[image: Balisage logo]Balisage: The Markup Conference

XML Entropy Study
Hervé Ruellan
Research Engineer
Canon Research Centre France S.A.S.

<herve.ruellan@crf.canon.fr>

Balisage: The Markup Conference 2012
August 7 - 10, 2012

Copyright © 2012 Canon Research Centre France S.A.S.

How to cite this paper
Ruellan, Hervé. "XML Entropy Study." Presented at: Balisage: The Markup Conference 2012, Montréal, Canada, August 7 - 10, 2012. In Proceedings of Balisage: The Markup Conference 2012.
 Balisage Series on Markup Technologies vol. 8 (2012). https://doi.org/10.4242/BalisageVol8.Ruellan01.

Abstract
Reducing the impact of XML documents both in term of size
				and in term of processing speed has been the goal of many
				studies and research efforts, but never in a very formal or
				comprehensive manner. To strengthen the foundations of those
				works, we present here a comprehensive formal study of the
				quantity of information contained in XML documents. We then
				compare those theoretical results to the effective compactness
				obtained by some existing binary XML formats.
			

Balisage: The Markup Conference

 XML Entropy Study

 Table of Contents

 	Title Page

 	Introduction

 	Testing Corpus
 	XML document sources

 	XML document classification
 	Size

 	Information density

 	Structure regularity

 	Entropy measurement
 	Introduction
 	Naïve evaluation

 	XML structure

 	Structure-based evaluation

 	Example XML Document

 	Event type
 	Introduction

 	Representations

 	Results

 	Element names
 	Introduction

 	Representations

 	Results

 	Attribute names
 	Introduction

 	Representations

 	Results

 	Element and attribute names
 	Introduction

 	Representations

 	Results

 	Namespace declarations
 	Introduction

 	Representations

 	Results

 	Attribute values
 	Introduction

 	Representations

 	Results

 	Character contents
 	Introduction

 	Representations

 	Results

 	File format evaluation
 	Introduction

 	File format description
 	XML

 	Fast Infoset

 	EXI

 	Summary

 	Results
 	Formats overview

 	XML

 	Fast Infoset

 	EXI

 	Summary

 	Conclusion

 	About the Author

 XML Entropy Study

Introduction

			XML (Extensible Markup Language) is now used in
			many applications on many devices for storing a large variety of
			data in a common format. XML being a verbose format, several
			solutions have been developed to reduce the size of XML documents.
			First, XML documents can be compressed using general-purpose
			compressors (e.g., gzip).
			However, taking advantage of the XML structure, it is possible to
			achieve better compression ratio. For this reason, many binary
			formats for XML documents have been developed and a few have even
			been standardized, such as Fast Infoset which is
			an ISO/IEC and ITU-T standard and EXI (Efficient
			XML Interchange) which is a W3C Recommendation.
		

			Binary XML formats have been studied experimentally to compare
			both their compression ratio and their processing speeds. Augeri
			et al. have compared general-purpose compressors, binary XML
			formats, and schema-aware XML compressors (see Augeri 2007). Their efficiency measure, combining the
			compression ratio and the compression speed, showed that the best
			binary XML format they tested (XMill, see Liefke 2000) was equivalent to the best
			general-purpose compressors (gzip,
			WinZip®, and bzip2). In another study,
			Sakr used several efficiency measures, combining the compression
			ratio with both the compression and decompression speed, and
			obtained similar results (see Sakr 2009). Last, Ng,
			Lam and Cheng compared several binary XML formats, taking into
			account whether they supported queries (see Ng 2006). They showed that the advantage of
			supporting queries over the XML content was achieved at the cost
			of decreasing the compression ratio.
		

			In addition to these experimental comparisons, it would be
			interesting to evaluate the theoretical efficiency of binary XML
			formats at the compression ratio level. We therefore propose to
			study the entropy of XML documents, first roughly as textual
			documents, then more precisely by taking into account the
			different aspects of their structure. Using this entropy study, we
			will evaluate the theoretical efficiency of Fast Infoset and EXI.
			To the best of our knowledge, this is the first and only such
			study available.
		
In section “Testing Corpus”, we describe the set of XML
			documents used as a testing corpus. In section “Entropy measurement”, we describe several methods
			for measuring the quantity of information contained in an XML
			document, using different representations of this XML document.
			Last, in section “File format evaluation”, we use those results to
			evaluate the theoretical capacities of several formats: textual
			XML, Fast Infoset, and EXI.

Testing Corpus
XML document sources
To provide reliable results, the testing corpus used in this
				study needed to cover a wide spectrum of XML documents. In
				order to achieve this goal, the selected set of documents is
				the testing corpus from the W3C EXI working group [EXI WG], which is large and representative.
			
Indeed, one of the tasks of the EXI working group was to
				evaluate several technologies for encoding XML documents
				[EXI Measurements]. This evaluation had to be
				relevant for most of the usages of XML. Therefore, they had
				to build a representative set of XML documents.
			
Our testing corpus contains 870 XML documents. This testing
				corpus covers many usage of XML documents, including
				scientific information, financial information, electronic
				documents, web services, military information, broadcast
				metadata, data storage and sensor information.
			

XML document classification
XML has many usages and therefore there is a wide variety of
				XML documents. To engage in a deeper analysis of the different
				XML documents, it is interesting to define some criteria for
				classifying them.
			
Qureshi and Samadzadeh, in Determining
					the Complexity of XML Documents [Qureshi 2005], have described several ways for
				determining the complexity of XML documents using different
				syntactic and structural aspects of those documents. They
				start by observing that several measures can be extracted from
				an XML document, such as the number of elements, the number of
				distinct element, the size of the document, and the depth of
				the document.
			
As these measures only reflect a part of an XML document
				complexity, they propose several metrics for addressing this
				problem. A first metric measures the complexity of XML
				documents by analyzing their DTD (Document Type Definition).
				However, this metric only takes into account the definition of
				the document and not the document itself. Therefore, they
				define a second metric, based on a weighted counting of the
				elements contained in the documents: the weight associated to
				an element is its depth inside the XML tree. This second
				metric is found to be more representative of the complexity of
				the XML documents.
			
Basci and Misra, in Entropy Metric for
					XML DTD Documents [Basci 2008],
				have proposed a new metric for measuring the complexity of DTD
				based on an entropy-like computation. Compared to other
				metrics for DTD or XML Schemas, this metric takes into account
				the similarities in the different structures defined by a DTD.
			
Of the several measures above, we retained the following
				three: the document size, its information density and its
				structure regularity. These measures were selected for
				representing several aspects of an XML document. No XML
				Schema-based metric was selected as some documents of the
				testing corpus did not have any associated XML Schema.
			
Size
The size of the XML document is the size in bytes of its
					serialization (textual or binary). However, to have a
					coherent measurement for all XML documents in the testing
					corpus, we computed the size by serializing the parsed XML
					document. This enabled to remove some variations such as
					the presence or absence of the XML declaration, the
					presence or absence of DTD, the presence of superfluous
					white-spaces, and the use of DTD to include external
					content in the document. In the rest of this document, we
					will call this process ‘normalization’.
				
The size of the XML documents in our testing corpus
					varies from 133 bytes to 62,750,078 bytes, with an average
					of 364,620 bytes and a standard deviation of 2,790,290
					bytes.
				
To use the size as a criterion, three classes of
					document were considered. Small documents have a size
					smaller than or equal to 1,000 bytes. Medium documents
					have a size between 1,000 bytes and 10,000 bytes. Large
					documents have a size greater than 10,000 bytes.
				

Information density
The second measurement used is information density:
					information density represents the part of content in the
					XML document relative to the part of structure in the XML
					document. The content size of an XML document is computed
					by summing the size of all character data (the “value” of
					elements) and attribute values present in the XML
					document, in bytes. The information density is computed as
					the ratio between the content size and the size, in bytes,
					of the XML document.
				
A low information density means that the document
					contains mainly structural information, while a high value
					means that the document contains mainly actual contents
					(non-element and non-value definition contents).
				
The information density of the XML documents in the
					testing corpus varies from 0 to 1, with an average of 0.39
					and a standard deviation of 0.23.
				
While there is a variety of XML documents with low
					information density values in our corpus, XML documents
					with large information density values are mainly SVG
					(Scalable Vector Graphics), with some X3D (Extensible 3D)
					documents and scientific information documents.
				
The limit between structure-rich XML documents and
					information-rich XML documents was chosen to be the value
					of 0.33 for the information density parameter. This means
					that a document is considered as structure-rich when the
					part of content in it is less than one third of the total
					document.
				

Structure regularity
The third measurement represents the regularity of the
					structure of the XML document. We chose the following
					simple definition: the structure regularity is computed as
					one minus the ratio of the total number of distinct
					elements over the total number of elements in the XML
					document.
				
High structure regularity means that the document is
					very regular, using only a few number of distinct
					elements, while low structure regularity means that the
					document is irregular, using many different elements.
				
The structure regularity of the XML documents in our
					testing corpus varies from 0 to 1, with an average of 0.56
					and a standard deviation of 0.36.
				
We chose 0.9 as the limit to separate regular from
					irregular XML documents. XML documents with a higher
					regularity are considered as regulars, while XML documents
					with a lower regularity are considered as irregulars.
				
This limit means that for a regular XML document, each
					element, in average, is repeated at least 10 times. Ten
					times may be considered large, but is indeed small
					compared to typical large regular documents, which can
					contain hundreds or thousands of repetitions (e.g., an address book).
				

Entropy measurement
Introduction
The purpose of this study is to measure the quantity of
				information contained in XML documents in order to gain a
				better understanding of the possibilities of compacting them.
				Since the paper from Claude Shannon, A
					Mathematical Theory of Communication [Shannon 1948], the quantity of information
				contained in a document is evaluated with the entropy measure he defined. The
				entropy of a document represents the smallest encoded size
				that can be obtained by a lossless compression of the
				document. The document can be compressed to a size close to
				its entropy, but never smaller than its entropy.
			
For a random variable X with n possible outcomes xi,
				1 ≤ i ≤ n, Shannon
				defined the entropy measure
				as:
			

			 Equation (a)

						[image:]
					

			
In this definition, p is
				the probability mass function of X. This means that p(xi) is the
				probability that the random variable X takes the value xi.
			
Shannon proved in his source coding theorem that this
				entropy measure is
				the minimum number of bits necessary to represent an
				outcome of the random variable.
			
Taking for example a random variable with
				only one possible outcome, the entropy measure is 0. This means that there is no
				information conveyed by the value of this variable. Indeed,
				its outcome is always known in advance.
			
As another example, when tossing a coin,
				there are two possible outcomes, heads and tails, with equal
				probabilities of 1/2. In this
				case, the entropy measure is 1. This means that the minimum
				number of bits necessary to represent the result of tossing a
				coin is 1 bit, which is achieved by a naïve coding using a
				Boolean value.
			
To compute the entropy of a whole document,
				Shannon considered that a document is a sequence of
				statistically independent symbols corresponding to identically
				distributed random variables. The entropy of the document is
				computed as the sum of the entropies of the variables
				constituting it. This entropy is called the first-order entropy.
			
For a given document, the first-order entropy
				can be computed by extracting all the different symbols
				composing it, and then computing the probability of occurrence
				for each symbol. This enables to compute the entropy for the
				random variable corresponding to these symbols, using
				Shannon's definition, and from this the entropy of the whole
				document.
			

				However, in many documents, a symbol is not independent of the
				other symbols. To represent this, nth-order
				entropy values can be computed. For the entropy of order
				n, the random variable
				associated to a symbol is dependent on the n-1 symbols preceding it.
			
Naïve evaluation
A naïve evaluation of the quantity of information
					contained in an XML document is to use the first-order entropy of this
					document considered as a set of characters.
				
Figure 1 displays this first-order
					entropy value, in the form of the cost in bytes of the
					whole document, and compares it to several values. The
					first comparison value is the size of the XML document.
					The two other comparison values are the size of the XML
					document compressed with gzip or bzip2.
				
Figure 1: XML Document Sizes
[image:]
Comparison of four size-related measures for the
							documents from the testing corpus: the base
							document size, the compressed size using gzip, the
							compressed size using bzip2, and the first-order
							entropy cost.
						

In addition, the results are sorted by increasing
					document size to enable a more meaningful comparison.
				
The results show that for all documents, the first-order
					entropy, as expected, is lower than the document’s size.
					However, in most cases, the compressed size (both with
					gzip and bzip2) is lower than this first-order entropy.
					These apparently surprising results are due to the fact
					that the hypothesis of independence between the symbols
					used to compute the first-order entropy does not hold.
					This entropy value does not represent accurately the
					quantity of information contained in an XML document.
				
For example, for someone quite knowledgeable of the XML
					specification, the name of an element contained in a
					closing-tag carries no informative value.
				
For it to become be useful, the quantity of information
					contained in an XML document must be evaluated by also
					taking into account the structure of this document. This
					evaluation is presented in the remaining of this section.
					It was realized by splitting the different sources of
					information comprised in an XML document, and evaluating
					the quantity of information for each source using its
					first-order entropy measure.
				

XML structure
An XML document is a tree-like structure mostly composed
					of elements, attributes (definition and values) and
					textual data. For the purpose of this study, it is useful
					to represent an XML document as a sequence of events, in a
					manner similar to SAX (Simple API for
					XML) or StAX (Streaming API for XML).
				
In such a representation, an XML document is represented
					by a list of events, each event being described by its
					type and content. For example, the start-tag of an
					element is described by an event of type start-element,
					whose value is the name of the element. Table I lists all the types of events used
					to represent an XML document, and succinctly describes
					each of them.
				
Table I
Description of the different events used to
							represent an XML document. Each event is descried
							by its event type and its content.
						

	Event	Event type	Content
	Start-tag	SE	name
	End-tag	EE	
	Namespace definition	NS	URI, prefix
	Attribute	AT	name, value
	Character data	CH	value
	Comment	CO	value
	Processing instruction	PI	target, data

Structure-based evaluation
Using the event representation of an XML document, a
					fine-grained evaluation of the entropy of XML documents
					can be computed. It is a general principle to split a
					piece of data to be compressed, such as a picture, a
					movie, or a textual document, into several independent
					sources of information. Each source of information can
					then be compressed more efficiently. Similarly, an XML
					document is split into several sources of information.
					First, a list of event types describes the type of each
					event contained in the representation of the XML document.
					Then several other sources of information are used to
					describe the content of these events: the list of element
					names, the list of attributes, the list of character
					contents, the list of comments and the list of processing
					instructions. The list of attributes is further divided
					into a list of attribute names and a list of attribute
					values, or considered as a whole.
				
The rest of this section contains the evaluation of each
					of these sources of information using several
					representations. Indeed, each source of information can be
					structured or further divided with several methods. For
					each source of information, the main methods used by
					binary XML encodings and variations thereof have been
					studied.
				
The documents of the testing corpus contain only few
					occurrences of comments or processing instructions.
					Therefore, the results obtained for those pieces of
					information were not deemed significant and are not
					presented here.
				

Example XML Document

					For a better understanding of the different types of
					representations described afterwards, the following XML
					document will be used as an example.
					<article xmlns="http://docbook.org/ns/docbook">
	<section>
		<title>Introduction</title>
		<para>XML...</para>
	</section>
	<section>
		<title>Testing Corpus</title>
		<section>
			<title>XML document sources</title>
			<para>To provide...</para>
		</section>
	</section>
</article>

				

Event type
Introduction
Event types form the backbone of the XML document
					representation: by describing the type of each event, they
					describe the base structure of the XML document, and point
					at the source of information to use for completing this
					structure for each event.
				
The set of events used here is close to those used in
					SAX or StAX. Compared
					to those APIs, we kept only the main events, removed
					events related to the document’s start and end (which, in
					themselves, provide no meaningful information), and events
					related to DTD and entities. In addition, we chose to be
					closer to the StAX model by separating attributes from
					their owning element.
				

Representations
Two different methods for representing the list of event
					types have been studied from the entropy point of view. It
					should be noted that the set of all possible event types
					is defined by the XML specification. Therefore, event
					types can be represented by tokens defined beforehand and
					no indexing mechanism is needed for them.
				
First, the list of event types can be considered as a
					sequential list (list
					representation). This is a representation used by most
					binary XML technologies.
				

					Using this representation, for the example document, the
					event types to be encoded are represented by the following
					list. In this list, // is used for delimiting
					comments.
					SE // article
SE // section
SE // title
CH
EE // title
SE // para
CH
EE // para
EE // section
SE // section
SE // title
CH
EE // title
SE // section
SE // title
CH
EE // title
SE // para
CH
EE // para
EE // section
EE // section
EE // article

				
Second, the list of event types can be partitioned
					according to the name of their containing element
					(part representation).
					That means that the list of event types is split into
					sub-lists corresponding to the content of each element.
					Then, those sub-lists are grouped according to their
					element names. Such a representation further splits the
					list of event types into several sources of information.
					There is no cost associated to this separation, as for
					each event type its containing element can be
					reconstructed from the list of event types and of element
					names: it is the latest element for which a “Start-tag”
					event was encountered without a matching “End-tag” event.
					Such a representation is used by the EXI format.
				

					In this representation, the same event types are to be
					coded, but they are spread over five different partitions,
					depending on their enclosing element:
					document, article,
					section, title, and
					para. The document partition is
					used for the root element. In the following description,
					the partition for each event is given in curly brackets.
					There is no need to encode this partition, as the current
					element can be retrieved from what was previously parsed.
					{document} SE // article
{article} SE // section
{section} SE // title
{title} CH
{title} EE // title
{section} SE // para
{para} CH
{para} EE // para
{section} EE // section
{article} SE // section
{section} SE // title
{title} CH
{title} EE // title
{section} SE // section
{section} SE // title
{title} CH
{title} EE // title
{section} SE // para
{para} CH
{para} EE // para
{section} EE // section
{section} EE // section
{article} EE // article

				

Results
For each document, the entropy associated to encoding
					event types was computed using as unit the number of bytes
					to represent an event type.
				
As there are 7 different types of events (see Table I), the entropy for representing them
					as a list corresponding to a uniform distribution can be
					computed by the formula:
				

					Equation (b)

							log2(7) / 8 = 0.35
						

				
Figure 2 represents the repartition of
					the entropy values for both the list representation and
					the partitioned representation.
				
Figure 2: Event Type Histogram
[image:]
Distribution of the entropy for event types,
							computed in byte per event type, for the list
							representation and the partitioned representation.
						

For the list representation, the average entropy is 0.23
					byte per event, with a standard deviation of 0.03. For the
					partitioned representation, the average entropy is 0.12
					byte per event, with a standard deviation of 0.03.
				
It can be noted that the partitioned representation has
					lower entropy values than the list representation, which
					is what we expected.
				
Figure 3 shows the ratio between the
					entropy for the partitioned representation and for the
					list representation for the different categories of XML
					documents. On average, this ratio is 0.50, with a standard
					deviation of 0.10. The differences amongst the categories
					of documents remain small. The only exception is for the
					small document category for which the ratio is greater
					than for the other representations. This comes from the
					fact that small documents contain only a limited number of
					elements and therefore provide fewer opportunities for
					partitioning to be efficient.
				
Figure 3: Event Type Entropy Ratio
[image:]
Ratio of the event type entropy between the
							partitioned representation and the list
							representation for the different categories of
							documents.
						

As a conclusion, the partitioned representation has
					much lower entropy than the basic list representation,
					with an average entropy cost of half the average entropy
					cost of the list representation.
				

Element names
Introduction
Start element events are described by their type and the
					name of the element. There is no name associated to the
					description of end element events, as this name can be
					determined by finding the corresponding start element
					event. Therefore, the name contained in the end-tag
					construct of the XML markup is redundant information.
				
The useful information about an element’s name is the
					URI of its namespace and its local name. However, this
					information can be represented in several ways. Indeed, it
					was foreseen during the writing of the Namespaces in XML 1.0 [XML Namespaces] specification that using the URI in
					each element’s name would be too verbose for XML
					documents. Therefore, a shortcut mechanism was designed
					from the start to represent an element’s name using a
					prefix associated to its namespace.
				
While in XML the usage of the prefix is important for
					reducing the size of the XML document (and also for
					syntactic reasons), in many cases the prefix in itself has
					no other usage and can be discarded by binary XML formats.
					Therefore, this study ignores in most cases the cost
					associated to encoding prefixes. In any event, this cost
					is often very low compared to the rest of the XML
					document.
				

Representations
Several representations can be used to encode element
					names.
				
First, element names can be encoded as null-terminated
					strings. There are two options for specifying the
					namespace of the element: either using the URI of the
					namespace (lst-URI
					representation), or using a prefix (lst-pr representation)
					associated to this URI.
				
Using the lst-pr representation, the
					element names of the example document would be represented
					as follows.
					// Prefix binding
=http://docbook.org/ns/docbook // Binds the default prefix
// Element names
:article
:section
:title
:para
:section
:title
:section
:title
:para

				
A second possibility is to use indexes for the namespace
					and the local name. For evaluating the entropy cost, the
					cost of the definition of those indexes must be taken into
					account. An index definition can be represented by an
					ordered list of its values. For local names, the index can
					be either global (idx
					representation), or it can be partitioned by namespace
					(idx-part
					representation).
				

					For the example document, the idx representation would be the
					following.
					// Namespace list
http://docbook.org/ns/docbook
// Local name list
article
section
title
para
// Element names
1,1 // article
1,2 // section
1,3 // title
1,4 // para
1,2 // section
1,3 // title
1,2 // section
1,3 // title
1,4 // para

				

					The idx-part
					representation would be very similar for the example
					document, as it uses only one namespace. In the general
					case, there is one Local name list for each
					namespace. Here, there would be only one Local name
						list for the
					http://docbook.org/ns/docbook namespace.
				
A third possibility is to use surrogates to represent
					the element names. A surrogate is an index representing a
					whole element name, that is both its namespace and its
					local name. A surrogate can be defined in several ways.
					The namespace corresponding to a surrogate is best
					specified using an index. The local name corresponding to
					a surrogate can be specified as a string (sur-lst representation), as an
					index (sur-idx
					representation), or as an index partitioned by URI
					(sur-idx-part
					representation).
				

					For example document, the sur-idx surrogate
					representation would be the following.
					// Namespace list
http://docbook.org/ns/docbook
// Surrogate list
1,article
1,section
1,title
1,para
// Element names
1 // article
2 // section
3 // title
4 // para
2 // section
3 // title
2 // section
3 // title
4 // para

				
A last possibility is to partition the representation of
					element names according to their enclosing element. Inside
					a partition, an element name can be represented as a set
					of strings, using either a URI or a prefix for the
					namespace (part-lst-URI
					and part-lst-pr
					representations), as a set of indexes (part-idx and part-idx-part representations),
					or as a surrogate, the surrogate being either defined
					locally for each partition (part-sur-lst, part-sur-idx, and part-sur-idx-part
					representations) or globally for all the partitions
					(part-sur-glob-lst,
					part-sur-glob-idx, and
					part-sur-glob-idx-part
					representations).
				

					For the part-idx
					representation, the element names of the example document
					would be encoded as follows. The partitions are given in
					curly brackets for clarity, but don't need to be encoded.
					// Namespace list
http://docbook.org/ns/docbook
// Element name lists
// Document partition
article
// article element partition
section
// section element partition
title
para
section
// Element names
{document} 1 // article
{article} 1 // section
{section} 1 // title
{section} 2 // para
{article} 1 // section
{section} 1 // title
{section} 3 // section
{section} 1 // title
{section} 2 // para

				

Results
For each document, the entropy associated to encoding
					element names was computed using as unit the number of
					bytes needed to represent an element name.
				
Figure 4 shows a summary of those results
					by displaying, for each representation, the average
					entropy associated to element names, and the standard
					deviation.
				
Figure 4: Element Name Summary
[image:]
Average entropies, computed in bytes per name,
							of the different representations for element
							names. The lst-URI and the
							part-lst-URI
							columns have been willingly cut as their values
							are far above the other values.
						

The first result is that representations using strings
					for representing the namespace’s URI have entropies much
					higher than all the other representations (the vertical
					scale of Figure 4 was willingly chosen to
					cut those numbers in order to better show the differences
					between the other values). The lst-URI representation has an
					average of 18.64 bytes per element name, with a standard
					deviation of 6.76, and the part-lst-URI representation has
					an average of 17.41 bytes per element name, with a
					standard deviation of 7.02.
				
Figure 5 and Figure 6 show
					the distribution of entropy values for a selection of
					representations. Some features of these distributions can
					be linked to documents with specific characteristics.
				
Figure 5: Element Name Histogram - Lists
[image:]
Distribution of entropies for selected
							representations of element names based on list of
							strings or on indexes. The lst-URI histogram has
							been willingly cut.
						

Figure 6: Element Name Histogram - Surrogates
[image:]
Distribution of entropies for selected
							representations of element names based on
							surrogates.
						

The documents with high entropy (around 45 bytes per
					element name, not displayed on the histogram) for the
					URI-based representations correspond to medium-sized
					documents containing several different URIs (from 5 to 7).
				
The few documents with high entropy (greater than 20
					bytes per element name) for the prefix-based
					representations correspond to documents with very long
					element names (40 or 50 characters).
				
For all index-based representations, the documents with
					a high entropy value (around 25 bytes per element name)
					are documents containing only one element.
				
On a more global level, Figure 4 showed
					that prefix-based representations are much closer to
					index-based representations than to URI-based
					representations in terms of entropy values. However, Figure 5 shows that the distributions of
					those entropy values are very different for prefix-based
					and index-based representations. Whereas for prefix-based
					representations, the entropy values roughly follow a
					normal distribution, for index-based representations, the
					entropy values roughly follow a geometric distribution.
					Those differences are directly linked to the kind of
					representation used.
				
Several conclusions can be drawn from the results
					obtained. First, using local-name indexes partitioned
					according to the namespace decrease the entropy.
				
Second, partitioning the representation according to the
					parent element also decrease the entropy.
				
Third, while using surrogates, the best representation
					for a surrogate definition is to use an index for the URI,
					but a string for the local name. Indexing the URI is
					efficient, as a URI is reused for several surrogate
					definitions. But indexing a local name is usually not
					efficient, as a local name is often only used for one
					surrogate definition.
				
In addition, the best surrogate-based representation
					usually has a slightly lower entropy value than the
					corresponding index-based representation. This is the case
					for sur-lst compared to
					idx and for part-sur-lst compared to
					part-idx. This is however
					not the case for part-sur-g-lst compared to
					part-idx.
				
Lastly, for representations using surrogates partitioned
					according to the parent element, those using a global
					surrogate definition have higher entropy than those using
					a local surrogate definition.
				
Figure 7 compares the entropies for some
					selected representations for the different categories of
					documents. The main result is that while the lst-pr representation has only
					small entropy variations across the different categories,
					the four other representations, all index-based
					representations, have much more important variations. But
					the relations between those four representations stay
					similar across all categories.
				
Figure 7: Element Name Categories
[image:]
Comparison of average entropies depending on the
							category of documents for some selected
							representations of element names.
						

This figure shows expected results: for index-based
					representation, the entropy is lower for larger documents.
					It is also lower for regular documents.
				
The conclusion for element names is that the lowest
					entropy results are obtained by the combination of
					indexing, partitioning and surrogate usage. On average,
					the best combination is to use partitioned surrogates,
					where surrogate definitions use indexes for the URIs and
					strings for the local names. However, for some document
					categories, a simple listing of the prefix and local name
					has lower entropy values.
				

Attribute names
Introduction
Attributes can be considered either as a whole, or by
					separating names and values. However, in most cases when
					an attribute is used several times in a document, it will
					have different values. Therefore, a join representation of
					element names and values is not an attractive option and
					we selected to study only independent representations. In
					this section, we consider the representations of attribute
					names. The representations of attribute values are studied
					in a later section.
				

Representations
As attribute names and element names are very similar,
					the same representations were used for attribute names as
					for element names.
				

Results
Similarly to element names, for each document, the
					entropy associated to attribute names was computed using
					as unit the number of bytes needed to represent an
					attribute name.
				
Figure 8 shows a summary of those results
					by displaying, for each representation, the average
					entropy associated to attribute names and the standard
					deviation.
				
Figure 8: Attribute Name Summary
[image:]
Average entropies, computed in bytes per name,
							of the different representations for attribute
							names.
						

A first result is that the representations for attribute
					names have lower entropies than the corresponding
					representations for element names. This is due to the fact
					that in many cases, attribute names have no namespace.
					This is especially true for URI-based representations.
				
However, for most representations, the standard
					deviation is higher than for element names. This comes
					from the fact that in a few cases the attribute names have
					a namespace, and therefore higher entropy cost.
				
Figure 9 and Figure 10 show
					the distributions of entropy values for a selection of
					representations.
				
Figure 9: Attribute Name Histogram - Lists
[image:]
Distribution of entropies for selected
							representations of attribute names based on list
							of strings or on indexes. The lst-URI histogram has
							been willingly cut.
						

Figure 10: Attribute Name Histogram - Surrogates
[image:]
Distribution of entropies for selected
							representations of attribute names based on
							surrogates.
						

For most representations, the distribution of entropy
					values contains a group of documents with entropy values
					higher than the main group of documents. This group
					contains the documents containing attributes with a
					defined namespace.
				
Apart from this point, the results are quite similar to
					those obtained for the representations of element names.
					The last difference is that using a surrogate increases
					the entropy. This is also due to the fact that many
					attributes have no specific namespace.
				
Figure 11 compares the entropies for some
					selected representations for the different categories of
					documents. The results are similar to those obtained for
					element names apart for the differences already noted.
				
Figure 11: Attribute Name Categories
[image:]
Comparison of average entropies depending on the
							category of documents for some selected
							representations of attribute names.
						

As a conclusion, for attribute names, the lowest entropy
					values are obtained by combining indexing and
					partitioning. Here, surrogate usage does not decrease the
					entropy values. On average, the best combination is to use
					partitioned indexing, with local names indexes being
					partitioned according to their URI. However, as for
					element names, for some document categories, a simple
					listing of the prefix and local name has a lower entropy
					value.
				

Element and attribute names
Introduction
While the two previous sections considered element and
					attribute names separately, they can also be considered
					jointly. In particular, element and attribute names may
					share the same namespace, even if many attributes have no
					namespace value.
				

Representations
Several representations can be used to encode jointly
					element and attribute names. Those representations are
					similar to those used for element names or attribute
					names, but can vary in the degree of separation used
					between element names and attribute names.
				
First, the names can be encoded as null-terminated
					strings, specifying the namespace either through its URI
					(lst-URI representation)
					or through its prefix (lst-pr representation).
				
A second possibility is to use indexes for the
					namespaces and the local names. When using an index, two
					components can be shared: the definition of the indexes
					from the string values, and the list of items, expressed
					as index values. Element names and attribute names can be
					indexed jointly, sharing both the index definitions and
					the listing of indexed values (idx-j representation). They can
					share a common index for namespaces and local names, but
					with separated lists of indexes (idx-cc representation). Last,
					they can have a common index for namespaces with separated
					lists of indexes, and separated indexes and lists for
					local-names (idx-cs
					representation). As an option, the indexing of local names
					can be partitioned according to their namespace (idx-j-part, idx-cc-part, and idx-cs-part representations).
				

					For the idx-j
					representation, the structure of the representation would
					be the following.
					// Namespace list
...
// Local name list
...
// Element and attribute names
...

					For the idx-cc
					representation, the structure would be as follows.
					// Namespace list
...
// Local name list
...
// Element names
...
// Attribute names
...

					For the idx-cs
					representation, it would be the following.
					// Namespace list
...
// Element local name list
...
// Attribute local name list
...
// Element names
...
// Attribute names
...

				
A third possibility is to use a partitioned
					representation according to the enclosing element. All the
					possibilities of the previous index-based representations
					were reused with partitioned representations (part-idx-j, part-idx-cc, part-idx-cs, part-idx-j-part, part-idx-cc-part, and part-idx-cs-part
					representations).
				
The possibility of using surrogates was not studied
					here, as the previous results showed that they were very
					close to the simple index-based representations.
				

Results
As for the analysis of separate representations of
					element and attribute names, the entropy associated to
					combined representations of element and attribute names
					was computed using as unit the number of bytes needed to
					represent one of those names.
				
In addition to all the representations combining element
					and attribute names, some representations separating
					element and attribute names were included for comparison
					purpose. Those references are using string representations
					(lst-URI-ref and
					lst-pr-ref
					representation), index-based representations (idx-ref and idx-ref-part representations),
					and partitioned representations (part-idx-ref and part-idx-ref-part
					representations). The entropy values for those reference
					representations were computed by combining the values of
					the corresponding independent representations.
				
Figure 12 shows a summary of those
					results, displaying the average entropy and the standard
					deviation for each representation. As for element names,
					the chosen scale has been willingly selected to cut the
					values of the string-based representations using URIs as
					they were far greater than the other values. For lst-URI-ref representation, the
					average entropy is of 15.00 bytes per name, with a
					standard deviation of 7.41, while for the lst-URI representation, the
					average entropy is of 15.40 bytes per name, with a
					standard deviation of 7.41.
				
Figure 12: Name Summary
[image:]
Average entropies, computed in bytes per name,
							of the different representations for element and
							attribute names. The lst-URI-ref and the
							lst-URI columns
							have been willingly cut as their values are far
							above the other values.
						

The main result is that while a join representation
					increases the entropy for string-based representations, it
					decreases the entropy for index-based representations.
				
Figure 13 and Figure 14 show
					the distributions of entropy values for selected
					string-based and simple index-based representations.
				
Figure 13: Name Histogram - List
[image:]
Distribution of entropies for selected
							representations of element and attribute names
							based on list of strings.
						

Figure 14: Name Histogram - Index
[image:]
Distribution of entropies for selected
							representations of element and attribute names
							based on indexes.
						

The main result is that for simple index-based
					representations, the lowest entropy values are obtained
					for the idx-cs
					representation. This corresponds to the fact that element
					and attribute names generally share the same set of URIs,
					but with different usages, while they have different sets
					of local names.
				
This result mostly holds for more complex index-based
					representation. The exception is for representations
					partitioned according to the containing element and with
					local name indexes partitioned by namespace. For these
					representations, the lowest entropy values are obtained
					for the part-idx-j-part
					representation.
				
Figure 15 compares the entropies for some
					selected representations for the different categories of
					documents. The main results from this figure is that the
					relationships found between the index-based
					representations are maintained for all categories, and
					that the relationships found previously between
					string-based and index-based representations depending on
					the category of documents are also maintained.
				
Figure 15: Name Categories
[image:]
Comparison of average entropies depending on the
							categories of documents for some selected
							representations of element and attribute names.
						

The conclusion that can be drawn from these results is
					that for index-based representations, the lowest entropy
					is obtained by a partial joining of the representations of
					element names and attribute names.
				

Namespace declarations
Introduction
Namespace declarations are used to associate a prefix to
					a URI representing a namespace. As previously stated in
					the section for element names, in many cases the prefixes
					can be discarded by binary XML formats. However, in some
					cases, prefixes are used in attribute values for
					specifying a qualified name (for example, in XML Schema to
					associate a type to an element or to an attribute). In
					such cases, the namespace declarations must be preserved.
				
A namespace declaration is constituted of two
					components: the URI of the namespace and the prefix
					associated to it.
				

Representations
Several representations can be used to encode a
					namespace declaration.
				
First, both the URI and the prefix can be encoded as
					null-terminated strings (lst representation).
				
A second possibility is to use indexes. As URI are long
					and can be used in several declarations, while prefix tend
					to be short and not reused, a first option is to index the
					URIs and simply list the prefixes (idx-lst representation). A
					second option is to index both the URIs and the prefixes
					(idx representation).
				
A third possibility is to partition the prefix
					definition according to their URIs. The URIs are indexed,
					and in each partition, the prefixes can either be
					represented with a string (part-lst representation) or as
					an indexed value (part-idx representation).
				

Results
For the documents of the testing corpus, the entropy
					associated to namespace declaration is computed using as
					unit the number of bytes needed to represent a namespace
					declaration.
				
Figure 16 displays the distribution of the
					entropy values for the different representations.
				
Figure 16: Namespace Histogram
[image:]
Distribution of entropies for the representation
							of namespace declarations.
						

These results show that using indexing reduces the
					entropy. However, indexing only the URI is slightly
					better than indexing both the URI and the prefix. This is
					explained by the fact that prefixes are usually short and
					not repeated.
				
Partitioning has a somewhat stronger effect than
					indexing. For the prefix definition in partitioned
					representations, both direct string and indexed
					representation have the same entropy values.
				
It should be noted that in most cases, a document
					contains only a few or no namespace declarations. However,
					a few sample documents from the testing corpus contained a
					lot of namespace declarations (from 150 to 3000). Those
					documents are automatically generated documents with
					repetition of namespace declarations for each separately
					generated element. For such documents, indexing reduces
					significantly the entropy value.
				
As a conclusion, in most cases, where only a few
					namespace declarations are used and no redundancies are
					present in those declarations, all the representations
					have almost the same entropy. However, when taking into
					account all the cases, using a partitioned representation
					gives the best results.
				

Attribute values
Introduction
In addition to their name, attributes are also defined
					by their value. In this section, we consider the
					representation of attribute values independently of their
					names.
				

Representations
A few different representations can be used for
					attribute values.
				
First, the attribute values can be represented as
					null-terminated strings (lst representation).
				
Second, the attribute values can be indexed (idx representation). As for the
					element names, the cost of the index definition must be
					taken into account.
				
Third, the attribute value representation can be
					partitioned according to the attribute name. This can be
					done either for a string-based representation (part-lst representation) or for
					an index-based representation (part-idx representation).
				
Last, in a partitioned representation, the attribute
					values can be represented by using a global index instead
					of local ones (part-idx-glob representation).
				

Results
The results for attribute values were obtained by
					measuring the entropy associated to them, using as unit
					the number of bytes needed to represent an attribute
					value.
				
The first thing of note is that there is a huge
					variation in the results obtained depending on the
					document. While most documents have entropies ranging from
					0 to 100 bytes per attribute value, there are a few
					documents with much greater entropies (up to about 12,000
					bytes per attribute value).
				
Those documents with very high entropies for attribute
					values are either SVG or X3D documents containing large
					graphical information in one (or more) attribute values.
				
Taking into account those documents skew the results and
					do not provide many insights on the different
					representations. In particular, the average entropy value
					is almost the same for all the representations.
				
Therefore, to enable a better analysis of the attribute
					value representations, those documents were removed from
					the testing corpus. Specifically, all documents for which
					the average attribute value entropy was greater than 100
					bytes per attribute value for the lst representation were
					discarded. There were 33 such documents.
				
Figure 17 shows the distributions of
					entropies for the reduced testing corpus. These
					distributions show that indexing and partitioning reduce
					the entropy. Indexing has a somewhat stronger effect. In
					addition, indexing and partitioning can be combined,
					enabling their respective entropy reductions to partly
					combine. Using a global index and a partitioned list of
					value is slightly less efficient than using a partitioned
					index.
				
Figure 17: Attribute Value Histogram
[image:]
Distribution of entropies for the
							representations of attribute values, on the
							reduced testing corpus (i.e., without documents
							with entropy values greater than 100 bytes).
						

A more detailed analysis was conducted by analyzing the
					results for each category of documents on this reduced
					testing corpus. It should be noted that the removed
					documents mostly belong to the large, information-rich,
					and irregular categories.
				
The main result obtained is that partitioning is more
					effective than indexing for small documents. On the other
					hand, indexing is more effective than partitioning, for
					large documents, for information-rich documents, and for
					regular documents.
				
In all case the combination of indexing and partitioning
					leads to lower entropy results than using only one of
					those mechanisms. Joining the two mechanisms has a
					greater impact for the medium, structure-rich and
					irregular documents.
				
In addition, in most cases, using a global index gives
					slightly higher entropy values than using partitioned
					indexes. The main exceptions are the information-rich and
					irregular documents.
				
As a conclusion, the representation with the lowest
					entropy for attribute values is the one using partitioning
					according to the attribute name and locally indexed
					values.
				

Character contents
Introduction
Character contents representation is very similar to
					attribute values representation. Both represent textual
					information contained in an XML document. Where an
					attribute value is related to an attribute, a character
					content item is related to an element.
				
However, character contents and attribute values have
					different natures and therefore, it is expected that some
					differences will appear in the results.
				

Representations
For character contents, the same representations were
					used as for attribute values (lst, idx, part-lst, part-idx, and part-idx-glob representations)
				

Results
The results for character contents were obtained from
					the testing corpus and are expressed using for unit the
					number of bytes needed to represent a character content
					item.
				
It should be noted that the documents from the testing
					corpus were pruned of any whitespace character content,
					and that all contiguous character contents were joined
					together (i.e., removing
					newlines).
				
A second thing to note is that, as for attribute values,
					there are a few documents with much larger entropy values
					than the others (up to about 500,000 bytes per character
					content). These documents with very high entropy values
					are either SVG documents containing application specific
					additions, or some scientific data files.
				
To enable a better analysis of the character content
					representations, documents with average character content
					entropy greater than 100 bytes per character content item
					for the lst
					representation were pruned from the testing corpus. There
					were 25 such documents.
				
Figure 18 shows the distribution of the
					entropy values for the reduced testing corpus. Those
					results show that both indexing and partitioning reduce
					the entropy. On average, indexing enables a somewhat more
					important reduction than partitioning. Combining indexing
					with partitioning enables combining part of their
					respective reductions of entropy. Last, using a global
					index with partitioned list of values representation leads
					to greater entropy values than a fully partitioned indexed
					representation.
				
Figure 18: Character Histogram
[image:]
Distribution of entropies for the
							representations of character contents on the
							reduced testing corpus (i.e., without documents
							with entropy values larger than 100 bytes).
						

A more detailed analysis was conducted on the different
					categories of documents. The removed documents mostly
					belong to the large, information-rich and irregular
					categories.
				
The first result is that indexing is more effective than
					partitioning for large documents, for information-rich
					documents, and for regular documents. On the contrary,
					partitioning is more effective than indexing for small
					documents, for medium documents, for structure-rich
					documents, and for irregular documents.
				
Secondly, the combination of indexing and partitioning
					has lower entropy values than using only one of those
					mechanisms.
				
Last, using a global index leads in all cases to higher
					entropy values than using partitioned indexes.
				
As a conclusion, the general observations found for the
					attribute values are also relevant for the character
					contents. However, the difference of usage between
					attribute values and character contents is reflected in
					the details of the results.
				

File format evaluation
Introduction
In the previous section, we obtained results related to the
				evaluation of several representations for the different parts
				of an XML document using entropy measurements. In this
				section, we reuse those results to study several encoding
				formats for XML documents.
			
Three formats have been studied here: textual XML XML, the Fast Infoset format Fast Infoset, and the EXI format EXI.
			

File format description
XML
Textual XML is the default format for XML document. We
					considered here XML documents as defined by the XML 1.0 [XML]
					and the Namespaces in XML
						1.0 [XML Namespaces]
					specifications (XML 1.1 introduces only marginal changes
					and the results of our study mostly apply).
				
We have shown previously some entropy results obtained
					when considering an XML document as a textual document.
					However, more precise results can be obtained by splitting
					the XML document into its different components and
					considering each of them individually.
				
In XML, event types are not specified explicitly, but
					rather implicitly through the XML syntax. However, those
					event types can be considered as being represented as a
					list.
				
Element names are represented as strings, using prefixes
					to specify their namespaces.
				
Attribute names are also represented as strings, as well
					as the attribute values.
				
Namespace declarations are represented as strings,
					associating a prefix to a URI.
				
Character contents are also represented as strings, as
					well as comments and processing instructions.
				
Globally, textual XML uses a basic string representation
					for all the components. The only optimization is to use
					prefixes as shortcuts for namespace’s URIs.
				

Fast Infoset
Fast Infoset is a binary XML format, specified by the
					ITU-T rec. X.891 | ISO/IEC
						24824-1 standard [Fast Infoset]. This format drops the textual
					representation of XML documents to replace it by a binary
					representation, enabling a more compact encoding of XML
					documents.
				
In Fast Infoset, event types are explicitly coded in a
					binary form, and their representation corresponds to a
					list.
				
Element names and attribute names are represented as
					surrogates, a surrogate being defined from the index of
					the namespace’s URI and the index of the local name.
				
Namespace declarations are represented using indexed
					values for both the URI and the prefix. As prefix
					preservation has been ignored in this study, namespace
					declarations have not been taken into account here.
				
Attribute values, character contents, comments, and
					processing instructions are represented as indexed
					strings.
				
It should be noted that for Fast Infoset, the indexes
					for attribute values, character contents, comments, and
					processing instructions are all separated.
				
The representation used for Fast Infoset was slightly
					simplified for the purpose of this study. However, these
					simplifications should have only a minimal impact on the
					results.
				
Fast Infoset is a rather straightforward binary XML
					format, taking advantage of replacing the textual
					description of the XML structure by a binary description
					of it, and providing indexes for most items. In addition,
					Fast Infoset uses various encoding techniques for reducing
					the size of the encoded documents.
				

EXI
Efficient XML Interchange
						(EXI) [EXI] is a binary
					XML format standardized by the W3C. This format was
					selected amongst several propositions (one of them was
					Fast Infoset) and therefore contains some somewhat complex
					mechanisms for obtaining a compact encoding of XML
					documents.
				
In EXI, event types are explicitly coded in a binary
					form, and are in addition partitioned according to their
					enclosing element. Therefore their representation is a
					partitioned list.
				
Element and attribute names are represented as
					surrogates, a surrogate being defined from the index of
					the namespace’s URI and the index of the local name
					partitioned according to its URI. In addition, surrogates
					are partitioned according to the parent element. The
					element and attribute name representations corresponds
					therefore to partitioned surrogates, with surrogate
					definition based on URI indexes and local name partitioned
					indexes.
				
Namespace declarations are represented as indexed
					strings for URIs and indexed strings, partitioned
					according to the URI, for prefixes. As for Fast Infoset,
					prefix preservation has been ignored here.
				
Attribute values are represented as indexed strings
					partitioned according to the attribute name.
				
In a similar manner, character contents are represented
					as indexed strings partitioned according to the element
					name.
				
Comments and processing instructions are represented as
					strings.
				
As for Fast Infoset, the representation used for EXI was
					slightly simplified for the purpose of this study.
				
EXI is a binary XML format more complex than Fast
					Infoset, using partitioning in many places to improve the
					compactness of the encoding.
				

Summary
Table II shows a summary of the
					representations used by each of the three studied formats.
					This table is representative of the differences between
					the formats. XML is mostly list-based, Fast Infoset is
					mostly index-based, and EXI is mostly
					partitioned-index-based.
				
Table II
Summary of the representations used by the three
							formats for XML documents analyzed here.
						

		XML	Fast Infoset	EXI
	Event type	List	List	Partitioned list
	Element name	List	Surrogate	Partitioned surrogate
	Attribute name	List	Surrogate	Partitioned surrogate
	Attribute value	List	Index	Partitioned index
	Namespace declaration	List	Index	Index
	Character content	List	Index	Partitioned index
	Comment	List	Index	List
	Processing instruction	List	Index	List

Results
Formats overview
The different formats for XML documents can be first
					compared using their encoding size. Figure 19 shows the distribution of encoded
					file size for the three formats considered, and also for
					textual XML compressed with gzip.
				
Figure 19: Size Summary
[image:]
Distribution of file sizes for the different
							formats.
						

This figure shows that on average, Fast Infoset encoded
					document size is 39% of the original XML document size,
					while EXI encoded document size is 34% of the original XML
					document size. However, gzip achieves much better results,
					as compressed XML document size is 12% of the original
					size.
				
While Fast Infoset and EXI provide better encoding for
					the XML structure and for repeated content, they leave
					other aspects of the XML documents uncompressed. On the
					other hand, gzip compresses the full XML document, both
					structure and content and is therefore able to achieve
					better results.
				
However, gzip has no information on the structure of XML
					and therefore compressed Fast Infoset or EXI documents are
					more compact that compressed XML documents.
				
Entropy values were computed for those three formats and
					their distributions are shown by Figure 20,
					alongside with the basic entropy of textual XML documents
					(that is the entropy of the text constituting the XML
					documents).
				
Figure 20: Entropy Summary
[image:]
Distribution of total entropy values for the
							different formats.
						

The relations observed for the encoding sizes still hold
					for the entropies, meaning that the effective encoding
					chosen for Fast Infoset and EXI are correct. The average
					entropy of Fast Infoset documents is 51% of the average
					entropy of XML documents, and the average entropy of EXI
					documents is 46% of the average entropy of XML documents.
					In addition, the average textual entropy of XML documents
					is 151% of the average XML entropy of XML documents.
				
The first observation is that the better results
					obtained by EXI compared to Fast Infoset (as measured by
					the document sizes) are due to the choice of more
					efficient representations (as measured by the entropy
					values).
				
Second, those results show that the average entropy
					values for the three formats are closer than the average
					document sizes for these same formats. This means that the
					EXI encoding is closer to its theoretical minimum than the
					Fast Infoset encoding, and that the Fast Infoset encoding
					is closer to its theoretical minimum than textual XML.
				

XML
Figure 21 shows the distribution of the
					ratio of document size over entropy value for textual XML,
					using either no compression, gzip compression or bzip2
					compression.
				
Figure 21: XML Results
[image:]
Distribution of ratio between document size and
							XML entropy value for textual XML under different
							compression options.
						

This figure shows that on average, an XML document size
					is 2.34 times its entropy value. However, compressed
					document sizes are lower than the entropy values, being on
					average 0.73 times the entropy value for gzip, and 0.80
					times the entropy value for bzip2.
				
These results mean that the entropy value we computed is
					more representative of the quantity of information
					contained in an XML document than the text-based entropy
					we computed initially. However, this entropy value is
					still overestimated. In particular, it should better take
					into account the possible repetition of element or
					attribute names.
				
Figure 22 shows the detailed distribution
					of entropy costs for XML documents among the different
					sources of information. This distribution is given for
					the whole testing corpus and also for the different
					categories of documents.
				
Figure 22: XML Cost Repartition
[image:]
Distribution of entropy costs for XML documents
							for the different categories of documents.
						

The entropy cost for each source of information was
					computed as an average of the entropy cost for this source
					of information for all documents in the category, and
					then, for comparison purpose, those entropy costs were
					normalized so as their total value is one.
				
First, it should be noted that the cost of the structure
					(represented by the event list, the element names and the
					attribute names) is independent of the file size, staying
					around 40% for the small, medium and large document
					categories.
However structural cost is higher for structure-rich
					documents than for information-rich documents. Last, while
					it is somewhat above the average for regular documents, it
					is almost negligible for irregular documents (around
					2%).

Fast Infoset
Figure 23 shows the distribution of the
					ratio of document size over entropy value for Fast Infoset
					documents. A first set of results uses the base Fast
					Infoset document, while a second set of results uses the
					Fast Infoset document compressed with gzip.
				
Figure 23: Fast Infoset Results
[image:]
Distribution of ratio between document size and
							Fast Infoset entropy value for Fast Infoset
							documents with different compression options.
						

On average, the size of a Fast Infoset document is 1.83
					times its entropy, and the size of a compressed Fast
					Infoset document is 0.94 times its entropy.
				
Those results first corroborate that on average Fast
					Infoset documents have a size closer to their entropy
					values than textual XML documents.
				
However, as compressed Fast Infoset documents still have
					on average a size lower than the entropy value, the
					entropy value computed for Fast Infoset still overestimate
					the quantity of information contained in an XML document.
					Nevertheless, the difference is lower for Fast Infoset
					than for textual XML.
				
Figure 24 shows the detailed distribution
					of entropy costs for Fast Infoset documents among the
					different event types.
				
Figure 24: Fast Infoset Cost Repartition
[image:]
Distribution of entropy costs for Fast Infoset
							documents for the different categories of
							documents.
						

These distributions show that the behavior of Fast
					Infoset is clearly different from the behavior of textual
					XML.
				
A first observation is that, globally, the entropy cost
					of the structure represents a smaller part of the total
					entropy cost for Fast Infoset documents than for textual
					XML documents. This means that the representations used
					by Fast Infoset are more efficient for reducing the
					entropy of the structure than for reducing the entropy of
					the content.
				
Moreover, the part of entropy cost related to the
					structure decreases as the size of the document increase.
				

EXI
Figure 25 displays the distribution of the
					ratio of document size over entropy value for EXI
					documents.
				
Figure 25: EXI Results
[image:]
Distribution of ratio between document size and
							EXI entropy value for EXI documents with different
							compression options.
						

Three types of documents are shown there. First, EXI
					documents encoded with the options close to the default
					ones (bit-packed, no schema, no compression, preservation
					options only for comments and processing instructions),
					second, EXI documents using the compression mechanism
					built-in in EXI, third, EXI documents further compressed
					with gzip (these documents use the pre-compress option as
					this gives more compact documents than compressing
					documents encoded with the default options).
				
On average, the size of an EXI document is 1.66 times
					its entropy, the size of an EXI document using the
					compression option is 0.92 times its entropy, and the size
					of an EXI document compressed with gzip is 0.93 times its
					entropy.
				
A first observation is that the built-in compression
					mechanism of EXI is on par with a generic compression
					mechanism (with a slight advantage for the built-in
					mechanism).
				
These results also corroborate that on average EXI
					document sizes are closer to their entropy values than
					Fast Infoset document sizes from their entropy values.
				
However, compressed EXI document sizes are still smaller
					than the EXI entropy values, showing that this entropy
					value is also an overestimation of the quantity of
					information contained in XML documents.
				
Figure 26 shows the detailed distribution
					of entropy costs for EXI documents among the different
					types of events.
				
Figure 26: EXI Cost Repartition
[image:]
Distribution of entropy costs for EXI documents
							for the different categories of documents.
						

These distributions are very similar to the ones
					obtained by Fast Infoset.
				
In most cases, the entropy cost of the structure is a
					smaller part of the total cost for EXI than for Fast
					Infoset. The only exception is for the small document
					category.
				

Summary
The results obtained here show that binary XML formats
					reduce the size of XML documents both theoretically and in
					practice. Moreover, while indexing mechanisms, as used by
					Fast Infoset, are efficient for the compactness of the
					representation, including in addition partitioning
					mechanisms, as done by EXI, further improves this
					compactness.
				
It should also be noted that as EXI is closer to its
					theoretical minimum than Fast Infoset. This suggests that
					the practical techniques used by EXI are more efficient
					than those used by Fast Infoset.
				
Last, the distribution of the entropy costs among event
					types show that binary XML formats globally reduce the
					entropy cost of structure relatively to the entropy cost
					of content. This means that XML language designers should
					reflect as much as possible the structure of their data
					into the XML structure to take a full advantage of these
					encodings.
				

Conclusion
In this study, we analyzed the theoretical performances of
			several representations for XML documents. First, our theoretical
			results are in line with the experimental results obtained for the
			different formats. This was an expected result, but is
			nevertheless welcome news.
		
We showed that the compaction advantage of EXI over Fast
			Infoset is due to the usage of partitioning mechanisms. In
			addition, the practical implementation of EXI seems somewhat
			better than the one of Fast Infoset, enabling compaction
			performances for EXI closer to their theoretical minimum than for
			Fast Infoset.
		
Further investigations could be undertaken to complete this
			study. First, the usage of generic compression showed that the
			first-order entropy results computed were overestimating the
			quantity of information contained in the documents. For XML
			documents, the hypothesis of independence between the symbols does
			not hold, and therefore the entropy results obtained are not
			correct. This hypothesis does not hold either for attribute values
			and character contents. These items are often English text, for
			which consecutive letters are not independent. A detailed analysis
			of these items could be undertaken to find a better entropy
			measure for them.
		
Second, both Fast Infoset and EXI provide mechanisms for a
			partial indexing of content-related values. Some quick experiments
			showed that the minimum entropy value is usually obtained
			somewhere between a full indexing of those values and no indexing
			of those values. More investigations could be realized on this
			topic. Such investigations should be backed-up by experimental
			measurements to check that theoretical results are in line with
			practical implementations.
		
Last, EXI is able to take advantage of an XML Schema to
			better encode an XML document. More specifically, EXI can extract
			both the structure of the XML document and the type of the
			content. It would be of interest to compute entropy values for XML
			documents while considering their XML Schema as well. A reduced
			experiment could focus on the type of the content, by computing
			the entropy values while taking into account the type of each
			content item.
		

Bibliography
[Augeri 2007]
			Christopher J. Augeri, Dursun A. Bulutoglu, Barry E. Mullins, Rusty
			O. Baldwin, Leemon C. Baird, III, An Analysis of XML
				Compression Efficiency, ExpCS'07.
		
[Basci 2008] Dilek Basci,
			Sanjay Misra, Entropy Metric for XML DTD Documents,
			in ACM SIGSOFT Software Engineering
				Notes, vol. 33, Issue 4, July 2008.
		
[XML] Tim Bray, Jean Paoli, C. M.
			Sperberg-McQueen, Eve Maler, and François Yergeau,
			Extensible Markup Language (XML) 1.0 (Fifth
				Edition). W3C Recommendation,
			26th November
			2008. Retrieved
			27th September
			2010 from http://www.w3.org/TR/xml/.
		
[XML Namespaces] Tim Bray, Dave
			Hollander, Andrew Layman, Richard Tobin, Henry S. Thompson,
			Namespaces in XML 1.0 (Third Edition). W3C
			Recommendation,
			8th December 2009.
			Retrieved 27th
			September 2010 from http://www.w3.org/TR/xml-names/.
		
[EXI WG] Michael Cokus, Takuki
			Kamiya, Carine Bournez, Efficient XML Interchange Working
				Group. 5th May 2010. Retrieved
			4th August 2010
			from http://www.w3.org/XML/EXI/.
		
[Liefke 2000] H. Liefke and
			D. Suciu, XMill: an efficient compressor for XML
				data, in Proceedings of the
				International Conference on Management of Data
				(SIGMOD), pages 153-164, 2000.
		
[Ng 2006]
			Wilfred Ng, Lam Wai Yeung, James Cheng, Comparative
				Analysis of XML Compression Technologies, World Wide Web, pp. 5-33, 2006. doi:https://doi.org/10.1007/s11280-005-1435-2.
		
[Qureshi 2005] Mustafa H.
			Qureshi, M. H. Samadzadeh, Determining the Complexity of
				XML Documents, ITCC’05.
		
[Sakr 2009] S. Sakr, XML
				Compression Techniques: A Survey and Comparison,
			Journal of Computer and System Sciences
			 (JCSS), 75(5), pp. 303-322, 2009. doi:https://doi.org/10.1016/j.jcss.2009.01.004.
		
[EXI] John Schneider, Takuki
			Kamiya, Efficient XML Interchange (EXI) Format 1.0.
			W3C Recommendation, 10 March 2011. Retrieved
			2nd April 2012
			from http://www.w3.org/TR/exi/.
		
[Shannon 1948] Claude E.
			Shannon, A Mathematical Theory of Communication,
			Bell System Technical Journal,
			vol. 27, pp. 379-423 and 623-656, July and October, 1948.
		
[EXI Measurements] Greg White,
			Don Brutzman, Stephen Williams, Jaakko Kangasharju,
			Efficient XML Interchange Measurements Note.
			30th June 2007.
			Retrieved 2nd
			April 2012 from
			http://www.w3.org/TR/exi-measurements/.
		
[Fast Infoset] ITU-T Rec. X.891 | ISO/IEC 24824-1 (Fast
				Infoset). International Telecommunication Union
			(ITU), May 2005. Retrieved
			27th September
			2010 from http://www.itu.int/rec/T-REC-X.891/.
		
[SAX] SAX: Simple API for
				XML. Retrieved
			24th September
			2010 from http://www.saxproject.org/.
		
[StAX] StAX: The Streaming
				API for XML. Retrieved
			27th September
			2010 from http://stax.codehaus.org/Home.
		

Balisage: The Markup Conference

XML Entropy Study
Hervé Ruellan
Research Engineer
Canon Research Centre France S.A.S.

<herve.ruellan@crf.canon.fr>
Hervé Ruellan holds an engineering degree from the École
					Centrale des Arts et Manufactures (1993) and a Ph.D. in
					computer science from Université Paris XI (1998). Since
					2000, he has been working at Canon Research Centre France
					first in the domain of Web Services, then in the domain of
					XML technologies.
				

Balisage: The Markup Conference

content/images/Ruellan01-008.png
W///%////////

idx-part

Ist

Irregular

_pr

Ist
idx

|
V.
i |
EZE sur-idx

part-sur-

2z} part-sur-
DA\

N

%%

N

Structure Information Regular

Large

T S T S S SR

otateteteteretotorsseteresete!
RRRRRIRXLILES

Medium

R SRR
RIS

DN

7

Small

Global

20

15

10
5|

0

content/images/Ruellan01-007.png
300
250
200
150
100

50

300
250
200
150
100

50

300
250
200
150
100

50

300
250
200
150
100

50

S SR SR S S v
%"""F"""*
o 1 0 0 e e S A S
0 5 1.0 15 2|0 2|5 30
/ -- RERREEEERNRE R RRCETTEEREPPRRE SO 7] sur-Ist H
oy I
% """"" 1 | 2 SRS OO OO OO OO SOLOO OO RO ORIt SOORORURORURNN SRRSO

Y W Vv B
0 5 10 15 20 25 30
/ -- RERREEEERNRE S RRRETTIERENE part-sur-Ist H
%ﬁffff.ff""__fﬁfﬁﬂﬁﬁ:
% W ons Wl v o A S
0 5 1.0 15 2|0 2|5 30
/ -- e e part-sur-idx-part
%ffffﬁjf'_'"fﬁf_f_f_fiﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁfﬁﬁ:
_ 2% 74X e]
0 5 10 15 20 25 30

content/images/Ruellan01-009.png
\st AR
oo ®
\O*
e
s
\“ \9
A 02
pa(‘ At OR
o A Asv o
oS
o ’Q—\(V‘ pa"‘
oo™ e
pa(’{ \“ AS
ootV N \6‘/*’93(‘
93«—5\“ o9
Oaﬂ =N g—\‘«"
oorv® v—q—'\d*’paﬁ

content/images/Ruellan01-022.png
300 !

7 xml/xml ent
200w e | e
|‘/7;"| i i 5 ?
100 -+ i e e -
0 | m% 7% wwwes) I | |
0 1 2 3 4 5 6 7
>00L 77;' ___________________ I ____________________ II _____________ gzip/xmil ent ||
ool P B I S R
N v/ o i . .
0 1 2 3 4 5 6 7
200 ! ! ! ! ! —
7 : : Ib2|p2/xml ent
R e et s T
0 1 2 3 4 5 6 7

content/images/Ruellan01-021.png
7] xml ent |

103

108

10’

10°

103

content/images/Ruellan01-002.png
Size

v v Entropy | 7

|+ + Gzip
[|x % BZip

108
10’ q

s9zIS

content/images/Ruellan01-024.png
400

|
5 fi/fi ent

) — . - S— S S— E—

o

oo - I — S . SR
. s
. 7 7/ ; l l
0 1 2 3 4 5 6 7
’ g g g g fisga/fi ent
200+ [e s S e
7
/“ |
100f {117 L T T
’ |
7
OWW 7 077 | | | |
0 1 2 3 4 5 6 7

content/images/Ruellan01-001.png
z,, ogaps

content/images/Ruellan01-023.png
qlaaa..m
nnnnnn
— O N
ccccccc

content/images/Ruellan01-004.png

77777777

00000000

content/images/Ruellan01-026.png
200

100

200

100

200

100

I 7 ! I exi/exient

o s

|) | |
""""""""" %/7/%%

1 2 3 4 5 6

------ i

1 2 3 4 5 é

__________ ZIIIII o c%xi+gz/exi ent
7 é é é

_________ | T N R R R
7
7 | | | |
1 2 3 4 5 6

content/images/Ruellan01-003.png
350
£1010] N - T — T - ——]

250 e e e e
200 S — S— S—— R— o
50| T T T ERbii s« B

. IS

1] o e s T e y v/ W

i | 7 2
(9.00 0.05 0.10 0.15 0.20 0.25 0.30
160

180 o e B e -
120 S 300\ T\ O S S —

oo T L B - TR D
sof I — ——

B0y N NN o o

QO AR SNOININSININ R SR R R

20 SRR R — T

content/images/Ruellan01-025.png
T 0 & ¢
EG>Cc g
_ 0 € o o L >
ccccccc

> . R
mation Regular Irregular

Structure Infor

, N
77 7
i Large

- Ny | _ :
e / N3

. - g | _ s
\\\

—

N
0.0 2% %
Global

content/images/Ruellan01-006.png
100
80
60
40
20

250
200
150
100

507

300
250
200
150
100

50

300
250
200
150
100

50

7] |st-URI |

content/images/Ruellan01-005.png
N

\st
\oU X _Y Y
\5\! A% (s
‘\(y/«p
A\ Y
A) (\9
d$ (o
(‘\ (5\'s
(- B=\%
© 2 AR e S (00 & o
’Q\(V‘ “
o 2l 5\“—\(3
o<t S \S
o2 S oWt O >
aﬁ—5\“ Q':\d Q
(T Suf g—\s’i
© ° NG\ A\ .‘\d‘/‘p\{

content/images/Ruellan01-027.png
T 0 & ¢
EG>Cc g
_ 0 € o o L >
ccccccc

.

B
m
-

Yt / 077772777 7
e Structure Information Regular Irregular

| _ _ Lo
= e _ _ £
] 35

Q - | SRR N%
. “ _ =

: wn
/m
_ _ G

Q)
—

(ce]
o

content/images/Ruellan01-020.png
120

] I N ///%ZZ/| """""" """"""""""

A0 R)

1680 10° 1
120F e |

7- |
e B T R—
sl - e e —_—

1 2 3 4 5 6 7 8
12@ 1(!] 1(!] 10 1(!] 1(!] 1(!]]

T E— s —— =

content/images/Ruellan01-019.png
160
120
80
40

200

100

160
120
80
40

160
120
80
40

200

100

..

B N e 77 st ||
— _%/_ — T_T_T_T_::/. T.T.T.T.T.T.T.T.T..‘I ...
7% 0NN D A A .
2|0 4|0 6|0 8|0 100
777 idx
B I - i e
%Y v, ' A
2|0 4|0 6|0 8|0 100
N I S S SO part-Ist [
] e
iy . . T
2|O 4|O 6|O 8|O 100
B S | partidx
%%—_7_7_—”7 i R ___
Uit i —— S l
2|O 4|O 6|O 8|O 100
§ ’ part-idx-glob
B S TSR D | e o
2 v | 1
0 20 40 60 80 100

content/images/Ruellan01-018.png
300
200
100

300
200
100

300
200
100

300
200
100

300
200
100

i / __________________ N N [st
i %‘ ZResiesies A S S
7 l ; .
20 40 60 80 100
i / ___ N 77 idx |
1/ 7/ S N SRS S
%) | | |
20 40 60 80 100
i % ______________ N N part-Ist
o I i
71 V/l | | |
20 40 60 80 100
i / ___ ___________________________________ part-idx
é - - -1 5
e 7 | i |
20 40 60 80 100
N s part-idx-glob
/ - - = -I '
% i | | |
0 20 40 60 80 100

content/images/Ruellan01-011.png
300
250
200
150
100

50

300
250
200
150
100

50

350
300
250
200
150
100

50

350
300
250
200
150
100

50

30

..

2] part-sur-Ist [

BN NN NN NN NN

content/images/Ruellan01-010.png
140

..

I
o ez

Ist-URI]

content/images/Ruellan01-013.png
N

| L
At
N

3
20 WA / - v N
1 v / 177 4) oy 7 / ?
| /
el \)\:\ ef 9f el NS \ CC €S, nafC . nart At aﬁ— el d %-C° a(t at art act
\S‘-\)\R\ \S‘- ()(\S! \WO% \ WO% (Vé ef -0¢ d\l\\o(\\/‘ cC p(\‘/‘ c5§ A% a(’(\9 o \d a“ \dd‘/* ‘eﬁ‘) d$\?d$ e ‘\)(V‘ s ®
0

content/images/Ruellan01-012.png
Lt

Irregular

Structure Information Regular

Large

|
4 L %
j f V77777771
© | Y
- 2 : S IS
B X["
e 2 | ;
= _R
X.Mw f E w//
— S T
e .ttt
+ S5 © @© f
w3T 5 aoa "
I
N Z N Al :
N Y N] | :
i
T
%
|
I N NN\
LA NN
L
I
L
I
....................................... }
1 |
f ez
e
N
““7/H/

_\\
e

Medium

0_
10}

L ..40N0N0N0«0N0«0N0«0N0«04 ©
.. GO
r B R e e e e R e e R e R R m
_ T 7
_ | : (92]
1 I N N
! S AN
. .
! . f—
L .
} ©
1 T S 1 . F o)
! Tk (@]
_ —_—
1 N N
f N N\
]

25

content/images/Ruellan01-015.png
300
250
200
150
100

300
250
200
150
100

50

300
250
200
150
100

50

300
250
200
150
100

50

/ffifififififififififififif]fififififififiif:ififififififfii.ffifififfifif]ff..__if’_’_(f_“_a_f_:
%""P"_"{
2 DN in ™ o L]
0 5 10 15 20 25 30

------------------ IIIII 7222 idx-j
%;i;i;i;i;';'L';';i;i4::fifififffififififififfififififififfifffififififififffifffffififif
e

' 10 0 s e D S I]
0 5 10 15 20 25 30
R . s . e
% _____ ’___f_f_fif]{ffifififififififififffffififififffififififiififififfffffifififif
L s W s v S S L]
0 5 10 15 20 25 30

------------------ IIIII) idx-cs H
%____l__'___1
.] e A iz e I]
0 5 10 15 20 25 30

content/images/Ruellan01-014.png
100 ! ! ! .

0 10 20 30 40 50

------------------- P e P st URI

content/images/Ruellan01-017.png
300
200
100

200
100

200

100

200

100

200

100

content/images/Ruellan01-016.png
part

ref-part

CccC

N
%%
7/¥\§

part-idx
part-idx

|
Ist-pr-ref
Ist-pr
EEZE idx-ref
[T idx-cc
D\

Y
Wliizzzzezz
AL

+ AN\
lllllllllllllll

N

N\
AN

%

7
N | INEEEEEEEEEEEENEEEEEEEEENEREREEEL] :““““:“““

N
Il
N
N
N
N
N

%Y

Structure Information Regula

¥ = >

; T SE
| g 777
[B N N

Vo
///

DN

2

——t——
E

Irregular

Small Medium Large

Global

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

