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Abstract
Prior research on the acceleration of XML processing using single-instruction
	   multiple-data (SIMD) and multi-core
            parallelism has lead to a number of interesting research prototypes. This work is
	    the first to investigate to the extent to which the techniques underlying these prototypes 
	    could result
            in systematic performance benefits when fully integrated into a commercial XML parser
            The widely used Xerces-C++ parser of the Apache Software Foundation was chosen as the
            foundation for the study. A systematic restructuring of the parser was undertaken, while
            maintaining the existing API for application programmers. Using SIMD techniques alone,
            an increase in parsing speed of at least 50% was observed in a range of applications.
            When coupled with pipeline parallelism on dual core processors, improvements of 2x and
            beyond were realized. 
	    
	    icXML is intended as an important industrial contribution in its own right as well
	    as an important case study for the underlying Parabix parallel processing framework.
	    Based on the success of the icXML development, there is a strong case for continued
	    development of that framework as well as for the application of that framework
	    to other important XML technology stacks.   An important area for further work is
	    the extension of Parabix technology to accelerate Java-based implementations as
	    well as ones based on C/C++.
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   icXML:  Accelerating a Commercial XML
     Parser Using SIMD and Multicore Technologies

Introduction
    
	Parallelization and acceleration of XML parsing is a widely
	studied problem that has seen the development of a number
	of interesting research prototypes using both single-instruction
	   multiple-data (SIMD) and
	multi-core parallelism.   Most works have investigated
	data parallel solutions on multicore
	architectures using various strategies to break input
	documents into segments that can be allocated to different cores.
	For example, one possibility for data
	parallelization is to add a pre-parsing step to compute
	a skeleton tree structure of an  XML document Lu and Chiu 2006.
	The parallelization of the pre-parsing stage itself can be tackled with 
	  state machines Pan and Zhang 2007, Pan and Zhang 2008b.
	Methods without pre-parsing have used speculation You and Wang 2011 or post-processing that 
	combines the partial results Shah and Rao 2009.
	A hybrid technique that combines data and pipeline parallelism was proposed to 
	hide the latency of a "job" that has to be done sequentially Pan and Zhang 2008a.
      

	Fewer efforts have investigated SIMD parallelism, although this approach
	has the potential advantage of improving single core performance as well
	as offering savings in energy consumption Lin and Medforth 2012.
	Intel introduced specialized SIMD string processing instructions in the SSE 4.2 instruction set extension 
	and showed how they can be used to improve the performance of XML parsing Lei 2008.
	The Parabix framework uses generic SIMD extensions and bit parallel methods to 
	process hundreds of XML input characters simultaneously Balisage 2009 Parabix2 2011.
	Parabix prototypes have also combined SIMD methods with thread-level parallelism to 
	achieve further acceleration on multicore systems Lin and Medforth 2012.
      

	In this paper, we move beyond research prototypes to consider
	the detailed integration of both SIMD and multicore parallelism into the 
	Xerces-C++ parser of the Apache Software Foundation, an existing
	standards-compliant open-source parser that is widely used
	in commercial practice.    The challenge of this work is
	to parallelize the Xerces parser in such a way as to
	preserve the existing APIs as well as offering worthwhile 
	end-to-end acceleration of XML processing.    
	To achieve the best results possible, we undertook
	a nine-month comprehensive restructuring of the Xerces-C++ parser,
	seeking to expose as many critical aspects of XML parsing
	as possible for parallelization, the result of which we named icXML.   
	Overall, we employed Parabix-style methods of transcoding, tokenization
	and tag parsing, parallel string comparison methods in symbol
	resolution, bit parallel methods in namespace processing, 
	as well as staged processing using pipeline parallelism to take advantage of
	multiple cores.
      

	The remainder of this paper is organized as follows.   
	  section “Background” discusses the structure of the Xerces and Parabix XML parsers and the fundamental
	differences between the two parsing models.   
	section “Architecture” then presents the icXML design based on a restructured Xerces architecture to 
	incorporate SIMD parallelism using Parabix methods.   
	section “Multithreading with Pipeline Parallelism” moves on to consider the multithreading of the icXML architecture
	using the pipeline parallelism model.  
	section “Performance” analyzes the performance of both the single-threaded and
	multi-threaded versions of icXML in comparison to original Xerces,
	demonstrating substantial end-to-end acceleration of
	a GML-to-SVG translation application written against the Xerces API.
	  section “Conclusion and Future Work” concludes the paper with a discussion of future work and the potential for 
	applying the techniques discussed herein in other application domains.
      

Background
Xerces C++ Structure
 The Xerces C++ parser is a widely-used standards-conformant
            XML parser produced as open-source software
             by the Apache Software Foundation.
            It features comprehensive support for a variety of character encodings both
            commonplace (e.g., UTF-8, UTF-16) and rarely used (e.g., EBCDIC), support for multiple
            XML vocabularies through the XML namespace mechanism, as well as complete
            implementations of structure and data validation through multiple grammars declared
            using either legacy DTDs (document type definitions) or modern XML Schema facilities.
            Xerces also supports several APIs for accessing parser services, including event-based
            parsing using either pull parsing or SAX/SAX2 push-style parsing as well as a DOM
            tree-based parsing interface. 

            Xerces,
            like all traditional parsers, processes XML documents sequentially a byte-at-a-time from
            the first to the last byte of input data. Each byte passes through several processing
            layers and is classified and eventually validated within the context of the document
            state. This introduces implicit dependencies between the various tasks within the
            application that make it difficult to optimize for performance. As a complex software
	      system, no one feature dominates the overall parsing performance. Table I
	    shows the execution time profile of the top ten functions in a
            typical run. Even if it were possible, Amdahl's Law dictates that tackling any one of
            these functions for parallelization in isolation would only produce a minute improvement
            in performance. Unfortunately, early investigation into these functions found that
            incorporating speculation-free thread-level parallelization was impossible and they were
            already performing well in their given tasks; thus only trivial enhancements were
            attainable. In order to obtain a systematic acceleration of Xerces, it should be
            expected that a comprehensive restructuring is required, involving all aspects of the
            parser. 
Table I
Execution Time of Top 10 Xerces Functions

	Time (%) 	 Function Name 
	13.29		XMLUTF8Transcoder::transcodeFrom 
	7.45		IGXMLScanner::scanCharData 
	6.83		memcpy 
	5.83		XMLReader::getNCName 
	4.67		IGXMLScanner::buildAttList 
	4.54		RefHashTableO<>::findBucketElem 
	4.20		IGXMLScanner::scanStartTagNS 
	3.75		ElemStack::mapPrefixToURI 
	3.58		ReaderMgr::getNextChar 
	3.20		IGXMLScanner::basicAttrValueScan 


The Parabix Framework
 The Parabix (parallel bit stream) framework is a transformative approach to XML
            parsing (and other forms of text processing.) The key idea is to exploit the
            availability of wide SIMD registers (e.g., 128-bit) in commodity processors to represent
            data from long blocks of input data by using one register bit per single input byte. To
            facilitate this, the input data is first transposed into a set of basis bit streams. 
	      For example, Table II shows  the ASCII bytes for the string "b7<A" with
		the corresponding  8 basis bit streams, b0 through  b7 shown in  Table III. 
            The bits used to construct b7 have been highlighted in this example.
	      Boolean-logic operations (∧, ∨ and ¬ denote the
	      boolean AND, OR and NOT operators) are used to classify the input bits into a set of
               character-class bit streams, which identify key
            characters (or groups of characters) with a 1. For example, one of the
            fundamental characters in XML is a left-angle bracket. A character is an
               '<' if and only if
               ¬(b0 ∨ b1)
               ∧ (b2 ∧ b3)
               ∧ (b4 ∧ b5)
               ∧ ¬ (b6 ∨
               b7) = 1. Similarly, a character is numeric, [0-9]
               if and only if ¬(b0 ∨
               b1) ∧ (b2 ∧
                  b3) ∧ ¬(b4
               ∧ (b5 ∨
            b6)). An important observation here is that ranges of
            characters may require fewer operations than individual characters and
             multiple
            classes can share the classification cost. 
Table II
XML Source Data

	String 	 b 	 7 	 < 	 A 
	ASCII 	 01100010 	 00110111	 00111100	 01000001

Table III
8-bit ASCII Basis Bit Streams

	 b0 	 b1 	 b2 	 b3	 b4 	 b5 	 b6 	 b7 
	 0 	 1 	 1 	 0 	 0 	 0 	 1 	 0 
	 0 	 0 	 1 	 1 	 0 	 1 	 1 	 1 
	 0 	 0 	 1 	 1 	 1 	 1 	 0 	 0 
	 0 	 1 	 0 	 0 	 0 	 0 	 0 	 1 

 Consider, for example, the XML source data stream shown in the first line of Table IV.
The remaining lines of this figure show
            several parallel bit streams that are computed in Parabix-style parsing, with each bit
            of each stream in one-to-one correspondence to the source character code units of the
            input stream. For clarity, 1 bits are denoted with 1 in each stream and 0 bits are
            represented as underscores. The first bit stream shown is that for the opening angle
            brackets that represent tag openers in XML. The second and third streams show a
            partition of the tag openers into start tag marks and end tag marks depending on the
            character immediately following the opener (i.e., "/") or
            not. The remaining three lines show streams that can be computed in subsequent parsing
            (using the technique of bitstream addition Parabix2 2011), namely streams
            marking the element names, attribute names and attribute values of tags. 
Table IV
XML Source Data and Derived Parallel Bit Streams

	 Source Data 	  <document>fee<element a1='fie' a2 = 'foe'></element>fum</document> 
	 Tag Openers 	 1____________1____________________________1____________1__________
	 Start Tag Marks 	 _1____________1___________________________________________________
	 End Tag Marks 	 ___________________________________________1____________1_________
	 Empty Tag Marks 	 __________________________________________________________________
	 Element Names 	 _11111111_____1111111_____________________________________________
	 Attribute Names 	 ______________________11_______11_________________________________
	 Attribute Values 	 __________________________111________111__________________________

 Two intuitions may help explain how the Parabix approach can lead to improved XML
            parsing performance. The first is that the use of the full register width offers a
            considerable information advantage over sequential byte-at-a-time parsing. That is,
            sequential processing of bytes uses just 8 bits of each register, greatly limiting the
            processor resources that are effectively being used at any one time. The second is that
            byte-at-a-time loop scanning loops are actually often just computing a single bit of
            information per iteration: is the scan complete yet? Rather than computing these
            individual decision-bits, an approach that computes many of them in parallel (e.g., 128
            bytes at a time using 128-bit registers) should provide substantial benefit. 
 Previous studies have shown that the Parabix approach improves many aspects of XML
            processing, including transcoding u8u16 2008, character classification and
            validation, tag parsing and well-formedness checking. The first Parabix parser used
            processor bit scan instructions to considerably accelerate sequential scanning loops for
            individual characters Parabix1 2008. Recent work has incorporated a method
            of parallel scanning using bitstream addition Parabix2 2011, as well as
            combining SIMD methods with 4-stage pipeline parallelism to further improve throughput
            Lin and Medforth 2012. Although these research prototypes handled the full syntax of
            schema-less XML documents, they lacked the functionality required by full XML parsers. 
 Commercial XML processors support transcoding of multiple character sets and can
            parse and validate against multiple document vocabularies. Additionally, they provide
            API facilities beyond those found in research prototypes, including the widely used SAX,
            SAX2 and DOM interfaces. 

Sequential vs. Parallel Paradigm
 Xerces—like all traditional XML parsers—processes XML documents
            sequentially. Each character is examined to distinguish between the XML-specific markup,
            such as a left angle bracket "<", and the content held within the
            document. As the parser progresses through the document, it alternates between markup
            scanning, validation and content processing modes. 
 In other words, Xerces belongs to an equivalence class of applications termed FSM
	   applications.[1] Each state transition indicates the processing context of
            subsequent characters. Unfortunately, textual data tends to be unpredictable and any
            character could induce a state transition. 
 Parabix-style XML parsers utilize a concept of layered processing. A block of source
            text is transformed into a set of lexical bitstreams, which undergo a series of
            operations that can be grouped into logical layers, e.g., transposition, character
            classification, and lexical analysis. Each layer is pipeline parallel and require
            neither speculation nor pre-parsing stages Lin and Medforth 2012. To meet the API requirements
            of the document-ordered Xerces output, the results of the Parabix processing layers must
            be interleaved to produce the equivalent behaviour. 


Architecture
Overview
 icXML is more than an optimized version of Xerces. Many components were grouped,
            restructured and rearchitected with pipeline parallelism in mind. In this section, we
            highlight the core differences between the two systems. As shown in Figure
	      Figure 1, Xerces is comprised of five main modules: the transcoder, reader,
            scanner, namespace binder, and validator. The Transcoder converts source data into UTF-16 before Xerces parses it as XML;
            the majority of the character set encoding validation is performed as a byproduct of
            this process. The Reader is responsible for the
            streaming and buffering of all raw and transcoded (UTF-16) text. It tracks the current
            line/column position,
            
            performs line-break normalization and validates context-specific character set issues,
            such as tokenization of qualified-names. The Scanner
            pulls data through the reader and constructs the intermediate representation (IR) of the
            document; it deals with all issues related to entity expansion, validates the XML
            well-formedness constraints and any character set encoding issues that cannot be
            completely handled by the reader or transcoder (e.g., surrogate characters, validation
            and normalization of character references, etc.) The Namespace
               Binder is a core piece of the element stack. It handles namespace scoping
            issues between different XML vocabularies. This allows the scanner to properly select
            the correct schema grammar structures. The Validator
            takes the IR produced by the Scanner (and potentially annotated by the Namespace Binder)
            and assesses whether the final output matches the user-defined DTD and schema grammar(s)
            before passing it to the end-user. 
Figure 1: Xerces Architecture
[image: ]


 In icXML functions are grouped into logical components. As shown in 
             Figure 1, two major categories exist: (1) the Parabix Subsystem and (2) the
	       Markup Processor. All tasks in (1) use the Parabix Framework Lin and Medforth 2012, which
            represents data as a set of parallel bitstreams. The Character Set
	      Adapter, discussed in section “Character Set Adapters”, mirrors
            Xerces's Transcoder duties; however instead of producing UTF-16 it produces a set of
	      lexical bitstreams, similar to those shown in Parabix1 2008. These lexical
            bitstreams are later transformed into UTF-16 in the Content Stream Generator, after
            additional processing is performed. The first precursor to producing UTF-16 is the
               Parallel Markup Parser phase. It takes the lexical
            streams and produces a set of marker bitstreams in which a 1-bit identifies significant
            positions within the input data. One bitstream for each of the critical piece of
            information is created, such as the beginning and ending of start tags, end tags,
            element names, attribute names, attribute values and content. Intra-element
            well-formedness validation is performed as an artifact of this process. Like Xerces,
            icXML must provide the Line and Column position of each error. The Line-Column Tracker uses the lexical information to keep track of the
            document position(s) through the use of an optimized population count algorithm,
	      described in section “Error Handling”. From here, two data-independent
            branches exist: the Symbol Resolver and Content Preparation Unit. 
 A typical XML file contains few unique element and attribute names—but
            each of them will occur frequently. icXML stores these as distinct data structures,
            called symbols, each with their own global identifier (GID). Using the symbol marker
            streams produced by the Parallel Markup Parser, the Symbol
               Resolver scans through the raw data to produce a sequence of GIDs, called
            the symbol stream. 
 The final components of the Parabix Subsystem are the Content
               Preparation Unit and Content Stream
            Generator. The former takes the (transposed) basis bitstreams and selectively
            filters them, according to the information provided by the Parallel Markup Parser, and
	    the latter transforms the filtered streams into the tagged UTF-16 content stream, discussed in section “Content Stream”. 
 Combined, the symbol and content stream form icXML's compressed IR of the XML
            document. The Markup Processor
	    parses the IR to
            validate and produce the sequential output for the end user. The Final WF checker performs inter-element well-formedness validation that
            would be too costly to perform in bit space, such as ensuring every start tag has a
            matching end tag. Xerces's namespace binding functionality is replaced by the Namespace Processor. Unlike Xerces, it is a discrete phase
            that produces a series of URI identifiers (URI IDs), the URI
               stream, which are associated with each symbol occurrence. This is
		 discussed in section “Namespace Handling”. Finally, the Validation layer implements the Xerces's validator. However,
            preprocessing associated with each symbol greatly reduces the work of this stage. 
Figure 2: icXML Architecture
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Character Set Adapters
 In Xerces, all input is transcoded into UTF-16 to simplify the parsing costs of
            Xerces itself and provide the end-consumer with a single encoding format. In the
            important case of UTF-8 to UTF-16 transcoding, the transcoding costs can be significant,
            because of the need to decode and classify each byte of input, mapping variable-length
            UTF-8 byte sequences into 16-bit UTF-16 code units with bit manipulation operations. In
            other cases, transcoding may involve table look-up operations for each byte of input. In
            any case, transcoding imposes at least a cost of buffer copying. 
 In icXML, however, the concept of Character Set Adapters (CSAs) is used to minimize
            transcoding costs. Given a specified input encoding, a CSA is responsible for checking
            that input code units represent valid characters, mapping the characters of the encoding
            into the appropriate bitstreams for XML parsing actions (i.e., producing the lexical
            item streams), as well as supporting ultimate transcoding requirements. All of this work
            is performed using the parallel bitstream representation of the source input. 
 An important observation is that many character sets are an extension to the legacy
            7-bit ASCII character set. This includes the various ISO Latin character sets, UTF-8,
            UTF-16 and many others. Furthermore, all significant characters for parsing XML are
            confined to the ASCII repertoire. Thus, a single common set of lexical item calculations
            serves to compute lexical item streams for all such ASCII-based character sets. 
 A second observation is that—regardless of which character set is
            used—quite often all of the characters in a particular block of input will be
            within the ASCII range. This is a very simple test to perform using the bitstream
            representation, simply confirming that the bit 0 stream is zero for the entire block.
            For blocks satisfying this test, all logic dealing with non-ASCII characters can simply
            be skipped. Transcoding to UTF-16 becomes trivial as the high eight bitstreams of the
            UTF-16 form are each set to zero in this case. 
 A third observation is that repeated transcoding of the names of XML elements,
            attributes and so on can be avoided by using a look-up mechanism. That is, the first
            occurrence of each symbol is stored in a look-up table mapping the input encoding to a
            numeric symbol ID. Transcoding of the symbol is applied at this time. Subsequent look-up
            operations can avoid transcoding by simply retrieving the stored representation. As
            symbol look up is required to apply various XML validation rules, there is achieves the
            effect of transcoding each occurrence without additional cost. 
 The cost of individual character transcoding is avoided whenever a block of input is
            confined to the ASCII subset and for all but the first occurrence of any XML element or
            attribute name. Furthermore, when transcoding is required, the parallel bitstream
            representation supports efficient transcoding operations. In the important case of UTF-8
            to UTF-16 transcoding, the corresponding UTF-16 bitstreams can be calculated in bit
	      parallel fashion based on UTF-8 streams u8u16 2008, and all but the final bytes
            of multi-byte sequences can be marked for deletion as discussed in the following
            subsection. In other cases, transcoding within a block only need be applied for
            non-ASCII bytes, which are conveniently identified by iterating through the bit 0 stream
            using bit scan operations. 

Combined Parallel Filtering
 As just mentioned, UTF-8 to UTF-16 transcoding involves marking all but the last
            bytes of multi-byte UTF-8 sequences as positions for deletion. For example, the two
            Chinese characters 你好 are represented as two
            three-byte UTF-8 sequences E4 BD A0 and E5 A5 BD while the
            UTF-16 representation must be compressed down to the two code units 4F60
            and 597D. In the bit parallel representation, this corresponds to a
            reduction from six bit positions representing UTF-8 code units (bytes) down to just two
            bit positions representing UTF-16 code units (double bytes). This compression may be
            achieved by arranging to calculate the correct UTF-16 bits at the final position of each
            sequence and creating a deletion mask to mark the first two bytes of each 3-byte
            sequence for deletion. In this case, the portion of the mask corresponding to these
            input bytes is the bit sequence 110110. Using this approach, transcoding
            may then be completed by applying parallel deletion and inverse transposition of the
            UTF-16 bitstreams u8u16 2008. 
 Rather than immediately paying the costs of deletion and transposition just for
            transcoding, however, icXML defers these steps so that the deletion masks for several
            stages of processing may be combined. In particular, this includes core XML requirements
            to normalize line breaks and to replace character reference and entity references by
            their corresponding text. In the case of line break normalization, all forms of line
            breaks, including bare carriage returns (CR), line feeds (LF) and CR-LF combinations
            must be normalized to a single LF character in each case. In icXML, this is achieved by
            first marking CR positions, performing two bit parallel operations to transform the
            marked CRs into LFs, and then marking for deletion any LF that is found immediately
            after the marked CR as shown by the Pablo source code in 
	      Figure 3.
	      Figure 3: Line Break Normalization Logic

# XML 1.0 line-break normalization rules.
if lex.CR:
# Modify CR (#x0D) to LF (#x0A)
  u16lo.bit_5 ^= lex.CR
  u16lo.bit_6 ^= lex.CR
  u16lo.bit_7 ^= lex.CR
  CRLF = pablo.Advance(lex.CR) & lex.LF
  callouts.delmask |= CRLF
# Adjust LF streams for line/column tracker
  lex.LF |= lex.CR
  lex.LF ^= CRLF




         
 In essence, the deletion masks for transcoding and for line break normalization each
            represent a bitwise filter; these filters can be combined using bitwise-or so that the
            parallel deletion algorithm need only be applied once. 
 A further application of combined filtering is the processing of XML character and
	   entity references. Consider, for example, the references &amp; or
	     &#x3C; which must be replaced in XML processing with the single
               & and < characters, respectively. The
            approach in icXML is to mark all but the first character positions of each reference for
            deletion, leaving a single character position unmodified. Thus, for the references
               &amp; or &#x3C; the masks 01111 and
               011111 are formed and combined into the overall deletion mask. After the
            deletion and inverse transposition operations are finally applied, a post-processing
            step inserts the proper character at these positions. One note about this process is
            that it is speculative; references are assumed to generally be replaced by a single
            UTF-16 code unit. In the case, that this is not true, it is addressed in
            post-processing. 
 The final step of combined filtering occurs during the process of reducing markup
            data to tag bytes preceding each significant XML transition as described in
	      section “Content Stream”. Overall, icXML avoids separate buffer copying
            operations for each of the these filtering steps, paying the cost of parallel deletion
            and inverse transposition only once. Currently, icXML employs the parallel-prefix
            compress algorithm of Steele Warren 2002. Performance is independent of the
            number of positions deleted. Future versions of icXML are expected to take advantage of
            the parallel extract operation Hilewitz and Lee 2006 that Intel is now providing in its
            Haswell architecture. 

Content Stream
 A relatively-unique concept for icXML is the use of a filtered content stream.
            Rather that parsing an XML document in its original format, the input is transformed
            into one that is easier for the parser to iterate through and produce the sequential
            output. In Table V, the source data
	      <document>fee<element a1='fie' a2 = 'foe'></element>fum</document>
	     is transformed into 
           
         0fee0=fie0=foe0>0/fum0/
   
            through the parallel filtering algorithm, described in section “Combined Parallel Filtering”. 
Table V
XML Source Data and Derived Parallel Bit Streams

	 Source Data 	
	                             <document>fee<element a1='fie' a2 = 'foe'></element>fum</document> 
	 String Ends 	 1____________1_______________1__________1_1____________1__________
	 Markup Identifiers 	         _________1______________1_________1______1_1____________1_________
	 Deletion Mask 	              _11111111_____1111111111_1____1111_11_______11111111_____111111111
	 Undeleted Data 	 0________>fee0__________=_fie0____=__foe0>0/________fum0/_________
   


 Combined with the symbol stream, the parser traverses the content stream to
            effectively reconstructs the input document in its output form. The initial 0 indicates an empty content string. The following
               > indicates that a start tag without any attributes is the first
            element in this text and the first unused symbol, document, is the element
            name. Succeeding that is the content string fee, which is null-terminated
            in accordance with the Xerces API specification. Unlike Xerces, no memory-copy
            operations are required to produce these strings, which as
	      Table I shows accounts for 6.83% of Xerces's execution time.
            Additionally, it is cheap to locate the terminal character of each string: using the
            String End bitstream, the Parabix Subsystem can effectively calculate the offset of each
            null character in the content stream in parallel, which in turn means the parser can
            directly jump to the end of every string without scanning for it. 
 Following 'fee' is a =, which marks the
            existence of an attribute. Because all of the intra-element was performed in the Parabix
            Subsystem, this must be a legal attribute. Since attributes can only occur within start
            tags and must be accompanied by a textual value, the next symbol in the symbol stream
            must be the element name of a start tag, and the following one must be the name of the
            attribute and the string that follows the = must be its value. However, the
            subsequent = is not treated as an independent attribute because the parser
            has yet to read a >, which marks the end of a start tag. Thus only
            one symbol is taken from the symbol stream and it (along with the string value) is added
            to the element. Eventually the parser reaches a /, which marks the
            existence of an end tag. Every end tag requires an element name, which means they
            require a symbol. Inter-element validation whenever an empty tag is detected to ensure
            that the appropriate scope-nesting rules have been applied. 

Namespace Handling
 In XML, namespaces prevents naming conflicts when multiple vocabularies are used
            together. It is especially important when a vocabulary application-dependant meaning,
            such as when XML or SVG documents are embedded within XHTML files. Namespaces are bound
            to uniform resource identifiers (URIs), which are strings used to identify specific
            names or resources. On line 1 in Table VI, the xmlns
            attribute instructs the XML processor to bind the prefix p to the URI
               'pub.net' and the default (empty) prefix to
               book.org. Thus to the XML processor, the title on line 2
            and price on line 4 both read as
            "book.org":title and
               "book.org":price respectively, whereas on line 3 and
            5, p:name and price are seen as
               "pub.net":name and
               "pub.net":price. Even though the actual element name
               price, due to namespace scoping rules they are viewed as two
            uniquely-named items because the current vocabulary is determined by the namespace(s)
            that are in-scope. 
Table VI
XML Namespace Example

	1. 	<book xmlns:p="pub.net" xmlns="book.org"> 
	2. 	  <title>BOOK NAME</title> 
	3. 	  <p:name>PUBLISHER NAME</p:name> 
	4. 	  <price>X</price> 
	5. 	  <price xmlns="publisher.net">Y</price> 
	6. 	</book> 

 In both Xerces and icXML, every URI has a one-to-one mapping to a URI ID. These
            persist for the lifetime of the application through the use of a global URI pool. Xerces
            maintains a stack of namespace scopes that is pushed (popped) every time a start tag
            (end tag) occurs in the document. Because a namespace declaration affects the entire
            element, it must be processed prior to grammar validation. This is a costly process
            considering that a typical namespaced XML document only comes in one of two forms: (1)
            those that declare a set of namespaces upfront and never change them, and (2) those that
            repeatedly modify the namespaces in predictable patterns. 
 For that reason, icXML contains an independent namespace stack and utilizes bit
            vectors to cheaply perform 
             When a prefix is
            declared (e.g., xmlns:p="pub.net"), a namespace binding
            is created that maps the prefix (which are assigned Prefix IDs in the symbol resolution
            process) to the URI. Each unique namespace binding has a unique namespace id (NSID) and
            every prefix contains a bit vector marking every NSID that has ever been associated with
	      it within the document. For example, in Table VI, the prefix binding
            set of p and xmlns would be 01 and
            11 respectively. To resolve the in-scope namespace binding for each prefix,
            a bit vector of the currently visible namespaces is maintained by the system. By ANDing
            the prefix bit vector with the currently visible namespaces, the in-scope NSID can be
            found using a bit-scan intrinsic. A namespace binding table, similar to 
            Table VII, provides the actual URI ID. 
Table VII
Namespace Binding Table Example

	NSID 	 Prefix 	 URI 	 Prefix ID 	 URI ID 
	0 	  p 	  pub.net 	 0 	 0 
	1 	  xmlns 	  books.org 	 1 	 1 
	2 	  xmlns 	  pub.net 	 1 	 0 


            
            
            
            
         
 To ensure that scoping rules are adhered to, whenever a start tag is encountered,
            any modification to the currently visible namespaces is calculated and stored within a
            stack of bit vectors denoting the locally modified namespace bindings. When an end tag
            is found, the currently visible namespaces is XORed with the vector at the top of the
            stack. This allows any number of changes to be performed at each scope-level with a
            constant time.
            
         

Error Handling

            
            Xerces outputs error messages in two ways: through the programmer API and as thrown
            objects for fatal errors. As Xerces parses a file, it uses context-dependant logic to
            assess whether the next character is legal; if not, the current state determines the
            type and severity of the error. icXML emits errors in the similar manner—but
            how it discovers them is substantially different. Recall that in Figure
            Figure 2, icXML is divided into two sections: the Parabix Subsystem and
            Markup Processor, each with its own system for detecting and producing error messages. 
 Within the Parabix Subsystem, all computations are performed in parallel, a block at
            a time. Errors are derived as artifacts of bitstream calculations, with a 1-bit marking
            the byte-position of an error within a block, and the type of error is determined by the
            equation that discovered it. The difficulty of error processing in this section is that
            in Xerces the line and column number must be given with every error production. Two
            major issues exist because of this: (1) line position adheres to XML white-normalization
            rules; as such, some sequences of characters, e.g., a carriage return followed by a line
            feed, are counted as a single new line character. (2) column position is counted in
            characters, not bytes or code units; thus multi-code-unit code-points and surrogate
            character pairs are all counted as a single column position. Note that typical XML
            documents are error-free but the calculation of the line/column position is a constant
            overhead in Xerces.  To
            reduce this, icXML pushes the bulk cost of the line/column calculation to the occurrence
            of the error and performs the minimal amount of book-keeping necessary to facilitate it.
            icXML leverages the byproducts of the Character Set Adapter (CSA) module and amalgamates
            the information within the Line Column Tracker (LCT). One of the CSA's major
            responsibilities is transcoding an input text.
             During this process,
            white-space normalization rules are applied and multi-code-unit and surrogate characters
            are detected and validated. A line-feed bitstream,
            which marks the positions of the normalized new lines characters, is a natural
            derivative of this process. Using an optimized population count algorithm, the line
            count can be summarized cheaply for each valid block of text.
             Column position is more
            difficult to calculate. It is possible to scan backwards through the bitstream of new
            line characters to determine the distance (in code-units) between the position between
            which an error was detected and the last line feed. However, this distance may exceed
            than the actual character position for the reasons discussed in (2). To handle this, the
            CSA generates a skip mask bitstream by ORing together
            many relevant bitstreams, such as all trailing multi-code-unit and surrogate characters,
            and any characters that were removed during the normalization process. When an error is
            detected, the sum of those skipped positions is subtracted from the distance to
            determine the actual column number. 
 The Markup Processor is a state-driven machine. As such, error detection within it
            is very similar to Xerces. However, reporting the correct line/column is a much more
            difficult problem. The Markup Processor parses the content stream, which is a series of
            tagged UTF-16 strings. Each string is normalized in accordance with the XML
            specification. All symbol data and unnecessary whitespace is eliminated from the stream;
            thus its impossible to derive the current location using only the content stream. To
            calculate the location, the Markup Processor borrows three additional pieces of
            information from the Parabix Subsystem: the line-feed, skip mask, and a deletion mask stream, which is a bitstream denoting the
            (code-unit) position of every datum that was suppressed from the source during the
            production of the content stream. Armed with these, it is possible to calculate the
            actual line/column using the same system as the Parabix Subsystem until the sum of the
            negated deletion mask stream is equal to the current position. 


Multithreading with Pipeline Parallelism
 As discussed in section section “Xerces C++ Structure”, Xerces can be considered a FSM
         application. These are "embarrassingly
         sequential."Asanovic et al. 2006 and notoriously difficult to
         parallelize. However, icXML is designed to organize processing into logical layers. In
         particular, layers within the Parabix Subsystem are designed to operate over significant
         segments of input data before passing their outputs on for subsequent processing. This fits
         well into the general model of pipeline parallelism, in which each thread is in charge of a
         single module or group of modules. 
 The most straightforward division of work in icXML is to separate the Parabix Subsystem
         and the Markup Processor into distinct logical layers into two separate stages. The
         resultant application, icXML-p, is a course-grained
         software-pipeline application. In this case, the Parabix Subsystem thread
               T1 reads 16k of XML input I at a
         time and produces the content, symbol and URI streams, then stores them in a pre-allocated
         shared data structure S. The Markup Processor thread
            T2 consumes S, performs well-formedness
         and grammar-based validation, and the provides parsed XML data to the application through
         the Xerces API. The shared data structure is implemented using a ring buffer, where every
         entry contains an independent set of data streams. In the examples of
	   Figure 4, the ring buffer has four entries. A
         lock-free mechanism is applied to ensure that each entry can only be read or written by one
         thread at the same time. In  Figure 4 the processing time of
               T1 is longer than
         T2; thus T2 always
         waits for T1 to write to the shared memory.  
	 Figure 5 illustrates the scenario in which
         T1 is faster and must wait for
            T2 to finish reading the shared data before it can
         reuse the memory space. 

	Figure 4: Thread Balance in Two-Stage Pipelines: Stage 1 Dominant
[image: ]



 	Figure 5: Thread Balance in Two-Stage Pipelines: Stage 2 Dominant
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 Overall, our design is intended to benefit a range of applications. Conceptually, we
         consider two design points. The first, the parsing performed by the Parabix Subsystem
         dominates at 67% of the overall cost, with the cost of application processing (including
         the driver logic within the Markup Processor) at 33%. The second is almost the opposite
         scenario, the cost of application processing dominates at 60%, while the cost of XML
         parsing represents an overhead of 40%. 
 Our design is predicated on a goal of using the Parabix framework to achieve a 50% to
         100% improvement in the parsing engine itself. In a best case scenario, a 100% improvement
         of the Parabix Subsystem for the design point in which XML parsing dominates at 67% of the
         total application cost. In this case, the single-threaded icXML should achieve a 1.5x
         speedup over Xerces so that the total application cost reduces to 67% of the original.
         However, in icXML-p, our ideal scenario gives us two well-balanced threads each performing
         about 33% of the original work. In this case, Amdahl's law predicts that we could expect up
         to a 3x speedup at best. 
 At the other extreme of our design range, we consider an application in which core
         parsing cost is 40%. Assuming the 2x speedup of the Parabix Subsystem over the
         corresponding Xerces core, single-threaded icXML delivers a 25% speedup. However, the most
         significant aspect of our two-stage multi-threaded design then becomes the ability to hide
         the entire latency of parsing within the serial time required by the application. In this
         case, we achieve an overall speedup in processing time by 1.67x. 
 Although the structure of the Parabix Subsystem allows division of the work into
         several pipeline stages and has been demonstrated to be effective for four pipeline stages
         in a research prototype Lin and Medforth 2012, our analysis here suggests that the further
         pipelining of work within the Parabix Subsystem is not worthwhile if the cost of
         application logic is little as 33% of the end-to-end cost using Xerces. To achieve benefits
         of further parallelization with multi-core technology, there would need to be reductions in
         the cost of application logic that could match reductions in core parsing cost. 

Performance
 We evaluate Xerces-C++ 3.1.1, icXML, icXML-p against two benchmarking applications: the
         Xerces C++ SAXCount sample application, and a real world GML to SVG transformation
         application. We investigated XML parser performance using an Intel Core i7 quad-core (Sandy
         Bridge) processor (3.40GHz, 4 physical cores, 8 threads (2 per core), 32+32 kB (per core)
         L1 cache, 256 kB (per core) L2 cache, 8 MB L3 cache) running the 64-bit version of Ubuntu
         12.04 (Linux). 
 We analyzed the execution profiles of each XML parser using the performance counters
         found in the processor. We chose several key hardware events that provide insight into the
         profile of each application and indicate if the processor is doing useful work. The set of
         events included in our study are: processor cycles, branch instructions, branch
         mispredictions, and cache misses. The Performance Application Programming Interface (PAPI)
         Version 5.5.0 PAPI toolkit was installed on the test system to facilitate the
         collection of hardware performance monitoring statistics. In addition, we used the Linux
         perf perf utility to collect per core hardware events. 
Xerces C++ SAXCount
 Xerces comes with sample applications that demonstrate salient features of the
            parser. SAXCount is the simplest such application: it counts the elements, attributes
            and characters of a given XML file using the (event based) SAX API and prints out the
            totals. 
 Table VIII shows the document characteristics of the XML input files
            selected for the Xerces C++ SAXCount benchmark. The jaw.xml represents document-oriented
            XML inputs and contains the three-byte and four-byte UTF-8 sequence required for the
            UTF-8 encoding of Japanese characters. The remaining data files are data-oriented XML
            documents and consist entirely of single byte encoded ASCII characters. 
  Table VIII
XML Document Characteristics

	File Name 			 jaw.xml	 		 road.gml 		 po.xml		 soap.xml 
	File Type 			 document 			 data			 data			 data	 
	File Size (kB) 			 7343 				 11584 		 76450			 2717 
	Markup Item Count 		 74882 			 280724  		 4634110		 18004 
	Markup Density 			 0.13 				 0.57  		 0.76			 0.87	

           

 A key predictor of the overall parsing performance of an XML file is markup
	   density[2]. This metric has substantial influence on the
            performance of traditional recursive descent XML parsers because it directly corresponds
            to the number of state transitions that occur when parsing a document. We use a mixture
            of document-oriented and data-oriented XML files to analyze performance over a spectrum
            of markup densities. 
 Figure 6 compares the performance of Xerces, icXML and pipelined icXML
            in terms of CPU cycles per byte for the SAXCount application. The speedup for icXML over
            Xerces is 1.3x to 1.8x. With two threads on the multicore machine, icXML-p can achieve
            speedup up to 2.7x. Xerces is substantially slowed by dense markup but icXML is less
            affected through a reduction in branches and the use of parallel-processing techniques.
            icXML-p performs better as markup-density increases because the work performed by each
            stage is well balanced in this application. 

	Figure 6: SAXCount Performance Comparison
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GML2SVG
	 As a more substantial application of XML processing, the GML-to-SVG (GML2SVG) application
was chosen.   This application transforms geospatially encoded data represented using 
an XML representation in the form of Geography Markup Language (GML) Lake and Burggraf 2004 
into a different XML format  suitable for displayable maps: 
Scalable Vector Graphics (SVG) format Lu and Dos Santos 2007. In the GML2SVG benchmark, GML feature elements 
and GML geometry elements tags are matched. GML coordinate data are then extracted 
and transformed to the corresponding SVG path data encodings. 
Equivalent SVG path elements are generated and output to the destination 
SVG document.  The GML2SVG application is thus considered typical of a broad
class of XML applications that parse and extract information from 
a known XML format for the purpose of analysis and restructuring to meet
the requirements of an alternative format.
Our GML to SVG data translations are executed on GML source data 
modelling the city of Vancouver, British Columbia, Canada. 
The GML source document set 
consists of 46 distinct GML feature layers ranging in size from approximately 9 KB to 125.2 MB 
and with an average document size of 18.6 MB. Markup density ranges from approximately 0.045 to 0.719 
and with an average markup density of 0.519. In this performance study, 
213.4 MB of source GML data generates 91.9 MB of target SVG data.
Figure 7: Performance Comparison for GML2SVG
[image: ]


Figure 7 compares the performance of the GML2SVG application linked against
the Xerces, icXML and icXML-p.   
On the GML workload with this application, single-thread icXML
achieved about a 50% acceleration over Xerces, 
increasing throughput on our test machine from 58.3 MB/sec to 87.9 MB/sec.   
Using icXML-p, a further throughput increase to 111 MB/sec was recorded, 
approximately a 2X speedup.
An important aspect of icXML is the replacement of much branch-laden
sequential code inside Xerces with straight-line SIMD code using far
fewer branches.  Figure 8 shows the corresponding
improvement in branching behaviour, with a dramatic reduction in branch misses per kB.
It is also interesting to note that icXML-p goes even further.   
In essence, in using pipeline parallelism to split the instruction 
stream onto separate cores, the branch target buffers on each core are
less overloaded and able to increase the successful branch prediction rate.
Figure 8: Comparative Branch Misprediction Rate
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The behaviour of the three versions with respect to L1 cache misses per kB is shown
in Figure 9.   Improvements are shown in both instruction-
and data-cache performance with the improvements in instruction-cache
behaviour the most dramatic.   Single-threaded icXML shows substantially improved
performance over Xerces on both measures.   
Although icXML-p is slightly worse with respect to data-cache performance, 
this is more than offset by a further dramatic reduction in instruction-cache miss rate.
Again partitioning the instruction stream through the pipeline parallelism model has 
significant benefit.
Figure 9: Comparative Cache Miss Rate
[image: ]


One caveat with this study is that the GML2SVG application did not exhibit 
a relative balance of processing between application code and Xerces library
code reaching the 33% figure.  This suggests that for this application and
possibly others, further separating the logical layers of the
icXML engine into different pipeline stages could well offer significant benefit.
This remains an area of ongoing work.


Conclusion and Future Work
 This paper is the first case study documenting the significant performance benefits
         that may be realized through the integration of parallel bitstream technology into existing
         widely-used software libraries. In the case of the Xerces-C++ XML parser, the combined
         integration of SIMD and multicore parallelism was shown capable of dramatic producing
         dramatic increases in throughput and reductions in branch mispredictions and cache misses.
         The modified parser, going under the name icXML is designed to provide the full
         functionality of the original Xerces library with complete compatibility of APIs. Although
         substantial re-engineering was required to realize the performance potential of parallel
         technologies, this is an important case study demonstrating the general feasibility of
         these techniques. 
 The further development of icXML to move beyond 2-stage pipeline parallelism is
         ongoing, with realistic prospects for four reasonably balanced stages within the library.
         For applications such as GML2SVG which are dominated by time spent on XML parsing, such a
         multistage pipelined parsing library should offer substantial benefits. 
 The example of XML parsing may be considered prototypical of finite-state machines
         applications which have sometimes been considered "embarassingly
         sequential" and so difficult to parallelize that "nothing
         works." So the case study presented here should be considered an important data
         point in making the case that parallelization can indeed be helpful across a broad array of
         application types. 
 To overcome the software engineering challenges in applying parallel bitstream
         technology to existing software systems, it is clear that better library and tool support
         is needed. The techniques used in the implementation of icXML and documented in this paper
         could well be generalized for applications in other contexts and automated through the
         creation of compiler technology specifically supporting parallel bitstream programming.
      
Given the success of the icXML development, there is a strong case for continued
	    development of the Parabix framework as well as for the application of Parabix
	    to other important XML technology stacks.   In particular, an important area for further 
	    work is to extend the benefits of SIMD and multicore parallelism to the acceleration
	    of Java-based XML processors. 
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[1] Herein FSM applications are considered software systems whose
            behaviour is defined by the inputs, current state and the events associated with
	      transitions of states.
[2] Markup Density: the ratio of markup bytes used to define the structure
	     of the document vs. its file size.
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