[image: Balisage logo]Balisage: The Markup Conference

From XML to UDL: a unified document language, supporting multiple markup languages
Hans-Jürgen Rennau
Senior Java developer
Traveltainment GmbH

<hrennau@yahoo.de>

Balisage: The Markup Conference 2012
August 7 - 10, 2012

Copyright © 2012 by the author. Used with permission.

How to cite this paper
Rennau, Hans-Jürgen. "From XML to UDL: a unified document language, supporting multiple markup languages." Presented at: Balisage: The Markup Conference 2012, Montréal, Canada, August 7 - 10, 2012. In Proceedings of Balisage: The Markup Conference 2012.
 Balisage Series on Markup Technologies vol. 8 (2012). https://doi.org/10.4242/BalisageVol8.Rennau01.

Abstract

 A proposal is made how to extend the XML node model in order to be compatible with JSON markup as
 well as XML markup. As XML processing technology (XPath, XQuery, XSLT, XProc) sees instances
 of the node model, but does not see syntax, it is thus enabled to handle JSON as well as XML.
 The extended node model is dubbed a Unified Document Language, as it defines the
 construction of documents from building blocks (nodes)
 which can be encoded in various markup languages (XML, JSON, HTML).

Balisage: The Markup Conference

 From XML to UDL: a unified document language, supporting multiple markup languages

 Table of Contents

 	Title Page

 	Introduction

 	Distinction between markup and document language

 	
 The main idea

 	Goals and non-goals

 	Concepts
 	
 The node model as a unified document language

 	
 The node representation of JSON markup

 	
 Extensions of the XML markup language

 	
 Extensions of the XPath language

 	
 Extensions of the XQuery language

 	
 Proposal: extensions of XML, XPath and XQuery

 	
 Extensions of the XML node model

 	
 Extensions of the XML markup language

 	
 Expressing the new node properties

 	
 Supporting non-XML markup

 	
 Extensions of the XML serialization model

 	
 Extensions of the XPath language

 	
 Extensions of the XQuery language

 	Checking use cases

 	
 Various details

 	
 UDL - pseudo-attributes and pseudo-tags

 	
 Mixing markup styles

 	
 XML syntax variant: telem

 	
 Deserializing from / serializing to JSON

 	
 Deserialization

 	
 Serialization

 	
 Serialization: controlling the loss of information

 	
 UDL and XSD

 	
 Limitations and future research

 	
 Issue: mapping arbitrary XML to JSON

 	
 Issue: mapping JSON to readable XML

 	
 Issue: Round-tripping XML - JSON - XML

 	
 Conceivable extension of UDL: integration of standardized mappings

 	
 Alternatives to UDL

 	
 The mapping approach

 	
 JSONiq

 	
 Map items

 	
 Discussion

 	Acknowledgements

 	Appendix A. Deserializing from / serializing to JSON
 	
 Deserialization

 	
 Serialization

 	Appendix B. Additional support for "NCName-only JSON"
 	
 Introduction

 	
 Definition of UDL document styles: nJSON, nnJSON

 	
 Special support for the processing of nJSON documents – a further extension of XPath

 	About the Author

 From XML to UDL: a unified document language, supporting multiple markup languages

Introduction

 Is an XML document a string or a tree of nodes? Although in many situations it can be
 regarded as both, the “node view” is certainly more essential. It ignores syntax and
 sees the information content. Specialized programs (parser and serializer) provide for
 the translation between document string and node tree. General processing technologies –
 e.g. XQuery - ignore syntax. This principle is the very foundation of their power.
 Technologically speaking, the name “extensible markup language” is questionable, as it
 emphasizes the surface, rather than the content.

 The node view of XML is the result of an evolutionary process. The XML specification
 [W3C XML] (1998) itself does not use the word “node”. The tree
 structure is still implicit, hidden behind the rules of well-formedness. The
 infoset specification [W3C Information Set] (2004) defined the XML document
 as a tree of information items, which is similar to a tree of nodes.
 The XDM [W3C XDM] (2007) rounded the tree model
 off, pruning it and extending it by replacing character children by a further node kind,
 the text node. This completed node model was at the heart of the technological leap which
 led to XPath 2.0, XSLT 2.0 and XQuery 1.0.

 Taking the evolution into consideration, one might wonder about the relationship between
 XML and JSON. It is an obvious fact that they are two markup languages. But if XML is
 essentially not a syntax, but an information language backed by a syntax – then we should
 regard JSON as an information language plus syntax, too, and we should explore the
 relationships between their information models, rather than dwell on the difference of
 syntax.

 Both models are tree models for hierarchical data. Why don’t we have one single, unified
 model for hierarchical data? If we had one, XML and JSON would not be two languages, but
 two syntactical styles – a difference that ceases to exist during data processing, between
 parsing and serializing the data. A uniform data model would enable unified data design
 approaches, and data processing could be handled by one single set of technologies. XML
 and JSON parsers would act like adapters. Unfortunately, such a unified model does not
 exist, due to incompatibilities. Although the XML model is larger and more complex, it
 is not a superset of the JSON model. XML lacks arrays and maps and XML names cannot
 be arbitrary strings.

 These incompatibilities throw a new light on XML. In 2011 Jonathan Robie
 concluded [Robie]:

 The dream of one universal markup language is now past. JSON is clearly here to
 stay, and it is becoming the format of choice for data interchange.

 A possible response to this perception is a new dream: the dream of one universal
 information language, backed by several syntax variants aka markup languages.
 If XML is not as universal as it looked a few years ago – might we extend the
 language (no pun intended), restoring the universality? This dream is an illusion
 if we regard XML as a final version. In past years, any considered
 improvements of XML were too insignificant to warrant the disruptions which a new
 version might entail. But now we face new proportions, dealing with the issue of
 universality. We should explore our chances to regain universality by extending
 the XML model in a moderate, backward compatible way. Eventually, the lessons JSON
 taught and teaches us might be to a huge benefit of XML – if we attempt to learn
 them and act accordingly.

Distinction between markup and document language

 XML processing technology operates on node trees which capture
 the information content of XML documents. The nodes may be constructed
 from XML markup text, or in other ways. An XML document
 is a tree of nodes,
 and it may be represented by markup.
 Therefore one might distinguish a document language
 from a markup language. The former is a
 system which defines basic
 units of information, possible relationships between such units and rules how
 they can be combined into composite entities, the document. A markup language
 is a set of rules how to encode a document as a string. To complete the picture, one might
 add the concept of an information language,
 which models information in a more
 general way – documents and their building blocks, the material
 that may be inserted into or extracted from a document, and perhaps yet
 other forms of information. The triple XML / Infoset /
 XDM may be viewed as a stack consisting of a markup language, a document language
 and an information language.
 This stack of languages is the foundation of technologies – XPath, XQuery,
 XSLT, XProc – which enable to address and process information with amazing
 simplicity and efficiency.

 Note: Use of the term "node model"

 The node sub model of the XDM can be regarded as a refactoring of the
 infoset. The existence of two very similar, yet distinct tree models –
 a tree of information items, and a tree of nodes representing the
 information items – is not really necessary and probably due to a
 historical process. In this paper, it is the XDM/nodes sub model what
 is regarded as the document model, rather than the infoset. The term
 used will be “XML node model”, or simply “node model”.

 Nevertheless, JSON has begun to replace XML in many applications. JSON is a
 simpler and terser markup language, and it is perfectly integrated with
 JavaScript objects. In many situations, JSON has clear advantages, when
 neither the loss of expressive power, nor the lack of processing
 technologies hurt. There is a growing awareness of the need to be
 flexible, to avoid overhead and use the right tools: the necessity to adapt
 the choice of markup language to the task at hand [Tennison].

 Doubtless, the technological support for JSON will continuously evolve.
 Very doubtful, however, it is if it can ever achieve the level attained
 by XQuery 3.0 and XSLT 3.0. Maybe this will not be possible without a
 similar evolution, adding to the markup language a document language
 and an information language on which to base technology. I cannot
 image that this would be possible without reinventing many wheels, with
 the end result – in the best case – of a more limited version of XQuery and XSLT.

 Let us explore the alternative: loosen the tight coupling between the
 XML markup language and the XML document language, extending the latter
 to become a unified document language (“UDL”) supporting multiple markup
 languages – XML, JSON, HTML, …

 The main idea

 This section presents the main idea of UDL – Unified Document Language -
 in a suggestive way and without any precision. It should provide a
 conceptual backdrop for the remaining sections. What is a document
 from the “UDL point of view”?

 A document is a tree of elements. An element has content, which is either
 text, or other elements, or both. An element has also two properties
 designed to identify individual elements and to indicate the semantics
 of the content. One property is the
 element name, the other one the
 element key. The name is a QName
 and can be chosen irrespective of the sibling names; the key is an
 arbitrary string and must not be equal to any sibling key.
 This duality implies three different styles how a document may be
 designed:
 	
 name oriented – the elements are identified and described by names

	
 key oriented – the elements are identified and described by keys

	
 mixed – making use of both, names and keys

 A document can be represented as a string, using a markup language.
 XML is a markup language well-suited for name oriented documents;
 JSON, on the other hand, is good at representing key oriented documents.
 JSON is limited in this respect that it cannot represent arbitrary documents.
 Only documents meeting certain constraints (using only unspecific standard
 names, no attributes, no mixed content) can be represented by JSON.
 XML, on the other hand, can represent any document, though not very
 elegantly in the case of key oriented documents.

 The foundation of document processing is the XPath language, with a core
 designed for selecting nodes within a document. Its query syntax supports
 a stepwise navigation across the document, where each step filters a set
 of candidate nodes by a so-called node test. One node test – the name
 test - refers to the name property. Example:

 a/b[.//c]

 This is a selection wholly based on element names. Another node test –
 the key test – refers to the key property. Example:

 #a/#b[.//#c]

 This selection is based on element keys, rather than names.
 Apart from that, the logic is exactly the same. Of course, node tests
 and key tests can be mixed:

 a/b[.//#c]

 To generalize, element name and element key are just two properties
 which XPath expressions and languages built upon XPath (XQuery, XSLT,
 XProc) can reference in a similar way. XML documents and JSON
 documents are alternative styles of how to represent a UDL document
 as text string. A parser translates XML documents and JSON documents
 into UDL documents. A serializer translates a UDL document into an
 XML document or a JSON document. The translation into XML is always
 possible without loss of information. The translation into JSON
 deals with any loss of information as prescribed by
 serialization parameters.

 The remaining sections present a detailed proposal how to implement
 the UDL by very limited extensions of the XML node model, XML markup,
 XPath and XQuery.

Goals and non-goals

 The XML node model shall be turned into a
 unified document language, so that XML
 processing technology - which is built on
 the node model, not on markup -
 becomes a unified processing technology. In particular,
 the document language must support JSON so that
 the processing technology (XPath, XQuery, XSLT, XProc)
 becomes applicable to JSON data as well as to XML data.

From this high-level objective
 several goals are derived.

 	Extend the XML node model, enabling it to represent the information
 content of JSON documents as a tree of nodes.

	Define the serialization to/deserialization from JSON markup.

	Extend the XML markup language, enabling it to express the
 extended node model completely.

	Extend the XML markup language, enabling the combination of
 XML and non-XML markup.

	Extend the XPath language, enabling navigation of JSON documents with the
 same degree of terseness and flexibility.

	Extend the XQuery language, adding shorthand notation for the construction
 of JSON data.

	Make any changes to the XML node model in a backwards compatible way.

	Make any changes to the XML markup language in a backwards compatible way.

	Make any changes to the XPath language in a backwards compatible way.

	Make any changes to the XQuery language in a backwards compatible way.

 These are non-goals.
 	
 Do not attempt to define a mapping from JSON markup to
 XML markup (rather, define deserialization from /
 serialization to JSON).

	
 Do not attempt to achieve elegance concerning the XML markup
 representation of a node tree derived from a JSON document.

	
 Do not attempt to support characters which are valid in JSON but are
 not valid in XML.

Concepts

 The proposed approach is an elaboration of a small number of concepts.

 The node model as a unified document language

 	
 The XML node model is extended in such a way that any
 JSON document can be translated into a node tree
 and back again without loss of information.

	
 XML markup continues to represent the complete node model –
 an extension of the node model must be accompanied by an
 extension of the XML markup language.

	
 As JSON markup represents a subset of the node model,
 the concept of serialization is elaborated, defining distinct
 modes characterized by the acceptable loss of information.

 The node representation of JSON markup

 	
 JSON structures (objects and arrays) and their members are modelled
 as element nodes and their child elements, thus enabling continuous
 navigation along the descendant axis.

	
 As JSON names can be arbitrary strings and must be unique among
 sibling name/value pairs, they must not represent node
 names, which are QNames and need not be unique among
 sibling elements. Rather, JSON names correspond to a new
 node property, [key]. As a consequence,
 element nodes have two properties
 related to discovery and content semantics: a required [name] property and an
 optional [key] property.

	
 The contradiction implied by the facts that node names are required and
 JSON is incapable of encoding node names is solved by the concept of
 defaulted node names: the nodes
 represented by JSON markup do have a name which is an unspecific
 standard name that depends on the content model of the
 node (representing an object, an array, a simple value or a null value).
 A node which has been constructed from JSON markup can afterwards be
 renamed without constraints, like any node constructed in any way.

 Extensions of the XML markup language

 	
 The necessary extension of the XML markup language avoids new
 syntactical constructs – it completely relies on the semantics
 of predefined QNames (e.g. udl:key) used in pseudo-attributes
 (constructs which look like an attribute but do not represent a node)
 and pseudo-tags (which look like an element but do
 not represent a node).

	
 XML markup should be “opened”, permitting the local insertion of non-XML markup.

 Extensions of the XPath language

 	
 The XPath language is extended by a third node test – the
 key test, which checks whether
 the candidate node has a given key. In a path step, the key test
 can be used as alternative to a name test or kind test, which
 means that key tests are freely combinable with navigational axes.

	
 The syntax of a key test should be as simple as the syntax of a name test.

 Extensions of the XQuery language

 	
 Extensions of the XQuery language are not essential, as JSON
 data are element nodes and thus can be processed without any
 restrictions.

	
 Nevertheless, the addition of some abbreviated
 syntax for the construction of "JSON style nodes"
 would be quite helpful.

 Proposal: extensions of XML, XPath and XQuery

 This section describes the proposed extensions of XML, XPath and XQuery in detail.

 Extensions of the XML node model

 The XML node model is extended by two new node properties, [model]
 and [key]. The result of these changes is a unified node model
 which can represent XML documents, JSON documents as well as nested
 combinations of JSON and XML fragments as a tree of nodes which
 is accessible to XPath navigation and, by implication, XQuery
 and XSLT processing.

 Details

	
 The node model is extended by a further node property: the
 [key] property. Only element
 nodes have a [key], which is possibly empty. The [key] must not
 be empty if the [parent] is an element whose
 [model] property (see below) has a value of "map". In any other
 case (i.e. if [parent] is empty, or is not an element node,
 or is an element whose [model] is "sequence")
 the [key] must be empty. The [key] of an element must not be
 equal to the [key] of any sibling element.

	
 The node model is extended by a further node property: the
 [model] property. Only
 element nodes have a [model], the value of which must be
 either "sequence" or "map". If the
 value is "sequence", the child nodes are an ordered
 collection and child elements must not have a [key]. Conversely,
 if the value is "map", the child nodes are an unordered
 collection, every child element must have a [key] and there
 must not be text node children containing a non-whitespace
 character. Note that the [model] can be regarded as a
 switch selecting one of two possible content models:
 sequence based (property value "sequence") or
 key based (property value "map"). In the former case
 element content is a sequence of child nodes; in the
 latter case element content is a map of
 child elements, using the child [key]s as map keys.
 The former case corresponds to "conventional XML",
 where content is always ordered by position.

	
 JSON simple values
 are represented by (not nilled) element nodes which have simple
 content, or (in the case of a zero-length string)
 empty content and a [schema-type] xs:untypedAtomic.

	
 JSON null values are represented
 by nilled elements.

	
 JSON objects
 are represented by (not nilled) element nodes
 with [model] equal "map". By implication, such
 elements may or may not have child elements, but
 they have no text node children containing
 non-whitespace characters.
 The name/value pairs contained by the object are represented by
 the element children. Other child nodes (e.g. comments or
 whitespace-only text nodes) do not correspond to name/value pairs.
 Note that an empty object is represented by an element
 with [model] equal "map" and no child elements.

	
 JSON arrays are represented by
 (not nilled) element nodes satisfying these constraints: (a)
 [model] equal "sequence",
 (b) the content is either empty or contains at least one child element;
 (c) there are no text node children containing non-whitespace characters.
 The array members are represented by the element children.
 Other child nodes (e.g. comments or whitespace-only text nodes)
 do not correspond to array members.

	
 JSON names are represented by
 the [key] property of element nodes.

	
 When a node tree is constructed from a JSON document, null values,
 simple values, arrays and objects are represented by elements which
 have default node-names (
 udl:null,
 udl:value,
 udl:array and
 udl:map).
 As any element names in XML, these names do not have any
 built-in semantics: they do not signal that the element has
 been constructed from a JSON value, and they do not imply specific
 values of any node properties.
 After an update or if the node tree is constructed in any other way,
 the elements representing null values, simple values, arrays and objects
 may have any valid node name.

 Note that JSON names and XML names correspond to two distinct node
 properties which are utterly independent of each other. And also
 note the asymmetry: whereas JSON names are represented in XML markup
 by keys (via the udl:key
 pseudo-attribute, see next section), XML names cannot
 be represented in JSON markup at all. Lossless information mapping in
 both directions is nevertheless enabled by arbitrarily defining
 JSON markup to represent nodes with default names which are
 implied by other node properties.

 Extensions of the XML markup language

 The extensions have two purposes: (a) express the
 new node properties; (b) support the use of non-XML markup within XML
 documents.

 Expressing the new node properties

 The XML markup language is extended by rules how to represent the new
 node properties.

 Details

	
 A pseudo-attribute (udl:model) is introduced which indicates
 the value of the [model] property.
 Possible values are "sequence" and
 "map". The default value is "sequence", unless the element has an
 ancestor element with a pseudo-attribute udl:defaultModel,
 in which case the default is specified by the nearest ancestor
 with a udl:defaultModel pseudo-attribute.

	
 A pseudo-attribute (udl:defaultModel) is introduced which
 sets the default value of [model] for the element itself and its
 descendants. The default value applies to the element itself and
 to its descendant elements unless the element in question has
 simple content (in which case [model] is always "sequence"),
 or has a [model] pseudo-attribute (which overrides the default)
 or has a nearer ancestor with a
 udl:defaultModel pseudo-attribute (which shadows
 any outer default values).

	
 A pseudo-attribute (udl:key) is introduced which indicates
 the value of the [key] property.
 If an element without udl:key is child of an
 element whose [model] is "map", the [key] defaults to the local
 name of the element. Example:

 <foo udl:model="map">
 <bar udl:key="bar">abc</foo>
 </foo>

 is equivalent to:

 <foo udl:model="map">
 <bar>abc</foo>
 </foo>

 Note that non-empty [key]s are only allowed for elements
 with [parent].[model] equal "map". Accordingly, only such
 elements may have a udl:key pseudo-attribute.
 Example: if in the following markup

 <foo udl:model="map">
 <bar udl:key="21">abc</foo>
 </foo>

 the value of udl:model were changed to
 "sequence", the markup would cease to be well-formed.

 Supporting non-XML markup

 The extensions enable the use of non-XML markup either embedded
 in XML markup or completely replacing it.

 Details

	
 The XML syntax model is extended by permitting
 alternative markup languages.
 An alternative language can be used in three
 different scopes: (a) the content of an element, (b)
 a document section of arbitrary length, representing any
 number of sibling nodes,
 (c) the complete document. Three languages are supported:
 xml,
 json,
 telem,
 a slightly simplified version of XML
 using JSON-like constructs for simple elements meeting
 certain constraints. See
 section “
 Mixing markup styles
 ” for details.

	
 The XML syntax model is extended by a pseudo-attribute,
 udl:markup, which specifies the markup
 language used to represent the content of an element.
 If the value is not xml, the child nodes
 of the element
 are the nodes constructed from the markup found in the
 text content.
 Only element tags and the pseudo-tag udl:markupSection
 (see below) may have this
 pseudo-attribute. Possible values are:
 xml,
 json,
 telem;
 default value is xml. Example:

 <temperatures y="2012"
 udl:markup="json"><![CDATA[
 "2012-08-01" : 33.2,
 "2012-08-02" : 28.9,
 "2012-08-03" : 30.0,
 "sites" : ["AB", "DK", "PP"],
 "anno" : {"automatic" : true, "reference" : false}
]]></temperatures>

 Note that the scope of the alternative
 markup language is the content of an element and
 that the alternative representation is preceded and
 followed by the XML start and end tag of the element.
 Thus the markup of the example corresponds to an
 element with name “temperatures”, which has one attribute
 and five child elements. An XML document can use
 different markup languages in different elements.

	
 The XML syntax model is extended by a pseudo-tag
 udl:markupSection, which delimits a
 markup section, a section of the document text which
 uses a particular markup language.
 When constructing the node tree, the pseudo-tag and
 its contents represent the nodes constructed from
 the contained markup. The markup language is identified
 by the udl:markup pseudo-attribute
 contained by the pseudo-tag. In the following
 example, the pseudo-tag represents five nodes
 which are constructed from the JSON markup:

 <udl:markupSection udl:markup="JSON"><![CDATA[
 "2012-08-01" : 33.2,
 "2012-08-02" : 28.9,
 "2012-08-03" : 30.0,
 "sites" : ["AB", "DK", "PP"],
 "anno" : {"automatic" : true, "reference" : false}
]]></udl:markupSection>

 Note that the pseudo-tag does itself not represent a node –
 it has a purely delimiting function.
 Any non-XML markup may be used which is supported by the
 parser. Besides JSON, a parser may support an
 implementation-defined set of further markup languages
 or domain specific languages.

	
 The XML declaration is
 extended by a further field: markup. Possible
 values are:
 xml,
 json,
 html;
 default is xml. Depending on the value,
 the text following the XML declaration will be
 interpreted as XML markup, JSON markup or HTML markup.
 Example:

 <?xml markup="json" encoding="ISO-8859-1"?>
 {
 "title" : "JSON and XML",
 "year" : 2012
 }

	
 The XML markup language is augmented by a rule how to parse a
 non-XML document without
 XML declaration. If the first non-whitespace character
 of the text is not the “<” character, the document text is
 interpreted as non-XML markup. More precisely, it is
 interpreted as the default non-XML markup which is expected
 to be JSON, although implementation-defined alternatives
 might be considered. Example: the text

 {
 "title" : "JSON and XML",
 "year" : 2012
 }

 is a valid UDL document.

 Extensions of the XML serialization model

 The serialization model must be extended in order to support JSON output.
 	
 When the serialization method is xml,
 serialization produces conventional XML markup,
 augmented by the pseudo-attributes
 udl:key, udl:model
 and udl:defaultModel where appropriate.

	
 When the serialization method is xml, the serialization
 may nevertheless insert non-XML markup into the document text,
 depending on serialization parameters. The non-XML markup is
 constrained to represent element contents – that is, every
 chunk of non-XML markup is scoped to represent the content
 of an element whose start and end tag delimit the chunk.

	
 When the serialization method is xml, additional
 serialization parameters control the use of alternative markup
 within selected elements. Parameter
 json-content-elements contains a list of expanded
 QNames, identifying the elements whose content shall be
 represented as JSON markup. In a similar way, parameter
 telem-content-elements identifies the elements
 to be rendered using the telem style.
 (For details see
 section “
 Mixing markup styles
 ”).

	
 The value range of serialization parameter
 method is extended by the value
 json. This value lets the
 complete document be serialized as JSON markup.

	
 A new serialization parameter
 info-loss specifies how to handle
 information loss implied by the serialization.
 Special values relate to
 situations where JSON markup should be produced but a
 node to be serialized contains information which cannot
 be expressed by a JSON representation. (There are three cases:
 (i) mixed content,
 (ii) the use of attributes,
 (iii) the use of non-standard element names.)
 Three parameter values are supported:
 json.strict,
 json.ignore-names, and
 json.projection. In case of json.strict the
 serialization must be aborted; the value
 json.projection mandates a projection
 which simply ignores any information which cannot
 be represented;
 and the value json.ignore-names means that the
 QNames of XML elements are ignored, but any other
 incompatibility with the JSON model
 (e.g. the use of attributes)
 produces an unrecoverable error. (For details see
 section “
 Serialization: controlling the loss of information
 ”.)

 Extensions of the XPath language

 The extensions are designed to make the processing of
 JSON data as powerful and convenient as the processing
 of XML data. Namely, the [key] property can be checked
 by a key test,
 similarly to the checking of the node name by a
 node test.

	
 The XPath language is extended by a new node test,
 an alternative to the existing name test and kind test:
 the key test. A key test
 checks for the candidate node if it has a key equal to
 a given key value. In path expressions, key tests can be
 combined with XPath axes in the same way as kind tests
 and name tests. The syntax of a key test is a # character
 immediately followed by the key value delimited by single
 or double quotes. If the key value contains only name characters,
 the quotes can be omitted. If quotes are used, occurrences
 of the actual quote character within the key value
 must be escaped by an entity or character reference.
 The characters & and <
 must always be escaped.
 Examples of path steps containing a key test:

 #key1
 #"key1"
 #”key 2”
 self::"#key 2"
 descendant::#key3
 parent::#"#key4"
 ancestor::#'++14085! & O'Neill'

	
 A new XPath function fn:node-key returns
 the [key] of a given node, or the empty sequence
 if the node has no [key]:

 fn:node-key($node as node()?) as xs:string?

 Example: the expression

 string-join($x/ancestor-or-self::*/(concat(‘#’, fn:node-key(.)), ‘/’)

 might return a result like #a/#b/#c.

	
 A new XPath function fn:node-model returns
 the [model] of a given node, or the empty sequence
 if the node is not an element node. The [model] is
 represented as a string
 which is either "sequence" or "map":

 fn:node-model($node as node()?) as xs:string?

	
 The semantics of function fn:deep-equal
 is modified as follows: (a) if the arguments are element
 nodes with different [key]s or with different
 [models]s, the function returns "false"; (b) if both
 arguments are element nodes with [model] equal "map",
 the comparison ignores non-element children and
 ignores the order of element children.

	
 The abbreviated syntax
 is extended by a more intuitive
 syntax for accessing array members by index, which hides
 the fact that array members are child nodes:

 foo~[expr]

 is equal to

 foo/*[expr]

 Extensions of the XQuery language

 As JSON items correspond to element nodes, there is no principal
 need to introduce new constructor expressions. In element
 constructors, the pseudo-attributse udl:key
 and udl:model are used in the same way as they are
 used in XML markup. In order to reduce verbosity,
 however, several abbreviated variants of element constructors
 are introduced.
 	
 Map constructors
 are a shorthand for constructing element nodes
 with name udl:map and [model] equal "map". Syntax:

{ Expr }

 is equivalent to:

<udl:map udl:model="map">{ Expr }</udl:map>

 The children of the newly constructed udl:map
 element are obtained by (a) evaluating the
 content expession to an item sequence, (b) replacing
 in this sequence any document node by its document element,
 (c) replacing in the resulting sequence any element
 without a key by a copy which has a key equal to
 its local name. An error is raised if the result
 sequence contains atomic or text node items, or if
 it contains two elements with the same key. Otherwise,
 the expression value is guaranteed to be an element
 which can be serialized to JSON without information loss.

	
 Array constructors
 are a shorthand for constructing element nodes
 which correspond to a JSON array. Syntax:

[Expr]

 is equivalent to the following code
 (where p:copy-without-key denotes a pseudo function creating an element copy without [key]):

<udl:array>{
 for $item in Expr return
 typeswitch($item)
 case document-node() return $item/*/p:copy-without-key(.)
 case element() return $item/p:copy-without-key(.)
 case text() return <udl:value>{$item}</udl:value>
 case xs:anyAtomicType return <udl:value>{$item}</udl:value>
 default return ()
}</udl:array>

 The children of the newly constructed
 udl:array element are obtained by (a) evaluating
 the content expression to an item sequence,
 (b) replacing in this sequence any document nodes by
 their element children,
 (c) replacing in the resulting sequence any element
 with a key by a copy which does not have a key,
 (d) replacing in the resulting sequence any atomic values
 by a udl:value element containing the value as text.
 The expression value is guaranteed to be an element which can
 be serialized to a JSON array without information loss.

	
 Key-oriented constructors
 are a shorthand for constructing element nodes with a
 non-empty [key].
 They have the following syntax:

 Expr ':' Expr

 Examples:
 "title" : "XML and JSON"
 $ti : $tnode
 "title" : //title
 "times" : ["2012-01-01", "2012-03-31"],
 "time" : { "begin" : "2012-01-01", "end" : "2012-03-31" }

 The value of this expression is determined as follows.
 	
 Evaluate the expression to the left of the
 colon; the result must be a single item;
 determine its string value S.

	
 Evaluate the expression to the right of the
 colon; the result R must be either the
 empty sequence or a single item.

	
 If R is the empty sequence, the value of
 the constructor expression is an element
 node with name udl:null,
 a [key] property equal S and a
 [nilled] property equal true.

	
 If R is a node, the value of the constructor expression
 is a node obtained by making a copy of R
 and setting its [key] property to S.

	
 Otherwise (that is, if R is an atomic value)
 the value of the constructor expression is an element
 node with the name udl:value,
 a [key] property equal S and a single
 text node child whose string value is
 the string value of R. (Special case:
 empty content if the string value of R
 is a zero-length string.)
 The resulting element has a type annotation
 which depends on the type of R. If R
 has a number type, the type annotation is
 one of these:
 xs:double,
 xs:decimal,
 xs:integer,
 whatever is closest to the type of R.
 If R has a boolean type, the type annotation is
 xs:boolean. If R is a zero-length
 string, the type annotation is
 xs:untypedAtomic. Otherwise, the
 default type annotation is used (
 xs:untyped).

Checking use cases

 The proposal made in this paper is motivated by several main use cases. In each of
 these, a significant simplification of the task should be achieved.

	
 JSON documents must be queried.

	
 JSON documents must be transformed into other JSON documents.

	
 JSON documents must be transformed into XML documents.

	
 JSON documents must be transformed into HTML documents.

	
 JSON documents must be transformed into other formats (e.g. CSV).

	
 JSON documents must be created from XML documents.

	
 JSON documents must be created from other formats (e.g. CSV).

 The fact that XML standard technologies - XPath, XQuery, XSLT, XProc -
 now accept JSON documents as input suggests a great advantage.
 We should however take a closer look at how the processing of JSON
 data looks. Somewhat arbitrarily, these main aspects may be
 distinguished:
 	
 Selecting JSON data

	
 The use of JSON data within XPath/XQuery expressions
 and XSLT instructions

	
 Creating JSON data

 The selection of data
 is a crucial operation, underlying
 virtually all forms of data processing. This is the domain
 of XPath, so we shall take a look at how XPath deals with JSON
 data.
 The proposal avoids the creation of special item types -
 all JSON data reside in element nodes. Therefore it can
 be expected that the
 use of JSON data in expressions
 and XSLT instructions is indistinguishable from
 the use of any other element nodes.
 The creation of JSON data
 amounts to the creation of
 element nodes, so that again we may expect the same
 ease when creating JSON data as when creating any
 other element nodes.

 Let us contemplate a few examples. As input we use the following
 JSON document:

[
 {
 "year" : 2011,
 "title" : "JSON",
 "author" : [
 {"last" : "Legoux", "first" : "C."}
],
 "price" : 35.95,
 "sigs" : ["LL1002"]
 },
 {
 "year" : 2012,
 "title" : "XML",
 "author" : [
 {"last" : "Legoux", "first" : "C."},
 {"last" : "Berlin", "first" : "D."}
],
 "price" : 29.95,
 "sigs" : []
 },
 {
 "year" : 2012,
 "title" : "UDL",
 "author" : [
 {"last" : "Legoux", "first" : "C."},
 {"last" : "Okuda", "first" : "J."},
 {"last" : "Berlin", "first" : "D."}
],
 "price" : 49.95,
 "sigs" : ["KL4005", "KL4011"]
 }
]

 The following table shows a series of
 data selections with
 XPath/XQuery. The expressions typically use key tests (#foo)
 instead of name tests. Apart from that there is no difference
 compared to conventional uses of XPath.
 Writing the expressions, one must keep in mind that object members
 (the name/value pairs) and array members are represented by child
 elements of the element representing the object or array,
 respectively.

 Table I

 Selecting JSON data with XPath/XQuery.

	task	expression	result
	count books	count(/*/*)	3
	maximum price	max(//#price/xs:decimal(.))	
 49.95

	first book title	/*/*[1]/#title/string()	JSON
	all publication years	distinct-values(//#year/string())	2011 2012
	books about UDL	//#title[contains(., 'UDL')]/string()	UDL
	books above 30$	//#title[../#price/xs:decimal(.) gt 30]/string()	
 JSON UDL

	books with a single author	//#title[count(../#author/*) eq 1]	
 JSON

	books without signature	//#title[empty(../#sigs/*)]	
 XML

	books written by Legoux	/*/*[.//#last = 'Legoux']/#title/string()	
 JSON XML UDL

	coauthors of Legoux	distinct-values(//#last[. eq 'Legoux']/../../*/#last[. ne 'Legoux'])	
 Berlin Okuda

	duplicate signatures	
 for $s in distinct-values(//#sigs/*)

 where count(//#sigs[* = $s]) gt 1

 return $s

 	
 LL1002

 In order to get a feeling how selected JSON data can be
 used in expressions
 and how JSON data can be
 constructed,
 we build a report that transforms the input
 data into a new structure. The report shall list for each author
 all titles he or she has authored, along with the
 publication year. An XML version of the report might look
 like this:

<authors>
 <author name="Legoux, C.">
 <book title="JSON" year="2011"/>
 <book title="UDL" year="2012"/>
 <book title="XML" year="2012"/>
 </author>
 <author name="Okuda, J.">
 <book title="UDL" year="2012"/>
 </author>
 <author name="Berlin, D.">
 <book title="UDL" year="2012"/>
 <book title="XML" year="2012"/>
 </author>
</authors>

 and a JSON version like this:

[
 {
 "author" : "Legoux, C.",
 "books" : [
 {"title" : "JSON", "year" : "2011"},
 {"title" : "UDL", "year" : "2012"},
 {"title" : "XML", "year" : "2012"}
]
 },
 {
 "author" : "Okuda, J.",
 "books" : [
 {"title" : "UDL", "year" : "2012"}
]
 },
 {
 "author" : "Berlin, D.",
 "books" : [
 {"title" : "UDL", "year" : "2012"},
 {"title" : "XML", "year" : "2012"}
]
 }
]

 The XML report can be produced with this query:

<authors>{
 for $author in distinct-values(//#author/*/concat(#last , ', ', #first))
 let $books := //#author[*/concat(#last , ', ', #first) = $author]/..
 order by $author
 return
 <author name="{$author}">{
 for $book in $books
 order by $book/#title
 return
 <book title="{$book/#title}" year="{$book/#year}" />
 }</author>
}</authors>

 and the JSON version can be produced with this query:

<udl:array>{
 for $author in distinct-values(//#author/*/concat(#last , ', ', #first))
 let $books := //#author[*/concat(#last , ', ', #first) = $author]/..
 order by $author
 return
 <udl:map udl:model="map">{
 <udl:value udl:key="author">{$author}</udl:value>,
 <udl:array udl:key="books">{
 for $book in $books
 order by $book/#title
 return
 <udl:map udl:model="map">{
 <udl:value udl:key="title">{$book/#title/string()}</udl:value>,
 <udl:value udl:key="year">{$book/#year/string()}</udl:value>
 }</udl:map>
 }</udl:array>
 }</udl:map>
}</udl:array>

 The element constructors required to create JSON nodes
 are somewhat verbose, and the code is not very readable
 as the distinctive information - the key - is embedded
 in stereotyped markup
 (e.g.
 <udl:map udl:key="...">
 The situation can be amended by resorting to the
 abbreviated constructors for maps and arrays along with
 the key-oriented constructors
 (see section “
 Extensions of the XQuery language
 ”):

[
 for $author in distinct-values(//#author/*/concat(#last , ', ', #first))
 let $books := //#author[*/concat(#last , ', ', #first) = $author]/..
 order by $author
 return
 {
 "author" : $author,
 "books" : [
 for $book in $books
 order by $book/#title
 return
 {
 "title" : $book/#title/string(),
 "year" : $book/#year/string()
 }
]
 }
]

 The code examples demonstrated that the processing of JSON data
 with XPath and XQuery is comparable to the processing of XML
 data. For all use cases
 one may expect from XPath/XQuery/XSLT/XProc
 the same level of support which one is used to get when
 dealing with similar problems related to XML without JSON.
 This may be taken as encouragement to explore
 the proposal in greater detail.

 Various details

 UDL - pseudo-attributes and pseudo-tags

 Pseudo-attributes are syntactical constructs which have the lexical
 form of attributes but can be distinguished from them by the use of
 a reserved QName. Pseudo-attributes do not represent an attribute node.
 Instead, they represent a node property
 (udl:key, udl:model) or
 a default value of a property
 (udl:defaultModel), or they identify the markup language
 used locally (udl:markup).

 Pseudo-tags are syntactical constructs which have the lexical form
 of element tags but can be distinguished from them by the use of a
 reserved QName. One pseudo-tag is introduced
 (udl:markupSection) which delimits a section
 of non-XML markup.

 Four further names from the UDL namespace are used as
 default element names, given to the nodes constructed
 from JSON values. It is important to note that these
 names have no specific semantics and can be used
 as node name without restrictions like any other
 QName. The only specific
 treatment of these names is when serializing to JSON
 using the json.strict mode. In this case a node
 name which is different from the default name expected
 (according to the node properties)
 is considered information that would be lost during
 serialization (see
 section “
 Serialization: controlling the loss of information
 ”).

 The following table summarizes the use of QNames from the UDL
 namespace.

 Table II

 Names in the
 udl namespace and their usage.

	Name	Usage category	Meaning
	udl:null	element name	
 a standard name available for nilled elements with an unspecific name

	udl:value	element name	
 a standard name available for a simple content element with an unspecific name

	udl:array	element name	
 a standard name available for a complex element with [model] equal "sequence"

	udl:map	element name	
 a standard name available for a complex element with [model] equal "map"

	udl:markupSection	pseudo tag	
 delimits a markup section containing markup which may
 be non-XML; the section represents the nodes resulting
 from parsing the contained markup text

	udl:markup	pseudo attribute	
 indicates the markup language used within element content, or
 within a markup section

	udl:model	pseudo attribute	
 represents the [model] property value

	udl:defaultModel	pseudo attribute	
 sets a default value for the [model] property

	udl:key	pseudo attribute	
 represents the [key] property value

 Mixing markup styles

 The UDL defines a unified document model which can be
 represented by different markup languages. This unified
 content of heterogeneous outward shape invites not only
 a free choice of the markup language actually used. It
 also implies that markup languages might be mixed within
 a document, based on simple rules how to delimit the
 various chunks of markup. These rules are provided
 by the udl:markup pseudo-attribute and the
 udl:markupSection
 pseudo-tag (see
 section “
 Supporting non-XML markup
 ”).

 Occasionally there may be good reasons to use mixed
 styles. Consider the case that the document as a
 whole cannot be represented as JSON (e.g. because
 of attributes and namespaces), but subtrees
 represent JSON documents (perhaps imported from
 pure JSON sources, e.g. logged messages).
 Without the mixing of markup
 styles, the resulting serialization would be
 difficult to read, due to the very verbose
 XML representation of JSON nodes. It should
 of course be remembered that this mixing of
 markup styles has no impact on the
 information content of the UDL document,
 which is exclusively defined in terms of nodes
 and their properties.

 The following section describes in detail an
 additional markup style, which amounts to
 a "small-scale mixing" of XML and JSON, dubbed
 telem (text notation for
 simple elements).

 XML syntax variant: telem

 XML markup representing JSON data is
 ugly. Typically it contains many elements which
 correspond to simple values and are
 tiresome to read. The
 distinctive property
 of the elements is shifted from the
 eye-catching node name to a pseudo-attribute,
 and the markup is often inflated
 by explicit type annotations:

 <udl:value udl:key=”foo”>someContent</udl:value>
 <udl:value udl:key=”bar” xsi:type="xs:integer">99</udl:value>
 <udl:value udl:key=”foobar” xsi:type="xs:boolean">true</udl:value

 whereas the JSON representation could not be more succinct:

 "foo" : "someContent",
 ”bar”" : 99,
 "foobar” : true

 Fragments containing only
 JSON nodes can best be represented by switching to JSON. But
 sometimes such JSON values occur interspersed with conventional
 XML elements which have specific names, have attributes, etc.
 In such cases it is attractive to apply the JSON
 style to the simple values and retain XML style for
 the fragment as a whole. This option is provided by
 the telem markup style.

 This style is XML markup augmented by a shorthand representation
 of simple elements meeting several constraints:
 	
 element name is the standard name udl:value

	
 simple content or nilled

	
 no attributes

	
 [schema-type] is one of these:
 xs:integer,
 xs:decimal,
 xs:double,
 xs:boolean,
 xs:untypedAtomic,
 xs:untyped

 The syntax corresponds to the JSON representation of a simple
 or null value, or of a name/value pair with simple or null
 value, depending on whether the element has a [key].
 If consecutive element children are represented in
 telem style, these representations are
 separated by a comma. If the value is not put in quotes, it
 must be a number or one of the constants
 true,
 false or
 null, which will be interpreted as implicit type
 information, following the JSON rules. Example: the following fragment

 <e udl:model="map">
 <udl:value udl:key="mode">repeated</udl:value>
 <udl:value udl:key="nrep" xsi:type=”xs:integer”>52076</udl:value>
 <udl:value udl:key="eval" xs:type=”xs:boolean”>true</udl:value>
 <locInfo udl:key="cities">
 <udl:value>Paris</udl:value>
 <udl:value>London</udl:value>
 <udl:value>Manchester</udl:value>
 </locInfo>
 </e>

 may be alternatively represented this way:

 <e udl:model="map" udl:markup=”telem”>
 "mode" : “repeated”,
 "nrep" : 52076,
 “eval” : true
 <locInfo udl:key="cities">
 "Paris",
 "London",
 "Mancester"
 </locInfo>
 </e>

 Both representations have the same information content.

 Deserializing from / serializing to JSON

 The exact rules for translating JSON into UDL (deserialization) and for
 translating UDL into JSON (serialization) are listed in the appendix
 (section “
 Deserialization
 ”
 and section “
 Serialization
 ”).
 In this section, the principles are summarized.

 Deserialization

 During deserialization every JSON “item” (object, array,
 simple value, null) is translated into a UDL element node whose
 name and content are determined by the kind of the JSON
 item (see
 Table III).
 If the JSON item is associated with
 a name, the name is copied into the [key] property of the
 element node; otherwise the element node has no [key].

 Numbers and Boolean constants are translated into
 simple elements with a [schema-type] property reflecting
 the source item (one of:
 xs:integer,
 xs:decimal,
 xs:double,
 xs:boolean).
 A string which has non-zero length is translated into
 a simple element with [schema-type] xs:untyped.
 A zero-length string is translated into an
 empty element node with
 [schema-type] xs:untypedAtomic,
 so as to make it distinguishable from a node
 constructed from an empty array or object.

 Table III

 Deserialization - translating JSON items into
 UDL nodes.

	JSON item	UDL node properties	remarks
	node-name	model	children
	name/value pair	see below	see below	see below	

 the JSON value can be any item kind (null,
 simple value, object, array);

 all node properties – except
 for the [key] – depend on the item kind;

 the [key] is set to the JSON name

	null	udl:null	sequence	none	element is nilled
	object	udl:map	map	elements, one for each name/value	all child elements have a [key]
	array	udl:array	sequence	elements, one for each member	all child elements without a [key]
	string (non-empty)	udl:value	sequence	text node	

 [schema-type] is xs:untyped

	zero-length string	udl:value	sequence	none	
 [schema-type] is xs:untypedAtomic

	number	udl:value	sequence	text node	
 [schema-type] is one of: xs:integer, xs:decimal, xs:double

	true|false	udl:value	sequence	text node	
 [schema-type] is xs:boolean

 Serialization

 The translation of UDL nodes into JSON items does not depend on node
 names; rather, it is wholly determined by the element content
 (empty / element children / text child) and several properties
 ([key], [model], [nilled], [schema-type]). The
 node name is however checked if the serialization parameter
 info-loss is json.strict.
 In this case, the actual node name is compared with the
 default node name associated with the given element content
 and properties, and an unrecoverable error is raised if
 actual node name and expected node name are not the same.

 See section “
 Serialization: controlling the loss of information
 ”
 for details about how serialization may accept or reject loss of
 information, dependent on serialization
 parameter info-loss.

 Table IV

 Serialization - translating UDL nodes into JSON items. CT =
 complex type with complex content; ST = simple type.

	node properties	JSON item
	children	model	nilled	schema-type	
	empty	sequence	false	xs:untyped or CT	array (empty)
	empty	sequence	false	xs:untypedAtomic or ST	string (zero-length)
	empty	map	false	any	object (empty)
	empty	sequence	true	any	null
	element children	sequence	false	any	array
	element children	map	false	any	object
	text node	sequence	false	xs:double	number
	text node	sequence	false	xs:decimal	number
	text node	sequence	false	xs:integer	number
	text node	sequence	false	xs:boolean	true|false
	text node	sequence	false	xs:untyped or ST	string

 Serialization: controlling the loss of information

 Serialization of a document to a markup language should
 preserve all information so that the serialization is a
 complete representation from which the document may be
 reconstructed. Such a lossless serialization of a UDL
 document is always possible for XML markup; it is only
 in special cases possible for JSON markup. For example,
 any attributes or non-default element names are lost
 when serializing to JSON.

 However, it depends on circumstances whether such loss
 of information renders the serialization result worthless.
 If, for example, the loss consists of element names only
 and these names were only introduced in order to facilitate
 document creation or processing, with an understanding that they will
 get lost during later processing steps – then a serialization
 which loses element names might be as valuable as a lossless
 serialization. Such considerations suggest a refinement of
 the serialization model: a new serialization parameter might
 control what losses are acceptable and what losses are not
 acceptable.

 The proposal of a unified document language includes such a
 new serialization parameter:
 info-loss. Presently the parameter
 is only relevant when serializing to JSON. Three values are
 defined:
 	
 json.strict – any information loss causes
 an unrecoverable error

	
 json.ignore-names – element names are ignored,
 but any other information loss causes an unrecoverable
 error

	
 json.projection – any information that JSON
 cannot represent is simply ignored

 In particular, info-loss equal
 json.projection means:
 	
 element names are ignored

	
 attributes are ignored

	
 text node siblings of element nodes are ignored (that is, mixed content
 is projected onto the element children)

 UDL and XSD

 The proposed extensions of the XML node model amount to
 the introduction of two new node properties. Obviously,
 they require also an extension of the XSD language. In
 particular, constraints concerning the [key] property should
 be supported. However, such changes are
 out of scope of this paper.

 Limitations and future research

 UDL defines the information content of JSON text in terms
 of a node tree and provides the rules for translating between
 text and tree, that is, parsing and serialization. This makes
 JSON data accessible to / producible by XML processing technologies,
 but there are also important use cases which are not addressed:
 	
 given a JSON document, a well-readable XML representation
 is required

	
 given an arbitrary XML document, a JSON representation is
 required

	
 round-tripping XML - JSON - XML

 As will be shown below, these are operations which require
 some change of information content in the formal sense (in terms of
 nodes and properties), necessary to create a “semantic” equivalence.
 Such a change of information content cannot be achieved based on
 parsing/serialization alone. This section explores the basic limitation
 and makes a suggestion how an extension of the current UDL proposal
 might look.

 Issue: mapping arbitrary XML to JSON

 A serialization of arbitrary XML documents to JSON is usually
 not possible without a loss of information, as JSON cannot
 natively express element names, the distinction between
 attributes and elements, mixed content and the occurrence
 of siblings with the same name. This does not mean that JSON
 could not be used to represent the complete information content
 of an arbitrary XML document. This representation would however
 not be a serialization of the XML document tree to JSON, but
 the (serialized) result of a
 transformation,
 a different node tree, adhering to a specific format which
 is designed to capture the content of arbitrary XML
 documents (e.g. [JsonML]).
 The equivalence between the
 resulting JSON (or the node tree it represents) and
 the original XML document is not based on the data model,
 but established on the level of a specific mapping
 application (as a set of rules).

 Issue: mapping JSON to readable XML

 A similar problem concerns the translation of JSON documents
 into readable XML documents: the documents created by parsing
 JSON as defined by UDL are well-suited for processing (e.g.
 per XPath, XQuery, XSLT), but when serialized into XML text
 look hardly readable. The practical need to obtain a well
 readable XML representation of a given JSON document, however,
 cannot be denied. (Think, for example, of a web service which
 may at user option deliver XML or JSON results). Again, it is
 a transformation from one tree to a different tree what is
 required, as opposed to serializations into alternative
 formats.

 Issue: Round-tripping XML - JSON - XML

 The impossibility of serializing arbitrary XML to JSON
 of course implies that round-tripping XML-JSON-XML is
 not generally possible solely based on serialization and parsing.

 Conceivable extension of UDL: integration of standardized mappings

 Given the scope of UDL’s main goal – a unified document
 language supporting multiple markup languages – it may be questioned
 if the UDL concept is complete if not addressing fundamental
 mapping tasks, too. A conceivable extension of UDL might
 include two parts: (a) the definition of
 mappings, which
 are standardized transformations (XML to JSON, lossless;
 JSON to readable XML; (b) the integration of these mappings
 with parsing / serialization into new “first-class” operations,
 “mparse” (parse & map) and
 “mserialize” (map & serialize).
 The appendix contains a first step in this direction
 [Appendix B],
 which is, however, limited to the use case of JSON documents
 in which all names are NCNames. Another limitation is that it
 does not yet support attributes in the mapping result, which
 probably cannot be the last say.

 The mapping between XML and JSON is a question to which
 already many answers have been given (e.g.
 [Lee],
 [Pemberton],
 [Couthures],
 [JsonML],
 [BaseX]).
 The diversity is mainly due to differences between the
 exact goals which the solutions pursue (concerning mapping
 direction, losslessness, readability, configurability, …).
 It is unclear if the suggested extension of UDL, which
 involves standardized mappings between XML and JSON, is a
 realistic task. But it is not hopeless, neither. First, the
 unified node model provides a conceptual base which other
 mapping approaches did not have. Second, the goals can be
 defined precisely, which greatly removes competition between
 existent solutions and a new standard. And finally, the
 use of other, non-standard mappings would always remain
 possible.

 Alternatives to UDL

 How to process XML and JSON data in a unified way? The approach taken
 by UDL should be compared with published alternatives. These fall
 into two categories.
 	
 mapping approach – map JSON data to an XML representation and
 process the latter

	
 XDM extension – extend the XDM by new item types which can
 represent JSON data

 The second category contains two variants:
 	
 extend the XDM by JSON-specific item types (JSONiq)

	
 extend the XDM by generic item types (W3C XSL Working Group proposal)

 The next three sections attempt to clarify the relationships between
 these approaches and UDL.

 The mapping approach

 The mapping approach (e.g. BaseX, Pemberton)
 is based on an XML
 representation of JSON data. It uses a simple processing model:
 	
 preprocessing: JSON => XML

	
 processing: applied to XML data

	
 optional postprocessing: serialization (possibly to JSON)

 This is a clean solution, provided the XML representation preserves all
 information contained in the JSON data, and the mapping rule can be
 applied bidirectionally without loss of information. To define such a
 mapping is not very difficult, as one can use reserved element names and
 introduce helper attributes in order to exclude any information loss
 (see Table V for examples).

 Table V

 The use of reserved element names and
 helper attributes
 to assist in the
 mapping of JSON to/from XML (examples).

	source	elements	attributes
	BaseX	json, value	arrays, booleans, nulls, numbers, objects, type
	Couthures	exml:anonymous	exml:fullname, exml:maxOccurs
	Hunter	json, item	boolean, type
	Pemberton	json	name, starts, type

 Outwardly, UDL looks similar to such a
 mapping-for-the-sake-of-processing; it is tempting to
 classify it as yet another mapping variant. But that would
 be a mistake. Mapping approaches treat the problem as an
 XML application:
 introduce a specific XML dialect designed to achieve a particular
 goal. Like any application,
 these approaches are free to require the use
 of application-specific element names and
 the addition of attributes with application-specific semantics,
 to be evaluated by application code. The
 type attribute, for example, used in
 [BaseX] is a helper attribute which clearly
 duplicates
 xsi:type
 for certain values, yet nevertheless
 had to be introduced as additional attribute, because
 the value range includes values
 array and object
 with ad hoc semantics dictated by the mapping
 task. Such attributes reveal the fact that the
 current XML node model does not support a bidirectional
 mapping into JSON markup. To enable such a mapping,
 the node tree must contain special items with
 serialization semantics.
 This is at odds with the basic principle of serialization
 being a process solely controlled by serialization
 parameters, without a need to interfere with
 the information content of the node tree.

 UDL does not map
 XML nodes to JSON structures.
 It redefines JSON to be
 a representation of nodes. As a consequence, it need not
 "inject" any ad hoc items into the data tree for
 the sake of controlling a serialization to JSON.
 None of the reserved element and attribute names in
 Table II
 have anything to do with JSON or serialization.
 Rather, they represent standard names without semantics,
 reflect node properties
 or signal the markup language currently used
 within a well-defined scope.
 The extended node model
 is expressive enough to represent JSON structures
 natively.

 The main difference between UDL and mapping
 approaches concerns the handling of JSON names. Mapping
 approaches represent JSON names as element names if possible,
 and if not, resort to one of two possible solutions: either
 place the JSON name in an additional attribute (e.g.
 Pemberton), or define a bidirectional
 name mapping
 (e.g. BaseX).
 But there are three differences between
 the concepts of JSON names and XML names:
 	
 a JSON name has no namespace component

	
 a JSON name can use arbitrary characters

	
 a JSON name must be unique amongst the JSON names of all
 siblings

 Note that the last point (the uniqueness
 constraint) means that a JSON name resembles an
 xml:id attribute more than an element name.
 It can be compared to a locally scoped
 xml:id attribute (uniqueness among all element
 children of an element).
 For these reasons UDL distinguishes
 the concepts of names and keys. It thus enables
 native relationships between nodes and
 XML markup on the one hand and JSON markup on
 the other hand. As a result it becomes possible
 to regard JSON markup and XML markup as alternative
 representations of an information content
 which is defined in terms of nodes and their
 properties.
 Remembering Plato,
 one kind of “thing” is inferred from - or may cast -
 two different "shadows".

 Should we not keep things simple - do we
 need to
 extend the document model and introduce new node properties? Imagine this alternative:
 	
 the W3C publishes a small specification defining a standardized bi-directional
 mapping between arbitrary strings and QNames

	
 the XPath language syntax is slightly extended, introducing a second
 notation of a name test (e.g. #foo)
 which is interpreted as a string which is
 automatically mapped
 to a QName according to the standard name mapping:

 a/b/#c equivalent to: a/b/c
 a/b/#c_d equivalent to: a/b/c__D
 a/b/#1 equivalent to: a/b/_1
 a/b/#”1 2” equivalent to: a/b/_1_00322	

 This is an attractive scenario: one can formulate the XPath expressions
 without a mental translation, just using the names one
 sees in the source data. The net
 result is an elegant approach
 to the processing of JSON data with XML tools.

 The approach would be a good – and perhaps
 a better – alternative to UDL if the processing of JSON documents
 with XML tools were the only goal. However, UDL's design
 aims at a unified document model which expresses the entities
 represented by dominant markup languages in
 a native way. Only this way can information content and
 representation (markup) be decoupled and can the latter
 be switched easily at various scales (whole documents, sections
 or single elements) and in various contexts (data and
 program code).

 JSONiq

 JSONiq
 [JSONiq],
 [JSONiq Specification] is an extension of the XQuery
 language designed to add support for JSON data. Like UDL,
 JSONiq extends the XDM in order to accommodate JSON structures.
 However, JSONiq does not change the node sub model of the XDM.
 Rather, two new item types are introduced, designed to represent
 JSON data:
 	object

	array

 It is interesting to note the parallel: both, JSONiq and
 UDL extend the XDM in order to accommodate JSON data; but
 the changes UDL proposes are
 within the node sub model,
 whereas JSONiq adds a second sub model for structured data,
 in parallel to the node model. Using the terms proposed in
 section “Distinction between markup and document language”:
 JSONiq keeps the XML
 document language, but extends the XML information language,
 whereas UDL shifts the changes into the very document language,
 refraining from changes outside of the node model.

 An advantage UDL offers is to represent JSON data as node
 trees and thus expose them to XPath navigation. JSONiq,
 on the other hand, might be easier to accept exactly because
 it does not introduce any change to the document language
 and therefore restricts itself to the extension of a query
 language, rather than an extension of XML.

 Map items

 The W3C XSL Working Group has made a proposal for extending
 the XDM by a new item type: map items
 [W3C XSLT 3.0]. They represent
 generic containers, but nevertheless can represent
 JSON data. One should note the
 relationship between JSONiq and the map proposal:
 both approaches mandate new item types which
 are not nodes and yet can represent structured
 data; but one (JSONiq) resorts to JSON-specific
 items, whereas the other advocates
 generic containers.

 Not being nodes, map items
 are lightweight containers which can collect
 items without requiring or imposing a structural relationship.
 Therefore node relationships between container and members
 are not possible. This contrasts sharply with the UDL approach
 which models JSON containers and their members as nodes and
 their child nodes. Only this way can JSON data be seamlessly
 integrated into the navigational system based on axes and
 node tests.

 This is not to say that such lightweight containers
 would not be very useful extensions of XDM. Lightweight
 containers and nodes cannot replace each other.
 A node model is required for the navigational power of XPath.
 Lightweight containers are required to model node relationships
 independently from their structural relationship. And among
 other benefits they enable a mapping of keys to node references,
 rather than the nodes themselves, which is a highly desirable
 feature.

 It is interesting to note a conceptual relationship between
 UDL and the "map proposal": the content of an element with
 [model] equal "map" can be described as a map item
 constrained in the following way:
 (a) every map value is a child element; (b) every map key
 is the [key] of the associated value.

 Discussion

 There is a growing awareness in the XML community that other
 markup languages do, will and should coexist with XML.
 So integration is a crucial task. Being determined
 to integrate, one may look at XML - as well as other
 markup languages - as both: markup, and information
 content represented by markup.

 We happen to be in the possession of a rigorous, formal
 definition of the information content of XML data.
 If this model is only approximately, but not quite
 capable of expressing what new markup languages
 have to say (compare
 section “
 The mapping approach
 ”),
 this may reflect the circumstances
 when those formal definitions
 were set down: a point in time when XML
 structure was the only thing that had to be expressed.
 But now
 it seems a natural course
 to consider extending the model cautiously,
 turning it into a unified document language. When
 infoset and XDM became recommendations, there was nothing to unify,
 now there is.

 UDL might change our perception of markup languages:
 they are freely exchangeable
 in various contexts -
 both in data resources and in program code
 (within XQuery and XSLT constructors) -
 and at various scales -
 whole document, document section, single element.
 This becomes possible when different
 markup is seen as alternative representation
 of unified content.

 An evaluation of the UDL proposal may profit from making
 two distinctions. The first distinction is between UDL's
 central idea and its translation into technical details.
 The idea is to relate multiple markup languages to a single,
 unified node model, which turns XML processing
 technologies into general information processing
 technologies. For this purpose, the node model was
 extended in a particular way (e.g. adding a new node
 property, [key]). Doubtless,
 other approaches how to extend the node model are conceivable,
 too. An evaluation of the UDL proposal might modify
 or even replace the model extensions by alternatives,
 preserving the central idea as such.

 The second distinction is between what UDL does achieve and
 what is deliberately left to a future extension (or to
 complementary components). UDL does not yet
 offer support for certain transformations ("mappings")
 which are acknowledged to be important in the context of markup
 integration. In other words: the existence of
 a unified document language does not yet mean
 comprehensive support for all use cases in the context
 of integrating multiple markup languages.
 An evaluation of the UDL proposal
 should regard the unified document language as
 a foundation for
 mapping support - not as a substitute.

Acknowledgements

 Cordial thanks to David A. Lee who read an earlier version of this paper
 and gave me most valuable feedback. Without David's criticism
 I would not have realized that a further elaboration
 of the basic concept was necessary.

Appendix A. Deserializing from / serializing to JSON

 This appendix contains the precise rules how to deserialize
 a JSON document to a tree of nodes and how to serialize a
 tree of nodes to a JSON document.

 Deserialization

 	JSON null => node
	property	value
	name	udl:null
	key	
 if the null is the value of a name/value pair –
 the name; empty, otherwise

	model	sequence
	nilled	true
	schema type	xs:untyped

 	JSON object => node
	property	value
	name	udl:map
	key	
 if the object is the value of a name/value pair –
 the name; empty, otherwise

	model	map
	content	
 the collection of element nodes created by deserializing the
 name/value pairs

	schema type	xs:untyped

 	JSON array => node
	property	value
	name	udl:array
	key	
 if the array is the value of a name/value pair –
 the name; empty, otherwise

	model	sequence
	content	
 the collection of element nodes created by deserializing the
 array members

	schema type	xs:untyped

 	JSON simple value => node
	property	value
	name	udl:value
	key	
 if the value is part of a name/value pair –
 the name; empty, otherwise

	model	sequence
	content	
 if the value is not a zero-length string: a text node
 containing the text representation of the value;
 empty content, otherwise

	schema type	
 	
 if the JSON value is a number:
 xs:integer/xs:decimal/xs:double –
 depending on the lexical form

	
 if the JSON value is one of the constants
 true or false:
 xs:boolean

	
 if the JSON value is a zero-length string:
 xs:untypedAtomic

	
 otherwise: xs:untyped

 Note: The XML representation of a zero-length JSON string
 is an empty element with type annotation
 xs:untypedAtomic. The type annotation
 makes the node distinguishable from empty elements
 corresponding to empty arrays or objects.

 Serialization

 Handling attributes

 If attributes are encountered, the behaviour depends on the
 serialization parameter
 info-loss: if the value is
 json.projection, the attributes are
 ignored; otherwise, a non-recoverable error is raised.

 Handling of processing instructions and comments

 Processing instructions and comments are ignored.

 Handling elements

 The handling of elements depends on various properties:
 	
 the [nilled] property

	
 the [model] property

	
 the presence of element children

	
 the presence of text node children

	
 the [schema-type] property

 The following table shows all details.

 Table VI

 Serialization - translating UDL nodes into JSON items.

	UDL element node	JSON item
	[nilled] is true	

 If serialization parameter
 info-loss is
 json.strict and the element name is not
 udl:null, a non-recoverable error is
 raised. Otherwise the element is serialized as a
 JSON null value.

	
 [model] = "map"

 	

 If serialization parameter
 info-loss is
 json.strict and the element
 name is not
 udl:map, a non-recoverable error is raised.
 Otherwise the element is serialized as a JSON object.
 The contained name/value pairs are obtained by serializing
 the element children. An error is raised if
 the element has a text node child with
 non-whitespace content.

	

 [model] = "sequence";

 at least one element child

 	

 If serialization parameter
 info-loss is
 json.strict and the element
 name is not
 udl:array, a non-recoverable error is raised.
 Otherwise the element is serialized as a JSON array.
 The array members are obtained by serializing
 the element children. An error is raised if
 the element has a text node child with
 non-whitespace content.

	

 [model] = "sequence";

 no element children;

 at least one text node child

 	

 If serialization parameter
 info-loss is
 json.strict and the element
 name is not
 udl:value, a non-recoverable error is raised.
 Otherwise, the element is serialized as a JSON simple value.
 The string values of the text nodes are concatenated and the
 result is used to construct a simple JSON value whose type
 depends on the node's [schema-type]: number (if [schema-type]
 is equal to or derived from xs:double or xs:decimal),
 Boolean (if [schema-type] is equal to or derived from xs:boolean)
 or a string (otherwise).

	

 [model] = "sequence";

 no element children;

 no text node child;

 [schema-type] is an atomic type

 	

 If serialization parameter
 info-loss is
 json.strict and the element
 name is not
 udl:value, a non-recoverable error is raised.
 Otherwise, the element is serialized as a JSON string
 value of zero length.

	

 [model] = "sequence";

 no element children;

 no text node child;

 [schema-type] is not atomic

 	

 If serialization parameter
 info-loss is
 json.strict and the element
 name is not
 udl:array, a non-recoverable error is raised.
 Otherwise, the element is serialized as an empty JSON array.

Appendix B. Additional support for "NCName-only JSON"

 This appendix describes an extension of the UDL proposal which
 provides additional support for processing JSON documents in
 which every name is an NCName. This extension is presented as
 an appendix as it has a more tentative character than the core
 parts of the proposal and is more likely to be modified, removed
 or replaced by alternatives, should the UDL proposal be evaluated
 as a whole.

 Introduction

 UDL does not map JSON documents to XML documents, but defines
 the information content of a JSON document as an UDL node tree.
 Such a node tree can be serialized as both, JSON or XML. The
 XML representation of a JSON document is ugly and not meant
 for human consumption. The UDL proposal regards the readability
 of this XML representation as a non-goal and concentrates on
 the node tree which is designed to enable a JSON processing
 as powerful and elegant as XML processing. The developer is
 expected to design his JSON processing code while regarding
 the JSON serialization, not the XML serialization.

 The poor readability of XML-encoded JSON documents is caused by
 the fact than JSON names are captured as node keys, rather than
 node names. The [key] property was introduced because the
 alternative approach of regarding JSON names as node names
 would introduce a dependence of the node model’s name
 representation on whether the JSON name happens to be an
 NCName: NCNames are preserved, and non-NCNames are changed
 into the result of a name mapping which is either generic
 and non-semantic (e.g. “2012” to “_2012”) or semantic and
 application specific (e.g. “2012” to “year-2012”). A
 semantic mapping is certainly an interesting solution in
 many situations (compare for example [Lee]),
 but it gives up the advantages of a unified document
 language. The purely technical mapping which
 replaces inacceptable characters, on
 the other hand, is unnatural, as it amounts to the perspective
 that “_2012” is the essential information content, whereas
 “2012” is some deviating representation.

 Definition of UDL document styles: nJSON, nnJSON

 Nevertheless it cannot be denied that in some situations
 one would like to have available both, a readable JSON
 representation and a readable XML representation. For example,
 an increasing number of web services is expected to deliver both,
 XML and JSON, at user option. In this scenario, UDL’s
 XML representation of a JSON document is downright inappropriate.
 What is needed is an XML representation whose element names
 mirror as good as possible the JSON names. If the JSON document
 contains non-NCName names, the mapping problem arises - but
 what if all JSON names are
 NCNames? Let us define an
 nJSON
 document as a JSON document in which all names are NCNames.
 An XML representation of an nJSON document may
 then reuse the JSON names as element names (the local part of it),
 and yet represent a JSON document without any ambiguity:
 JSON-serialization using the serialization parameter
 info-loss with a value
 json.ignore-names will yield
 the same document as the strict JSON-serialization of the
 counterpart which sticks to unspecific names. Let us further
 introduce the notion of
 nnJSON
 documents defined as follows:

	
 every name is an NCName (indicated by the first “n”)

	
 every element with a key has a local name equal to the key (the second “n“)

	
 the document is JSON-serializable using json.ignore-names (the “JSON”)

 Note that (3) implies further constraints: no attributes and no
 mixed content. At the same time this definition leaves considerable
 freedom: namespaces and the names of key-less elements can be
 chosen arbitrarily. nnJSON documents can be regarded as augmented
 nJSON documents – the additional information consisting of element
 names which can later be used or discarded, dependent on purpose.

 nnJSON documents have a remarkable property: they represent
 an unambiguously determined nJSON document, to whose JSON text
 they can be serialized, using json.ignore-names;
 and they can also be serialized to a well-readable XML
 representation of that JSON document.
 When dealing with nJSON documents, nnJSON can
 be used as a normalization of information which enables unified
 processing code: code that is used no matter if the input is
 JSON or XML and whether the output is JSON or XML. This
 unified code consumes an nnJSON tree and it produces an
 nnJSON tree. The UDL extensions discussed so far ensure that
 the nnJSON output can be alternatively serialized as readable
 XML or nJSON. The extensions do however not enable the parsing
 of both, nJSON text (JSON) and nnJSON text (XML) into an nnJSON
 tree. After all, the information content of nJSON and nnJSON
 is different and parsing by definition does not change the
 information content: parsing alone will always produce one
 kind of tree or the other. The processing pattern just
 sketched – “read and write nnJSON” - therefore has to rely
 on a translation of an nJSON text or node tree into an nnJSON
 node tree.

 Special support for the processing of nJSON documents – a further extension of XPath

 After parsing an nJSON document (doc("foo.json"))
 it can easily be transformed into an nnJSON document, e.g. with
 a simple stylesheet. nJSON documents are however so important
 that they warrant a built-in support supplied by the UDL
 extensions. Therefore the present proposal adds a
 special-purpose-function which combines the JSON parsing
 and its transformation to an equivalent nnJSON document:

 nnjson($uri as xs:anyURI) as document-node()

 Further signatures allow for control of several aspects
 of the result document which are not constrained by the
 definition of nnJSON documents. These are:
 	
 the element namespaces

	
 the node name of the root element

	
 the node names of other elements without a key

 Consider an example. Let the following nJSON document
 be a response to a “getWeather” service request:

 {
 "date" : "2012-08-06",
 "place" : " London",
 "temperatures" : ["12", "21"]
 }

 Here comes a matching nnJSON document:

 <getWeatherRS xmlns="http://example.com" udl:model="map">
 <date>2012-08-06</date>
 <place>London</place>
 <temperatures>
 <t>12</t>
 <t>21</t>
 </temperatures>
</getWeatherRS>

 This document looks as a fairly natural representation of
 the original JSON document, and it can be serialized
 to the original JSON document using
 json.ignore-names. Note
 the use of an arbitrary namespace and the choice of
 intuitive element names for key-less elements. A
 second signature of the nnjson
 function enables control of these customizations:

 nnjson($uri as xs:anyURI,
 $namespace as xs:anyURI?,
 $rootName as xs:string,
 $patternsAndNames as item()*)

 The patternsAndNames parameter expects an alternating
 sequence of XSLT pattern values and an element name; when
 renaming a key-less element, the first matching pattern is
 located and the name is taken from the item following the
 pattern item. Our example could be produced by the
 following call:

 nnjson("rsp.json",
 "http://example.com",
 "getWeatherRS",
 ("#temperatures/*", "t")
)

 Using the simple signature without control paramters, on the other hand:
 nnjson("rsp.json")

 produces a document without namespace and with
 some unspecific element names:

<udl:map udl:model="map">
 <date>2012-08-06</date>
 <place>London</place>
 <temperatures>
 <udl:value>12</udl:value>
 <udl:value>21</udl:value>
 </udl:temperatures>
</udl:map>

 The nnjson function is a convenience function which
 combines the parsing of an nJSON document with a
 transformation of particular interest. The transformation
 is defined in such a way that the changes of information
 content do not interfere with a subsequent JSON-serialization
 (using json.ignore-names). This curious mixture
 of parsing and transformation is regarded as a first-class
 operation deserving a built-in XPath function because of
 a well-defined relationship between the resulting
 XML document and the original JSON document.

Bibliography
[BaseX] Gruen, Christian, et al.
 BaseX Documentation Version 7.2, section "JSON Module", p. 125-127.
 http://docs.basex.org/wiki/Main_Page.
[Couthures] Couthures, Alain.
 JSON for XForms - adding JSON support in XForms data instances.
 XML Prague 2011, Conference Proceedings, p. 13-24.
 http://www.xmlprague.cz/2011/files/xmlprague-2011-proceedings.pdf.
[JSON] Web resource without source information: Introducing JSON.
 http://json.org.
[JSONiq] Robie, Jonathan, Mathias Brantner,
 Daniela Florescu, Ghislain Fourny and Till Westmann. JSONiq - XQuery for JSON,
 JSON for XQuery. XML Prague 2012, Conference Proceedings, p. 63-72.
 http://www.xmlprague.cz/2012/files/xmlprague-2012-proceedings.pdf.
[JSONiq Specification] Robie, Jonathan, Mathias Brantner,
 Daniela Florescu, Ghislain Fourny and Till Westmann. JSONiq: Language Specification.
 http://jsoniq.com/docs/spec/en-US/html/index.html.
[Hunter] Hunter, Jason.
 A JSON facade on MarkLogic Server. XML Prague 2011, Conference Proceedings, p. 25-34.
 http://www.xmlprague.cz/2011/files/xmlprague-2011-proceedings.pdf.
[JsonML] Web resource without source
 information: JSON Markup Language (JsonML).
 http://www.jsonml.org/.
[Lee] Lee, David A. JXON: an Architecture for
 Schema and Annotation Driven JSON/XML Bidirectional Transformations. Presented at
 Balisage: The Markup Conference 2011, Montréal, Canada, August 2 - 5, 2011.
 In Proceedings of Balisage: The Markup Conference 2011. Balisage Series on
 Markup Technologies, vol. 7 (2011). doi:https://doi.org/10.4242/BalisageVol7.Lee01.
 http://www.balisage.net/Proceedings/vol7/html/Lee01/BalisageVol7-Lee01.html.
[Pemberton] Pemberton, Steven.
 Treating JSON as a subset of XML. XML Prague 2012,
 Conference Proceedings, p. 81-90.
 http://www.xmlprague.cz/2012/files/xmlprague-2012-proceedings.pdf.
[Robie] Robie, Jonathan. A universal
 markup language and a universal query language. A contribution to the discussion of
 Google group JSONiq, 18 October 2011.
 http://groups.google.com/group/jsoniq.
[Tennison] Tennison, Jeni. Opening keynote -
 collisions, chimera and consonance in web content. A presentation at
 xmlprague 2012. http://www.slideshare.net/JeniT/collisions-chimera-and-consonance-in-web-content.
[W3C Information Set] John Cowan and Richard Tobin, eds.
 XML Information Set. W3C Recommendation 4 February 2004.
 http://www.w3.org/TR/xml-infoset/.
[W3C XDM] Mary Fernandez et al, eds.
 XQuery 1.0 and XPath 2.0 Data Model (XDM). W3C Recommendation 23 January 2007.
 http://www.w3.org/TR/xpath-datamodel/.
[W3C XDM 3.0] Norman Walsh et al, eds.
 XQuery and XPath Data Model 3.0. W3C Working Draft 14 June 2011.
 http://www.w3.org/TR/xpath-datamodel-30/.
[W3C XML] Tim Bray et al, eds.
 Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C Recommendation 26 November 2008.
 http://www.w3.org/TR/REC-xml/.
[W3C XSLT 3.0] Michael Kay, ed.
 XSL Transformations (XSLT) Version 3.0. W3C Working Draft 10 July 2012.
 http://www.w3.org/TR/xslt-30/.

Balisage: The Markup Conference

From XML to UDL: a unified document language, supporting multiple markup languages
Hans-Jürgen Rennau
Senior Java developer
Traveltainment GmbH

<hrennau@yahoo.de>

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

