor being used (it may be
	 assumed that a class or package author is already
	 well-skilled in the use of LaTeX).

	It does save time and effort when actually writing the
	 documentation, as there is no need to consider the various
	 forms of escapement and armoring required by the
	 .dtx file format, or the need to invoke
	 particular packages when certain facilities are used.

The system has provisionally been called
 ClassPack, and is available on CTAN
 (Comprehensive TeX Archive Network) under the LaTeX Project
 Public License. At the moment there are substantial remnants of
 earlier code which need tidying up, and the mechanism for
 handling structured data for formal naming needs to be
 generalized.

References
[Lamport1986] Lamport, Leslie.
 LaTeX: A Document Preparation
	System. Addison-Wesley, 1986, 1st Ed.,
 0-201-15790-X. http://www.amazon.com/Latex-Document-Preparation-System-Users/dp/020115790X
[Lamport1994] Lamport, Leslie.
 LaTeX: A Document Preparation
	System. Addison-Wesley, 1994, 2nd Ed.,
 978-0201529838. http://www.amazon.com/LaTeX-Document-Preparation-System-2nd/dp/0201529831
[Boggio2006] Boggio-Togna, Gianfranco.
 Technica: Typesetting for the humanities. LaTeX
 package, November 2006. In CTAN,
 http://mirrors.ctan.org/macros/latex/contrib/technica/Technica.pdf
[Ubuntu2012] Ubuntu Core Developers.
 TeX Live: LaTeX support for the humanities.
 Debian package, June 2012. In Ubuntu repositories,
 http://packages.ubuntu.com/raring/texlive-humanities
[Carlisle2007] Carlisle, David. ltxdoc:
	Documentation support. LaTeX
 package, November 2007. In CTAN,
 http://ctan.org/pkg/ltxdoc
[Lehmann2011] Lehmann, Philipp. ltxdockit:
	Class for documented LaTeX macro files. LaTeX
 package, March 2011. In CTAN,
 http://ctan.org/pkg/ltxdockit
[LaTeX2006] The LaTeX3
 Project. LaTeX2ε for class and package
 writers. LaTeX Project documentation, February 2006. In
 CTAN,
 http://mirrors.ctan.org/macros/latex/doc/clsguide.pdf
[Mittelbach2004] Mittelbach Frank; Goossens
 Michel; Braams, Johannes; Carlisle, David; Rowley, Chris.
 The LaTeX Companion. Addison-Wesley, May
 2004, 2nd Ed., 978-0201362992.
 http://www.amazon.com/LaTeX-Companion-Techniques-Computer-Typesetting/dp/0201362996
[Bradner1997] Bradner, Scott. Key words
	for use in RFCs to Indicate Requirement Levels. RFC
 2119, Internet Engineering Task Force, Fremont, CA, March 1997
 http://www.ietf.org/rfc/rfc2119.txt
[Flynn2012] Flynn, Peter. A university
	thesis class: Automation and its pitfalls. Presented
 at TeX Users Group Conference 2012, Boston, MA, July 16–18,
 2012. In TUGboat, 33:2, 2012, pp172–177.
 https://www.tug.org/members/TUGboat/tb33-2/tb104flynn.pdf
[Knuth1992] Knuth, Donald E. Literate
	Programming. Center for the Study of Language and
 Information, Stanford, CA (CSLI Lecture Notes, no.27) 1992,
 0937073806, See
 http://www-cs-faculty.stanford.edu/~uno/lp.html
[Thompson2000] Thompson, David B. The
 Literate Programming FAQ. San Gabriel, CA, March 2000. http://www.literateprogramming.com/lpfaq.pdf

[1] A few older packages are still distributed as raw
	 .cls or .sty files with
	 documentation in comments.
[2] In review, it was suggested that reversing this and
	 placing the package name in the role
	 attribute and the options in the element content would
	 be more natural. This would not be hard to
	 change.

Balisage: The Markup Conference

Markup to generate markup to generate markup
Using XML to create and maintain LaTeX packages and
 classes
Peter Flynn
Peter Flynn runs the Electronic Publishing Group in IT
	 Services at University College Cork. He is a graduate of the
	 London College of Printing and the University of
	 Westminster. He worked for the Printing and Publishing
	 Industry Training Board and for United Information Services
	 as IT consultant before joining UCC as Project Manager for
	 academic and research computing. In 1990 he installed
	 Ireland's first Web server and since then has been
	 concentrating on electronic publishing support. He was
	 Secretary of the TeX Users Group, and a member of the IETF
	 Working Group on HTML and the W3C XML SIG, and he has
	 published books on HTML, SGML/XML, and LaTeX. Peter is
	 editor of the XML FAQ and an irregular contributor to
	 conferences and journals in electronic publishing and
	 Humanities computing. He is currently completing a part-time
	 PhD in user interfaces with the Human Factors Research Group
	 in UCC. He maintains a technical blog at
	 http://blogs.silmaril.ie/peter

Balisage: The Markup Conference

content/images/Flynn01-002.png
The Application of XML
to the Lexicography
of Old, Middle and
Early Modern Irish

Julianne Nyhan
BA

NATIONAL UNIVERSITY OF IRELAND, CORK

‘Thesis submitted for the degree of
Doctor of Philosophy

June 2005

Supervisor: Prof Donnchadh O Corrdin
Head of Department/Schol: Prof Dermot Keogh

content/images/Flynn01-001.png
epigraph Define an environment for Epigraphs. These would normally go
\chapter immediate after the \chapter command. This is basically the quotation
quotation environment modified, but it has to allow for either manual or automated
citation (because it may just be a phrase needing no citation), whereas a
normal quotation ymust be cited. It therefore has two arguments,
described below:

1290 \newenvironment{epigraph} [2] [\relax] {%

Record the argument values now, because they are needed in the end of
the environment, so they have to pass across the group boundary. The
compulsory argument is for a BIBTEX citation key, so that a proper citation
can be formatted; the optional argument is for when a pre-formed, ‘full’
(actually often simpler, non-rigorous) citation is wanted.

1291 \gdef\Cfullcite{#1}%
129 \gdef\equotcite{#2}%

Like the default Quotation, this is done with a dummy 1ist environment,
but we add small italic type and no indentation.

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

