
2012-08-07 UDL - a unified document language 1

From XML to UDL

A unified document language,
supporting multiple markup

languages
HansHans--JJüürgen rgen RennauRennau, , TraveltainmentTraveltainment GmbHGmbH

PresentedPresented at Balisage 2012, August 7at Balisage 2012, August 7

Presenter
Presentation Notes
This is a talk about a simple idea: the existence of different markup languages (XML, HTML, JSON) does not mean that we really say different things when using one markup or another. What we say is always a tree of information. Is it like saying the same thing in English, French or Russian? Can the diversity of outward form be connected to a single content model defining the information content of markup text in a unified way? Let us explore.

2012-08-07 UDL - a unified document language 2

Plato’s allegory of the cave

Presenter
Presentation Notes
Plato’s allegory of the cave teaches us to distinguish between the things themselves and the shadows they cast. The allegory pictures man as being constrained to see the dancing shadows on a cave wall, incapable of turning around and looking at the things themselves.

2012-08-07 UDL - a unified document language 3

XML’s platonic nature

Mark
up

We Information content

W3C specs

Presenter
Presentation Notes
XML has a platonic nature. We have shadows – the markup text – and things: information content. What we see (on page or screen) is always the shadows. As if to fool us, quite different shadows can be cast by one and the same thing – think of namespace prefixes, CDATA sections, attribute order etc. But we cannot turn around and see this thing – rather, it is reconstructed in our minds, guided by our understanding.

2012-08-07 UDL - a unified document language 4

XML technology sees content

Mark
up

We Information content

W3C specs

XML technology

Presenter
Presentation Notes
XML technology sees content, not markup.

2012-08-07 UDL - a unified document language 5

XML technology sees nodes

Layer: shadows
(markup) <foo>…</foo>

Layer: things

(XDM items) node-items

Layer: technology

(code) XPath, XQuery, XSLT

Presenter
Presentation Notes
This distinction between markup and content is the very foundation of XML technology. Document content is defined in terms of nodes and their properties. Technology sees nodes, not markup (angle brackets etc.).

2012-08-07 UDL - a unified document language 6

Jonathan Robie:
“The dream is past…”

The dream of one universal markup language
is now past.

JSON is clearly here to stay, and it is becoming
the format of choice for data interchange.

Presenter
Presentation Notes
Now let’s look at XML from a different viewpoint: XML as a competitor in the field of markup languages.

2012-08-07 UDL - a unified document language 7

What to do about JSON?

Layer: shadows
(markup) <foo>…</foo>

Layer: things

(XDM items) node-items

Layer: technology

(code) XPath, XQuery, XSLT

Presenter
Presentation Notes
How to integrate JSON into this picture?

2012-08-07 UDL - a unified document language 8

Integration approach #1:
JSONiq

Layer: shadows XML document JSON document
(markup) <foo>…</foo> { … }

Layer: things json-items

(XDM items) node-items (array, object)

Layer: technology

(code) XPath, XQuery, XSLT

Presenter
Presentation Notes
The strict isolation of XML technology from markup syntax implies how we might make JSON accessible to the technology: the XDM model must be enabled to capture the information content of JSON data, too - not only XML content.

I am aware of two approaches how to achieve this. JSONiq adds to the XDM model two new item types representing JSON arrays and objects. Quite limited extensions of XQuery then enable technology to read and write those new item types, thus handle JSON data.

2012-08-07 UDL - a unified document language 9

Integration approach #2:
XSL Working Group

Layer: shadows XML document JSON document
(markup) <foo>…</foo> { … }

Layer: things

(XDM items) node-items map-items

Layer: technology

(code) XPath, XQuery, XSLT

Presenter
Presentation Notes
A second approach is advocated by the XSL Working Group. Again, the XDM model is extended, this time by a single item type: map items, representing maps and arrays and also capable of capturing the content of JSON documents. This extension creates very useful possibilities not at all related to JSON, and as a side effect provides limited JSON support.

2012-08-07 UDL - a unified document language 10

Proposal: UDL =
Unified Document Language

Layer: shadows XML document JSON document
(markup) <foo>…</foo> { … }

Layer: things

(XDM items) node-items

Layer: technology

(code) XPath, XQuery, XSLT

Presenter
Presentation Notes
Nevertheless, this presentation makes a new, a third proposal. The spirit is rather platonic: XML and JSON markup are different shadows, cast by a single thing: tree-structured information. Node items are designed to capture the essence of such a thing, of such trees. So why translate JSON data into new item types, pretend heterogeneity where reality is homogeneous? There *are rules* how to capture the content of an XML document as a node tree. Now let us *add rules* how to capture the content of a JSON document as a node tree.

If we succeed, node items would be like the words of an abstract language for constructing content without being tied to a particular markup language – the node model would become a unified document language.

2012-08-07 UDL - a unified document language 11

UDL – main idea

XPath navigation is based on nodes


JSON data should be modeled as node tree!

We need a model which


“Redefines” JSON to represent a node tree



Defines JSON parsing: markup => tree



Defines JSON serialization: markup <= tree

Presenter
Presentation Notes
Behind this ambition there is more than a platonic taste. Rather, it is the fact that XPath navigation is based on node trees. Unless we redefine JSON to correspond to a node tree, XPath navigation is not applicable to JSON data.

2012-08-07 UDL - a unified document language 12

To model JSON as node tree –
a naïve approach (1)



Content


Objects: elements and their child elements


Arrays: elements and their child elements


Simple values: elements with simple content


Null values: nilled elements


Names


JSON names: element names


Array members: use standard names (e.g. “item”)


J-Structure (object/array)


Object/array distinction ad hoc attribute (e.g. “is-array”)

Presenter
Presentation Notes
The idea is clear. Let’s try to implement it – define rules how to express JSON documents as node trees. We start with a naïve approach and then refine it as necessary.

13

To model JSON as node tree –
a naïve approach (2)

[
{"code" : "AAL", "airport" : "Aalborg, Denmark"},
{"code" : "AES", "airport" : "Aalesund, Norway"},
{"code" : "ZID", "airport" : "Aarhus, Denmark"}
]

<j:array j:is-array="true">

<j:item>
<code>AAL</code>
<airport>Aalborg, Denmark</airport>

</j:item>
<j:item>

<code>AES</code>
<airport>Aalesund, Norway</airport>

</j:item>
<j:item>

<code>ZID</code>
<airport>Aarhus, Denmark</airport>

</j:item>
</j:array>

Presenter
Presentation Notes
The result of parsing JSON data does not look too bad, but there are two issues.

Issue #1: Resorting to an ad hoc attribute, we confess that we found no way to fully express JSON data in terms of nodes and their properties.

Issue #2: If the JSON name is not an NCName, it cannot be used as XML name.

14

The name problem:
JSON names are strings

[
{"code" : "AAL", "name info" : "Aalborg, Denmark"},
{"code" : "AES", "name info" : "Aalesund, Norway"},
{"code" : "ZID", "name info" : "Aarhus, Denmark"}
]

<j:array isArray="true">

<j:item>
<code>AAL</code>
<name_0020info>Aalborg, Denmark</name_0020info>

</j:item>
<j:item>

<code>AES</code>
<name_0020info>Aalesund, Norway</name_0020info >

</j:item>
<j:item>

<code>ZID</code>
<name_0020info>Aarhus, Denmark</name_0020info>

</j:item>
</j:array>

Presenter
Presentation Notes
Popular solution to the name problem: use a name mapping algorithm producing for any given string an NCName. (Example: algorithm used by the BaseX database).

The name mapping approach is feasible, but it has severe drawbacks. Mainly, it is a betrayal of the principle that the node tree – not the markup – embodies the essential information. It would be dishonest to say that “name_0020info” is the real name and “name info” a mere representation. Plato would wring his hands and press the reset button.

2012-08-07 UDL - a unified document language 15

UDL: JSON <=> node tree


Content


Objects: elements and their child elements


Arrays: elements and their child elements


Simple values: elements with simple content


Null values: nilled elements


Names


JSON names: new node property [key]


Element names: standard names


J-Structure (object/array)


Object/array distinction new node property [model]

Presenter
Presentation Notes
Which is what we do, only to come up with a – hopefully - clean and honest solution. It is based on *extending* the node model by two new node properties – [key] and [model].

16

UDL – JSON and node tree
[
{"code" : "AAL", "name info" : "Aalborg, Denmark"},
{"code" : "AES", "name info" : "Aalesund, Norway"},
{"code" : "ZID", "name info" : "Aarhus, Denmark"}
]

<udl:array>
<udl:map udl:model="map">
<udl:value udl:key="code">AAL</udl:value>
<udl:value udl:key="name info">Aalborg, Denmark</udl:value>

</udl:map>
<udl:map udl:model="map">
<udl:value udl:key="code">AES</udl:value>
<udl:value udl:key="name info">Aalesund, Norway</udl:value>

</udl:map>
<udl:map udl:model="map">
<udl:value udl:key="code">ZID</udl:value>
<udl:value udl:key="name info">Aarhus, Denmark</udl:value>

</udl:map>
</udl:array>

Presenter
Presentation Notes
First of all – please regard the XML version not as markup to be used as such – it is hardly readable. Regard it as a way to communicate the exact content of the node tree resulting from the parsing of the JSON document: in fact as a way to indicate the content of a node tree which is best represented by JSON!

The new node properties ([key] and [model]) are expressed by pseudo-attributes. All element names (udl:array, udl:map and udl:value) are unspecific standard names – the JSON names appear as [key] values. The XML names are just ordinary names – they do not imply any semantics or any particular node property values.

2012-08-07 UDL - a unified document language 17

UDL extends the node model


New node property: [key]


Like a second “name”, string-based, optional


Present if – and only if – the parent has [model] = map



New node property: [model]


Value sequence


Child elements MUST NOT have a key


Content = ordered collection of child nodes



Value map


Child elements MUST have a key


Content = unordered collection of child elements

Presenter
Presentation Notes
Taking a closer look at the two new node properties. The [key] can be regarded as a second name, which is string-based and has key-semantics (must not be equal to sibling keys). The [model] controls where keys appear, and where not.

2012-08-07 UDL - a unified document language 18

The [model] property

The new [model] property is a tribute to the fact
that the conventional XML content model is
not as universal as it looked.

Value “sequence” is the conventional XML
model: content is a sequence of child nodes:
structure is order-based.

Value “map” is the big alternative: content is a
map of child nodes: structure is key-based.

Presenter
Presentation Notes
Taking an even closer look at the [model] property.

2012-08-07 UDL - a unified document language 19

Extension of XPath: key test


Key test – a third node test

(besides name test, kind test)



Checks the value of the [key] property



Syntax


#foo possible if only name chars


#"last name" always possible



Freely combinable with axes

descendant::#a/parent::#b/#c

Presenter
Presentation Notes
So far, so good – we have redefined JSON to represent a node tree. But how to navigate this tree when distinctive information – the JSON names – has wandered into the new node property, [key]?

2012-08-07 UDL - a unified document language 20

The key test in action
[
{"code" : "AAL", "name info" : "Aalborg, Denmark"},
{"code" : "AES", "name info" : "Aalesund, Norway"},
{"code" : "ZID", "name info" : "Aarhus, Denmark"}
]

Queries

/*/*/#code/string()
 "AAL", "AAL", "AAL„

/*/*[#code eq "ZID"]/#"name info"/string()
 "Aarhus, Denmark"

/descendent::#code[. eq "ZID"]/../#"name info"/string()
 "Aarhus, Denmark“

Presenter
Presentation Notes
Using the key test instead of the habitual name test, JSON documents can be queried with the same ease as conventional XML documents.

21

Extension of XQuery:
JSON constructors

let $country := "Denmark"
let $codes := //#airport[. contains $country]/../#code
return

{"country" : $country, "codes" : [$codes]}
=
…
return
<udl:map udl:model="map">
<udl:value udl:key="country">{$country}</udl:value>
<udl:array udl:key="codes">{

for $code in $codes
return <udl:value>{$code}</udl:value>

</udl:array>
</udl:map>



{ "country" : "Denmark", "codes" : ["AAL", "ZID"] }

Presenter
Presentation Notes
Though not strictly necessary, it makes much sense to extend the XQuery language too, introducing a JSON-friendly constructor syntax for the construction of JSON data.

Thanks to the new JSON constructors, JSON can be constructed using JSON syntax, just as we are used to construct XML using XML syntax.

2012-08-07 UDL - a unified document language 22

JSON constructors: overview



Key-oriented constructor: Expr1 : Expr2
Example: $label : $src/addInfo



Map constructor { Expr }
Example: { “code” : $code, “title” : $title }



Array constructor [Expr]
Example: [$codes]

Presenter
Presentation Notes
The key-oriented constructor creates an element whose [key] and content is determined by two expressions. The map constructor constructs a <udl:map> element with [model] = “map” and a content determined by an expression. The array constructor constructs a <udl:array> element with [model] = “sequence” and a content determined by an expression.

These new constructors are more than just syntactical shortcuts. They have subtle semantics calculated to simplify the construction of JSON style node trees. For example, consider the processing of the array expression result: (a) any atomic items and any text nodes in the expression value are wrapped in <udl:value> elements, (b) any document nodes are replaced by their document element, (c) any element keys are discarded.

2012-08-07 UDL - a unified document language 23

Comprehensive example (1)



Task


Transform a JSON document



Use XQuery



Demonstrates:


Querying JSON data



Constructing JSON data

Presenter
Presentation Notes
Let us examine a comprehensive example how JSON data can be processed, using XQuery.

24

Comprehensive example:
JSON input[

{
"year" : 2011,
"title" : "JSON",
"author" : [

{"last" : "Legoux", "first" : "C."}
],
"price" : 35.95,
"sigs" : ["LL1002"]

},
{

"year" : 2012,
"title" : "XML",
"author" : [

{"last" : "Legoux", "first" : "C."},
{"last" : "Berlin", "first" : "D."}

],
"price" : 29.95,
"sigs" : []

}, …
]

Presenter
Presentation Notes
The input is a JSON document: an array of objects describing books (publication year, title, authors, price, signatures). This shall be reorganized into author descriptions.

25

Comprehensive example:
JSON output[

{
"name" : "Legoux, C.",
"books" : [

{"title" : "JSON", "year" : "2011"},
{"title" : "UDL", "year" : "2012"},
{"title" : "XML", "year" : "2012"}

]
},
{

"name" : "Okuda, J.",
"books" : [

{"title" : "UDL", "year" : "2012"}
]

},
…

]

Presenter
Presentation Notes
The output is also a JSON document: an array of objects describing authors – the author’s name and a list of the books he or she authored (title and publication year).

26

Comprehensive example:
query[

for $author in distinct-values(
//#author/*/concat(#last , ', ', #first))

let $books :=
//#author[*/concat(#last , ', ', #first) = $author]/..

order by $author
return
{
"name" : $author,
"books" : [
for $book in $books
order by $book/#title
return
{
"title" : $book/#title/string(),
"year" : $book/#year/string()

}
]

}
]

Presenter
Presentation Notes
The query has the same complexity and the same readability as a query performing an equivalent transformation of XML input into XML output.

2012-08-07 UDL - a unified document language 27

Extension of XML markup



No new syntactical constructs


pseudo attributes (and one pseudo tag)



Goal #1: express new node properties


udl:key, udl:model, udl:defaultModel



Goal #2: enable insertion of non-XML markup


udl:markup

Presenter
Presentation Notes
We saw along the way that the XML markup language had to be extended, too, in order to become expressive of the new node properties. In fact, the XML markup language is extended with two goals – represent the new node properties, and enable the use of non-XML markup within XML.

28

JSON within XML: example
<codes xmlns="http://example.com">
<iata udl:markup="json">
[{ "code" : "AAL", "airport" : "Aalborg, Denmark" },
{ "code" : "AES", "airport" : "Aalesund, Norway" }]

</iata>
</code>
==
<codes xmlns="http://example.com">
<iata>
<udl:map udl:model="map">
<udl:value udl:key="code">AAL</udl:value>
<udl:value udl:key="airport">Aalborg, Denmark</udl:value>

</udl:map>
<udl:map udl:model="map">
<udl:value udl:key="code">AES</udl:value>
<udl:value udl:key="airport">Aalesund, Norway</udl:value>

</udl:map>
</iata>
</codes>

Presenter
Presentation Notes
The element content of “iata” is defined to be the child nodes of the array node represented by the markup.

Both fragments have exactly the same information content.

2012-08-07 UDL - a unified document language 29

JSON within XML



<foo udl:markup="json">{ … }</foo>



<foo udl:markup="json">[…]</foo>



Content of <foo>:
child nodes of the map (or array) element
represented by the JSON markup

Presenter
Presentation Notes
To generalize: the content of XML elements can be encoded in non-XML markup.

30

JSON instead of XML



Document with markup declaration



Document without markup declaration

<?udl markup=”json”>
[
{ "mtype" : 23, "from" : "C12", "to" : "D02" },
{ "mtype" : 11, "from" : "C22", "to" : "E01" },
{ "mtype" : 41, "from" : "C31", "to" : "V02" },
{ "mtype" : 50, "from" : "C01", "to" : "V02" },
]

[
{ "mtype" : 23, "from" : "C12", "to" : "D02" },
{ "mtype" : 11, "from" : "C22", "to" : "E01" },
{ "mtype" : 41, "from" : "C31", "to" : "V02" },
{ "mtype" : 50, "from" : "C01", "to" : "V02" },
]

Presenter
Presentation Notes
From the viewpoint of UDL, a JSON document is the same thing as an XML document: a node tree encoded as markup. The markup can be declared explicitly; otherwise, a default rule applies. If the text starts with a “<“, it is interpreted as XML markup, else the text is assumed to be the default non-XML markup. This default is probably JSON, although implementation-defined alternatives are possible.

2012-08-07 UDL - a unified document language 31

Serialization model


Serialization param method: new value json



New serialization parameter info-loss:


json.strict – any information loss causes error


json.ignore-names – element names are ignored


json.projection – any information loss is ignored


Element names are ignored


Attributes are ignored


Mixed content is projected to element children

Presenter
Presentation Notes
The serialization model is extended due to a new situation: whereas any node tree can be serialized to XML markup without information loss, the same does not apply to JSON markup: for example, the occurrence of attributes, mixed content or simply of non-standard element names amounts to information that cannot be expressed by JSON markup. A new serialization parameter controls how to handle such loss of information.

2012-08-07 UDL - a unified document language 32

The scope of the UDL proposal
Extension of… Goal

1) XDM node model express XML documents and JSON documents

2) XML markup a) complete representation of the node model
b) combination of XML and non-XML markup

3) XPath support navigation by new node property [key]

4) XQuery support elegant construction of JSON structures

5) Serialization model control the handling of information loss

Presenter
Presentation Notes
Let us step back and look at the UDL proposal as a whole.

2012-08-07 UDL - a unified document language 33

Limitations & future research –
standard mappings



UDL achievements (= UDL core)


Translation: JSON markup  node tree


Processing: JSON data with XML technologies


Markup integration: JSON within XML



UDL – not yet addressed (= UDL extensions)


Mapping: JSON => equivalent, readable XML


Mapping: any XML => JSON (lossless)


Round-tripping: X-J-X

Presenter
Presentation Notes
The main achievements of the UDL proposal are the translation between JSON markup and node trees, the processing of JSON data with XML technologies and the possibility to use JSON within XML. These achievements do not yet mean a comprehensive support for the integration of XML and JSON; rather, they are a core which may serve as a *foundation* for a comprehensive integration. What probably must be added is built-in functions for what I call “mappings”, certain standard transformations which change the information content but enable a semantically equivalent representation in a different markup language.

One mapping produces for a given JSON document an equivalent, readable XML document. As an example use case, think of a web service required to deliver at user option either JSON or XML. The XML resulting from parsing the JSON and re-serializing it to XML would be inappropriate, as we saw. What is required is a transformation of a “JSON friendly” node tree into an equivalent “XML friendly” node tree.

Another mapping produces for arbitrary XML a lossless JSON representation, probably using a purpose-designed JSON vocabulary.

2012-08-07 UDL - a unified document language 34

UDL and mapping solutions

Many XML/JSON mapping solutions have been
proposed. However, UDL provides a new
conceptual framework which might facilitate
the definition of mapping standards.

Mappings are now node tree transformations.
The definition and evaluation of mappings
can be built on a firm basis.

Presenter
Presentation Notes
UDL core provides a conceptual framework in which to evaluate and define XML/JSON mappings.

35

First step towards
mapping support

nJSON document:

{
"date" : "2012-08-06",
"place" : "London",
"temperatures" : ["12", "21"]

}

nnJSON document:

<getWeatherRS xmlns="http://example.com" udl:model="map">
<date>2012-08-06</date>
<place>London</place>
<temperatures>

<t>12</t>
<t>21</t>

</temperatures>
</getWeatherRS>

Presenter
Presentation Notes
To give you an idea about how UDL extensions may support mappings, let me introduce two definitions: an nJSON document is a JSON document in which all names are NCNames. An nnJSON document is a document in which every element with a key has a name whose local part equals the key.

For a given nJSON document, a renaming-only transformation produces an nnJSON document, which can be serialized to equivalent, readable XML *and* can be serialized to the original JSON, using “ignore-names”. UDL extensions may introduce a built-in function for transforming nJSON documents into nnJSON documents.

Note the markup rule that child elements of an element with [model] = “map” have a [key] which defaults to the local name.

2012-08-07 UDL - a unified document language 36

Evaluating UDL proposal –
two distinctions



Distinction #1


Central idea: JSON markup = node tree



Translation into technical detail:

node properties [key] and [model]



Distinction #2


What is achieved (UDL core)



What should be achieved (UDL extensions):

mapping support, …?

Presenter
Presentation Notes
An evaluation of the UDL proposal may profit from two distinctions. The first one is between the central idea of UDL and its translation into technical detail. Criticism of the technical details does not yet mean that the idea is bad, which is: “JSON markup must be redefined to represent a node tree, just as XML markup represents a node tree”.

The second distinction is between what has been achieved, and what should be achieved – between UDL core and UDL extensions. If you miss mapping support, or discover other not yet addressed use cases, please consider them as candidates for UDL extensions, rather than rejecting the UDL concept as a whole, on the grounds of these omissions.

2012-08-07 UDL - a unified document language 37

Thank you!

Presenter
Presentation Notes
And that is the end of a presentation about a simple idea: the old dream of a universal markup language might be succeeded by a new concept of a unified document language, an abstract language defining content that may be translated into multiple markup languages, enabling unified processing. The abstract language which I propose is nothing else but a slightly extended version of the XDM node model.

Now the question to you is: is a unified document language feasible, practical, desirable? Thank you.

	From XML to UDL
	Plato’s allegory of the cave
	XML’s platonic nature
	XML technology sees content
	XML technology sees nodes
	Jonathan Robie:� “The dream is past…”
	What to do about JSON?
	Integration approach #1:�						JSONiq
	Integration approach #2:�		 XSL Working Group
	Proposal: UDL =� Unified Document Language
	UDL – main idea
	To model JSON as node tree –� a naïve approach (1)
	To model JSON as node tree –� a naïve approach (2)
	The name problem:� JSON names are strings
	UDL: JSON <=> node tree
	UDL – JSON and node tree
	UDL extends the node model
	The [model] property
	Extension of XPath: key test
	The key test in action
	Extension of XQuery:� JSON constructors
	JSON constructors: overview
	Comprehensive example (1)
	Comprehensive example:�		 		JSON input
	Comprehensive example:�		 		JSON output
	Comprehensive example:�		 		 query
	Extension of XML markup
	JSON within XML: example
	JSON within XML
	JSON instead of XML
	Serialization model
	The scope of the UDL proposal
	Limitations & future research – 			standard mappings
	UDL and mapping solutions
	First step towards �			 mapping support
	Evaluating UDL proposal –�			 two distinctions
	Thank you!

