[image: Balisage logo]Balisage: The Markup Conference

Processing Arbitrarily Large XML using a Persistent DOM
Martin Probst

Balisage: The Markup Conference 2010
August 3 - 6, 2010

Copyright © 2010 by EMC Corporation. All rights reserved.

How to cite this paper
Probst, Martin. "Processing Arbitrarily Large XML using a Persistent DOM." Presented at: Balisage: The Markup Conference 2010, Montréal, Canada, August 3 - 6, 2010. In Proceedings of Balisage: The Markup Conference 2010.
 Balisage Series on Markup Technologies vol. 5 (2010). https://doi.org/10.4242/BalisageVol5.Probst01.

Abstract
As the adoption of XML reaches more and more application domains, data sizes increase,
 and efficient XML handling gets more and more important. Many applications face scalability
 problems due to the overhead of XML parsing, the difficulty of effectively finding
 particular XML nodes, or the sheer size of XML documents, which nowadays can easily exceed
 gigabytes of data.
In particular the latter issue can make certain tasks seemingly impossible to handle, as
 many applications depend on parsing XML documents completely into a Document Object Model
 (DOM) memory structure. Parsing XML into a DOM typically requires close to or even more
 memory as the serialized XML would consume, thus making it prohibitively expensive to handle
 XML documents in the gigabyte range. Recent research and development suggests that it is
 possible to modify these applications to run a wide range of tasks in a streaming fashion,
 thus limiting the memory consumption of individual applications. However this requires not
 only changes in the underlying tools, but often also in user code, such as XSLT style
 sheets. These required changes can often be unintuitive and complicate user code.
A different approach is to run applications against an efficient, persistent, hard-disk
 backed DOM implementation that does not require entire documents to be in memory at a time.
 This talk will discuss such a DOM implementation, EMC's xDB, showing how to use binary XML
 and efficient backend structures to provide a standards compliant, non-memory-backed,
 transactional DOM implementation, with little overhead compared to regular memory-based
 DOMs. It will also give performance comparisons and show how to run existing applications
 transparently against xDB's DOM implementation, using XSLT stylesheets as an example.

Balisage: The Markup Conference

 Processing Arbitrarily Large XML using a Persistent DOM

 Table of Contents

 	Title Page

 	Introduction
 	Related Work

 	Contributions

 	Document Model Storage Structure
 	Traditional Document Model Implementation

 	Disk based DOM architecture
 	Storage Layout

 	Node Structure

 	Encoding of Primitives

 	Namebase Codes

 	Modifications

 	Implementation

 	Memory Consumption

 	Programming Model

 	Performance Comparisons
 	Parsing

 	DOM navigation

 	XSL transformation

 	Discussion

 	Conclusion

 	About the Author

 Processing Arbitrarily Large XML using a Persistent DOM

Introduction
As the adoption of XML reaches more and more application domains, data sizes increase, and
 efficient XML handling gets more and more important. Many applications face scalability
 problems due to the overhead of XML parsing, the difficulty of effectively finding particular
 XML nodes, or the sheer size of XML documents, which nowadays can exceed gigabytes of
 data.
Parsing a sample 20 MB XML document[1] containing Wikipedia document abstracts into a DOM tree using the Xerces library
 roughly consumes about 100 MB of RAM. Other document model implementations[2] such as Saxon's TinyTree are more memory efficient; parsing the same document in
 Saxon consumes about 50 MB of memory. These numbers will vary with document contents, but
 generally the required memory scales linearly with document size, and is typically a
 single-digit multiple of the file size on disk. Extrapolating from these (unscientific)
 numbers, we can easily see that handling documents that range in the hundreds of megabytes
 will easily outgrow available memory on today's workstations, that typically have several
 gigabytes of memory available. Even when documents do not outgrow available memory, memory use
 is a concern in many applications, particularly in servers processing multiple requests in
 parallel.
Parsing the 20 MB XML file into xDB requires 16 MB of disk space. The amount of memory
 required is not related to document size and can be very small (in the kilobyte range).
Related Work
One approach to overcome memory issues is to perform streaming operations in very
 specific situations. Peng and Chawathe (Peng05) present a
 streaming implementation for a limited subset of XPath operations, Florescu, Hillery et al.
 (Florescu03) achieve the same for XQuery; the Streaming
 Transformations for XML (STX) language defines a language similar to XSLT geared at streamed
 execution (STX); and the unreleased XSLT 2.1 specification will
 contain special syntax to allow a limited streaming execution mode (Kay10).
However, streaming is a very limiting programming model. Many real world XML
 applications require access to preceding or following nodes, like the title of the section a
 node is contained in. To achieve streaming execution, the above approaches have to exclude
 or severly limit commonly used operations like backwards navigating axes.
Another approach is to use databases to store XML documents, moving them out of memory
 to secondary storage. There is a wide range of literature on the topic, with early efforts
 focusing on shredding XML documents to store them in relational databases, either in tables
 tailored to a specific XML schemata, or in a generic structure (Tatarinov02). As requiring schemata upfront contradicted user expectations and a generic database
 layout results in too many join operations for common hierarchy navigation, later approaches
 propose a variety of numbering schemes to encode the document structure (Meier02). While different solutions with different features exist, these
 numbering schemes generally support resolving at least some structural queries based on the
 numbering. Early schemes required re-numbering on document modifications, later ones
 overcome this limitation (ONeil04).
Using databases with numbering schemes, we can overcome main memory limitations for
 storage and search. However the question of how to efficiently process potentially large XML
 documents in application code remains.

Contributions
This paper presents a different approach: a persistent, hard-disk based DOM that can
 store arbitrarily large XML documents and provides read/write access to them through the
 regular Java DOM API without using a node numbering scheme. Regular XML applications can use
 the familiar DOM programming model and the wealth of available XML tools relying on the DOM
 interface. This paper is based on EMC Documentum xDB's implementation of the presented
 concepts.
xDB differs from other persistent XML stores and other persistent DOM implementations in
 that it is optimized for direct DOM access. Navigation operations corresponding to the
 common DOM operations are executed in constant time comparable to main-memory based DOM
 implementations. xDB, unlike other XML databases, does not use a node numbering scheme but
 relies on indexes for fast value lookups.
We extensively describe xDB's data organization and storage layout, with a particular
 focus on efficient encoding of node data. We provide performance comparisons with two
 different main memory DOM implementations.

Document Model Storage Structure
Traditional Document Model Implementation
DOM implementations (or any document model) usually create classes for the various XML
 node types, and have fields to store the node's properties, like the node name, the list of
 children, the parent node, and so on.
Figure 1 shows a typical DOM element implementation, ignoring
 any inheritance chain and inlining all fields for the sake of simplicity. We can see that
 the Element node keeps references to other nodes in the tree, some basic references like the
 first child and the next sibling to implicitly form the tree itself, and some to enhance
 navigation speed, like the parent reference or the previous sibling reference, that could be
 emulated using the basic references.
Figure 1: A typical DOM Element Implementation (simplified)
[image:]

There are many different ways of representing an XML document, differing in memory
 consumption, navigation speed for particular axes, whether the document can be modified
 after parsing, and so on. Some implementations avoid storing immediate object references to
 limit the number of objects held in memory, but still store the complete document in memory.
 However they all rely on the assumption that the complete document is parsed at once, and
 kept in memory while operating on it.
This leads to the observed limitations in supported document size caused by memory
 exhaustion.

Disk based DOM architecture
Our DOM implementation avoids this limitation by storing a binary representation of an
 XML document on the hard disk. While this representation avoids keeping the whole document
 in memory at all times, it is still directly navigable from the programming interface,
 without requiring re-parsing or buffering parts of the document during program execution.
 Documents are also mutable — nodes can modified after initial parsing, again without
 requiring the whole document to be in memory.
Nodes are identified using a 64 bit number and stored in data pages that allocate
 individual nodes in slots. The first 54 bit of a node identifier point to the page, the
 latter 10 bits identify a slot within a particular page. As the pages are stored in files in
 the file system, within the first 54 bits, 20 bits are used to identify a particular file
 used for storage. Node identifiers directly point to the physical location of a node; there
 is no indirection between node identifiers and physical node location (see section “Modifications” for a detailed discussion of the impact on updates).
 xDB node identifiers can be considered "physical identifiers".
This approach is quite different from other XML databases, that typically use a node
 numbering scheme to identify nodes, separating the logical node identifier from its physical
 identifier/location. A node numbering scheme can be helpful to answer unbounded structural
 queries, such as the XPath /bib//book//author. On the other hand, such
 numbering schemes only help evaluating queries over a large node set; navigating within
 individual nodes in a DOM-like fashion will probably be slower due to the additional
 indirection required (i.e., typically an index lookup by node ID). We assert that unbounded
 structural queries are rare in actual applications. Applications typically either search for
 specific pieces of information, or process a complete document or document fragment.
 Searching within XML can be mapped to value based indexes, while
 processing XML commonly means visiting more or less every node of the
 document, thus requiring efficient navigation. xDB provides configurable index structures
 that can answer combined structure and value queries (e.g. /bib//book[author/lastname
 = 'Doe']) to support efficient searching for nodes. To process nodes once they have
 been found, xDB resorts to efficient navigation using physical node identifiers.
Pages are of configurable size but should be identical in size to the underlying file
 system's page size, for reasons of data consistency in write operations[3]. This means pages are usually 4 kilobytes (Windows, Linux, Mac OS X) or 8
 kilobytes (certain UNIXes).
Individual XML documents can spread across any number of physical files, pages, and
 slots, but always use at least one complete page; pages are not shared between multiple
 documents. The minimum storage size consumed by a document is thus one page (typically 4
 kilobytes). The theoretical maximum size for an individual document is the number of
 possible files times the number of pages in a file, times the individual page size. A
 database configured with just a single file can thus (assuming 4096 bytes page size, using
 non-SI prefixes) hold documents up to 234 *
 212 bytes = 246 ≈ 64
 terabytes in size; an ideally configured database with 220 files
 could theoretically hold 266 bytes ≈ 64 exabytes. The
 attentive reader will have precluded that we have not been able to test the implementation
 with exabytes of storage. This is left as an exercise to the first customer reaching that
 database size. Databases with dozens of terabytes of data are common in customer
 deployments.
These theoretical storage limits refer to the size of documents in xDB's internal,
 proprietary binary XML format. We will show that this does not necessarily correspond to
 regular serialized XML size, but is typically comparable or slightly less.
Storage Layout
xDB's storage layout is depicted in Figure 2. Pages are
 stored in one of potentially many data files grouped together in segments. Data files are
 cached in main memory within a data structure called page cache. Each page contains
 multiple slots, which in turn store individual nodes. Slot size is not fixed - different
 nodes, even of the same type, can have different lengths. Slot allocation information is
 stored in an administrative section within the data page, giving start and end locations
 for each slot.
Figure 2: Storage Layout in xDB
[image:]

The layout of an individual slot depends on the node's type. Storage layout is defined
 through an XML dialect, which is then used to generate Java source code through an XSL
 transformation as part of the build process.

Node Structure
xDB stores node trees much like other DOM implementations, spanning a tree through
 first-child and next-sibling pointers. The major difference is that xDB takes great care
 to reduce the size of objects, and that xDB directly operates on byte arrays to store
 nodes.

 Figure 3 shows the bit layout of the two bytes comprising an
 XML Element header. All nodes start with a sequence of bits determining the node type. The
 most common nodes (elements and text nodes) only need two bits of storage for the type, as
 their type codes are 01 and 00. Other node types are stored
 using longer bit sequences starting with a bit 1. The following bits all
 represent booleans, indicating the presence or absence of fields in the elements storage
 and other properties of the node and its storage layout. This reduces on-disk storage
 consumption for elements that do not have children or siblings and documents that do not
 use various features like namespaces, post schema validation infoset (PSVI) information,
 and so on. The bit fields read only and namespace node handle two special cases. Inlined
 entity reference nodes are marked as read only to protect against incorrect modifications,
 thus the bit field. Additionally, xDB supports DOM Level 1 documents that do not have
 namespace support. For those documents, compliant DOM implementations must return
 null for calls to the namespace-aware methods like
 getLocalName(). If the bit is set to 0, xDB will return
 null on those calls.
Figure 3: DOM Element Header
[image:]

For an element, this header is followed by the following, partially optional fields: 	Parent reference

	Next sibling reference (optional)

	Previous sibling reference (optional)

	First child reference (optional)

	Last child reference (optional)

	Local name code (integer)

	Namespace URI code (integer, optional)

	Prefix name code (integer, optional)

	First attribute reference (optional)

	Primitive type name code (integer, optional)

	Complete type name code (integer, optional)

	PSVI properties (integer, optional)

These fields following this header can have different types: 32 bit numbers, 64 bit
 numbers, node references as relative 64 bit node IDs, strings, and string lists. The
 presence of optional fields if governed by their respective bit field in the element
 header. If a field is absent, it takes no storage space at all and retrieving it will
 return a specified default value, for example null for node references or
 -1 for undefined namebase codes.
Another storage size optimization is the First Child next? bit field. If
 true, the following node on the data page is the first child of this node, allowing us not
 to store the node ID. This reflects the observation that most XML documents are parsed
 once and rarely modified. In that case, the parsing process will cause an element's
 children to be stored directly following the element within the data page.
xDB stores all different DOM node types using this scheme, exploiting the various
 optimizations possible for different node types - for example, attribute nodes do not need
 a type field as their type is implicitly known at the place where they are
 referenced.

Encoding of Primitives
All numeric fields, i.e. integers, longs, and node references, are stored using
 run-length encoded numbers. This means that, for example, a 64 bit number that would
 normally consume 8 bytes of storage space will be compressed depending on its actual
 magnitude. Values below 0x80 (128 decimal) take only one byte of storage
 space, values below 0x4000 (16384 decimal) take only two bytes, and so on.
 This significantly reduces storage size as node references are not stored as the complete
 node ID, but as the relative offset to the current node ID, giving small numbers even in
 large databases. Node references are additionally left shifted and then complemented if
 negative so that small negative offsets are stored as small positive numbers, giving a
 more compressed number. Because nodes are typically added in batch (either during parsing,
 or during larger modifications), nodes usually reference other nodes that are very close
 to them on the data pages. This means we can typically store node references in a byte or
 two. The same applies to the 32 bit numbers used for namebase codes (see below).
Text data from XML text nodes, CDATA sections, and attribute values is stored using an
 encoding scheme similar to UTF-8. In UTF-8 encoded text, it is always possible to identify
 whether a byte is starting a new Unicode codepoint, or if it is part of a multi-byte
 encoded codepoint that started earlier. To support this, UTF-8 'wastes' some bits that
 could otherwise be used to encode the codepoints themselves more compact. xDB does not
 need this functionality as our storage layout explicitly marks start and end of strings,
 allowing us to encode text data a bit compacter. Text data longer than a single database
 page is stored using special text-only database pages to avoid the overhead of page
 administration.
String lists, such as the value of attributes of type NMTOKENS, are stored as a list
 of zero-byte separated strings.

Namebase Codes
xDB stores node names using a so-called namebase, a table mapping integer codes to
 individual NCNames. This both reduces storage size and replaces string comparisons with
 simple integer comparisons for name comparisons. URI, prefix, and local name are stored
 separately to speed up queries using wildcard XPath name tests like prefix:*.
 While namespace prefixes are not significant according to the XML infoset standard and
 standards like XPath, they are significant in other standards, like the DOM. Because of
 this, and because of the user expectation to have complete document fidelity, we store the
 namespace prefix.

Modifications
Modifying a node simply means modifying the underlying data page, to reflect the
 changes that are made to the node. All DOM operations, such as replaceNode,
 are directly reflected in the underlying byte arrays.
A problem with the very condensed layout of nodes is that a node might require more
 storage space than available in its slot after an update. For example, if we add a child
 element to an XML element node that was previously empty, the element will need more
 storage space. In the simple case, the space in the data page that is immediately
 following the element is unused, and we can simply grow the element.
In the complex case however, the space following the element node is already used by
 another node, and we cannot grow the node. At the same time, we cannot simply store the
 element at a different place and free the originally used storage space, as other nodes
 will be directly pointing to the current location of the node. If we were to move a node,
 we would have to update all existing pointers to this node, which is a potentially very
 expensive operation, requiring the complete database to be scanned.
To avoid this, xDB replaces the current node store with a forwarding pointer that will
 always be small enough to fit in the available space. The pointer references the actual
 location of the node in the database, and all operations on nodes are safeguarded by a
 check for a forwarding reference.
This scheme has the drawback that documents receiving many update operations can
 fragment over time. It is possible to create degenerate cases where many nodes will be
 replaced by forwarding pointers. Again, the observation is that most XML documents are
 parsed exactly once and hardly ever modified.

Implementation
Nodes are represented at runtime by regular Java objects. The node storage layout is
 defined by an XML file that also specifies class name, super class, and the class this
 node is owned by (e.g. document for most DOM nodes). In the build process, an XSLT
 stylesheet transforms these XML definitions into a Java source file, by convention ending
 in 'Store' (e.g. DomElementStore). The Java file defines an abstract class
 that provides getters and setters for the node's fields operating directly on the page
 byte array. This is then extended by a concrete class that provides the public API for a
 given DOM node, e.g. DomElement. This class then implements the respective
 org.w3c.dom interface, typically along several other xDB specific ones.
 That allows us to keep generated and handwritten code separate.
From a Java perspective, every DOM node object instance references only the page (as a
 Java object) and the slot (as an int), thus instantiated DOM node objects consume,
 depending on JVM implementation and CPU architecture, between 16 and 32 bytes of main
 memory. The page object references the byte array storing page data only through a level
 of indirection, so even if a DOM node is instantiated in a Java program, the underlying
 data page can be swapped out by the cache manager.
Method calls on a DOM interface cause the data page to be obtained (and loaded into
 memory, if necessary), after which we decode the requested information through a sequence
 of bit operations. The traditional "fields" of an XML element like children, node name,
 etc. are never cached. This allows us to keep the memory footprint of a Java application
 minimal - only DOM nodes directly referenced by a user program are actually kept in
 memory.
 shows the Java code retrieving the first child
 of a DOM element node, pretty printed and simplified from the original, generated version.
 The actual code is guarded by a method that checks permissions and whether the current
 transaction is open or interrupted.
The code then retrieves the byte array holding the data of the page where the node is
 stored. This might trigger the page to be swapped in if needed. The code then determines
 the start and end offsets of this node within the data page. If the node is marked as a
 forwarding object, the code will retrieve the actual data page and update start and end
 offsets (not shown).
In the series of if statements afterwards, we check the bit fields in the
 first byte of the element header, referenced by a[start]. The first
 comparison checks the third bit ("First Child null?") and returns null if true, the second
 comparison checks if "First Child Next?". In that case, the diff (offset of
 the first child node relative to this node) is one — it is the next node on this
 page. Otherwise, we have to actually read the node reference, by first finding it in the
 storage and putting the position in the variable fs. First we add two to skip
 the element header (two bytes). Because we don't know the length of the first reference
 (the parent), we then read the long, and skip as many bytes as it consumes in storage
 (packedLongLen()). The next two references are optional, so we check
 whether they are present using bit comparisons again, and skip ahead if they are present.
 Afterwards we read the actual difference, convert the transformed relative difference
 back, and add it to our current node identifier (getPageAndSlot() in the
 code), retrieve a page object and compute the slot from the number. The call to
 DomNode.newDomNode() will inspect the type field of the referenced object
 and return a new instance of the appropriate subclass, pointing to the new node ID.
Figure 4: Retrieving the first child of an element (Java)
DomNode getFirstChildRef() {
 Page slotpage = getPage();
 byte[] a = slotpage.getDataReadOnly();
 int slot = getSlot();
 int offset = getOffset(a, slot);
 int start = Page.unpack2(a, offset);
 int end = Page.unpack2(a, offset - 2);
 if (a[start] <= FORWARD_OBJECT) {
 // handle forwarded objects by updating a, start, and end
 }

 long diff;
 if ((a[start] & 1 << 3) != 0) {
 return null;
 } else if ((a[start] & 1 << 2) != 0) {
 diff = 1L;
 } else {
 int fs = start;
 fs += 2;
 fs += packedLongLen(a, fs);
 if ((a[start + 1] & 1 << 7) == 0)
 fs += packedLongLen(a, fs);
 if ((a[start + 1] & 1 << 6) == 0)
 fs += packedLongLen(a, fs);

 assert fs < end;
 diff = getRelDiff(unpackLong(a, fs));
 }
 long id = getPageAndSlot() + diff;
 Page idpage = getPageFromPS(id);
 int idslot = getSlotFromPS(id);

 return DomNode.newDomNode(idpage, idslot);
}

Because we don't reference or cache constructed child objects, in xDB's DOM
 implementation one logical node might be represented by many different Java object
 instances. This is in line with the W3C DOM specification that requires users to compare
 nodes for identity using the function isSameNode(), but sometimes surprising
 to programmers that expect a simple equality comparison (node1 == node2) to
 be sufficient. Modifications to logical nodes are immediately reflected by all Java DOM
 node instances, because they are reflected in the underlying byte arrays.
The amount of work needed for something as simple as retrieving the first child of an
 element might seem staggering, but the time these bit shift operations take is quite small
 in practice, as we will show in section “Performance Comparisons”.
On Disk Layout Example
Figure 5 shows a simple example document, and the
 binary representation of the first two elements on disk in the canonical hex formatting.
 The bytes surrounding the two elements are blanked out as they are of no
 interest.
The document root element, <address_list/>, is stored in the five
 bytes on the first line. The first two bytes, representing the element header, indicate
 that this is a regular element node with no sibling or attributes, but a first and a
 last child, the first child being the immediately following node on the page. These
 bytes are then followed by the parent offset (encoded as 01, meaning an
 offset of -1, i.e. the previous node), the offset of the last child (70),
 and the namebase code of the local name (00).
The document was parsed with the element-content-whitespace option
 disabled, so the white space characters preceding the first <address/>
 element were stripped and did not result in a DOM text node.
The first <address/> element is stored in 8 bytes. The header
 indicates that all node reference fields are present, except for the previous sibling.
 This is then followed by the encoded offset of the parent (again, -1), the next sibling
 (1a), the offsets of first and last child (04 and
 16), the namespace code (01), and the offset of the first
 attribute (02, meaning +1).
Figure 5: On disk layout of a sample document
<address_list>
 <address id='1'>
 <firstname>...</firstname>
 ...
 </address>
 ...
</addresslist>

0001e0d0 __ __ __ __ __ __ __ __ __ __ __ 15 ff 01 70 00 |ttmjtu2/ynm...p.|
0001e0e0 10 7f 01 1a 04 16 01 02 __ __ __ __ __ __ __ __ |........?...B...|

The root element <address_list/> consumes 29 bytes of disk storage
 when stored as regular XML on disk in UTF-8 (opening and closing tag). In xDB's binary
 format, it shrinks to 5 bytes, plus 4 bytes for the slot information (not shown above),
 plus a certain amount of storage for the namebase entry which is shared among all
 elements with the same name. The more complex <address/> element
 consumes 19 vs 8 bytes. This reduction in size depends on the document and the use of
 XML features, such as validation and namespaces. However we can see that in particular
 elements containing predominantly elements will shrink in size.
The original addresslist XML document consumed 1138 bytes of disk space, 975 bytes
 with ignorable whitespace removed. The binary document representation consumes 768 bytes
 (within a 4kb page), giving a bloat factor of ~0.78. These numbers can greatly vary from
 document to document, depending on factors such as namespace use, number of nodes, and
 so on. The general experience with XML documents is that the bloat factor will typically
 be around 0.9, giving a 10% compression.

Memory Consumption
As mentioned above, in xDB DOM nodes are only shallow pointers into the data storage. The
 data itself is stored in files, and partially paged into memory in a page cache. These pages
 are kept in Java byte arrays at runtime and DOM operations directly operate on the byte
 arrays. As DOM nodes only indirectly reference these byte arrays, the database engine is free
 to evict data pages from the cache and/or load other cache pages in.
A JVM running an xDB database server will allocate a fixed amount of memory to the xDB
 page cache, similar to other databases. The amount of memory taken is configurable, and the
 database can run correctly with only one data page of cache memory. However, again like other
 databases, less cache memory means more page faults, which in turn means slower operation. The
 ideal amount of memory to allocate for cache pages is difficult to determine, as more cache
 memory will mean that less memory is available to the regular Java application code. A very
 large cache will thus cause more garbage collection runs, which will again slow down the
 application. Depending on the application, the available Java heaps space might even get
 exhausted if it is mostly consumed by xDB cache pages. As a rule of thumb, users are advised
 to allocate half of the Java heap to the database cache, which works well in most
 cases.
xDB's page cache uses a combination of Least Recently Used (LRU) and an aging cache
 scheme. This means that if the cache has to evict a page, it will attempt to first evict pages
 that have not been used for a long time, but prefer evicting pages that have been used few
 times over pages that have been used frequently. If a user program uses a piece of data
 frequently and also scans a large set of data, only referencing every page once, this means
 that the cache will not be completely overwritten by the large scan.
Beyond the amount of memory allocated for the page cache, xDB itself uses some memory for
 internal data structures like the cache itself, administrative data for background threads,
 and so on. The amount of memory used for these data structures is however fixed, and not
 proportional to the size of documents or other structures contained in the library. A full xDB
 database server can run in a JVM with 16 megabytes of RAM allocated to it.
Because xDB does not force DOM structures to stay in memory, applications can perform DOM
 operations on documents of effectively arbitrary size. However it is still possible to write
 the user application in a way that causes memory exhaustion. For example, a program traversing
 a large document and adding all DOM nodes it encounters to a data structure will exhaust
 memory, because it keeps the individual DOM node objects from being garbage collected. Our
 experience however shows that such programs are a not common.

Programming Model
xDB is a compliant implementation of the W3C DOM level 3 standard. xDB's DOM nodes
 implement the relevant Java interfaces of the org.w3c.dom package, including the
 extensions for loading and saving documents (DOM LS).
This means that program code written against the familiar classes, such as e.g.
 org.w3.dom.Element, will work without modification when using xDB. The only
 differences in program code will be in the way the initial Document instance is
 obtained.
Figure 6 shows a sample code snippet operating on an
 xDB-backed DOM. The code first obtains an XhiveDriverIf, which is the main Java
 entry point to all xDB operations. After initializing the driver, which will start background
 threads and allocate the page cache, the code creates a new XhiveSessionIf, which
 represents the context of transactional operations. The code then begins a new transaction,
 retrieves a document that is stored in the database's root library[4]. The object representing the document implements the
 org.w3c.dom.Document interface. Any program code written for any Java DOM
 implementation can now operate on the document. In particular, XSLT engines that support DOM
 documents (i.e. all Java XSLT engines) can transparently perform transformations on these
 documents. All changes to the document will be persisted in the session.commit()
 call, or rolled back on session.rollback(), if the user code throws an unexpected
 exception. Multiple transactions can operate on database and library contents concurrently in
 complete isolation. xDB transactions are of serializable isolation level and conform to the
 ACID properties.
Figure 6: Obtaining a Document reference from xDB
XhiveDriverIf driver = XhiveDriverFactory.getDriver("xhive://localhost:1235");
driver.init();
XhiveSessionIf session = driver.createSession();
session.connect("username", "password", "Database");
session.begin();
try {
 XhiveLibraryIf rootLibrary = session.getDatabase().getRoot();
 org.w3c.dom.Document document = rootLibrary.get("somedocument.xml");
 // operate on document
 session.commit();
} finally {
 if (session.isOpen()) session.rollback();
 session.terminate();
 driver.close();
}

xDB locks database contents to avoid concurrent modifications. Locking happens on a
 per-document basis; parallel transactions can modify separate documents concurrently, but if a
 document is already locked by another transaction, the transaction will block. Deadlocks are
 resolved by selecting a victim, whose transaction will be cancelled and rolled back.

Performance Comparisons
While the indirection of storage and the bit operations cause a certain overhead,
 performance is comparable to other DOM implementations. Some synthetic benchmarks[5] show that common XML operations take on the order of twice as long in execution as
 in other implementations, while requiring significantly less memory. XSL transformations on
 gigabyte-sized XML documents are possible and run in reasonable time.
All the following benchmarks have been run on a MacBook Pro 2.8 GHz Core 2 Duo machine
 with 4 GB of DDR3 RAM and a solid state disk drive. The Java implementation was Apple's
 modified distribution of the Sun HotSpot JVM in server mode (-server), giving 512
 MB of RAM if not otherwise indicated (-Xmx512M). All times were measured after
 running the benchmark code several times in a warmup phase to account for Just-In-Time
 compilation (JIT). All implementation tests were run in a clean JVM to avoid skewing results
 through the effects of class loading and the different compilation results it can produce.
 After warmup, individual benchmarks were run 100 times (except for the long running large XSLT
 transformation tests, which were run 10 times each); results are given as the average runtime
 with standard deviation.
The three implementations used were Saxon 9.2.0.6 Home Edition, xDB 10.0.0, Xerces 2.10.0,
 and Xalan 2.7.1.
Parsing
An important performance benchmark in XML processing is parsing XML documents. In this
 benchmark, we parsed a 20 MB XML document of Wikipedia article titles, URLs, abstracts, and
 links. The document has a relatively simple, flat structure, with an element for every
 document that has several children for the document's details.
Table I
Parsing a 20 MB XML document

	Implementation	Average Runtime (ms)	Standard Deviation (ms)
	Saxon	696	45
	xDB	1388	8
	xDB (-Xmx64M)	1565	7
	Xerces	624	98

xDB's parser and DOM implementation take about twice as long to parse a document,
 probably due to the conversions necessary for xDB's internal storage. The lower standard
 deviation compared to the other two implementations is most likely because xDB creates less
 objects in memory, and thus is affected less by Java garbage collection.
Reducing the available memory to 64 megabytes, the other two implementations failed
 parsing the document due to memory exhaustion. xDB's parsing time increases, as the parsed
 document will no longer easily fit the available cache memory and parts have to be paged
 out. If we increase document size further or decrease available memory more, the parsing
 process will be effectively limited by the throughput of the hard disk.
More thorough scalability tests of xDB XML parsing can be found in a whitepaper by
 Jeroen van Rotterdam (vanRotterdam09)

DOM navigation
 In this test, we walk the document from the parsing test using DOM navigation, or in
 the case of Saxon using it's XDM data model. The tests performs an in-order visit of all
 nodes in the document, retrieving text values for attributes and text nodes, and node names
 for nodes that have a name (elements, attributes, processing instructions). The numbers for
 Saxon are not entirely comparable, as the code uses a different document object model to
 achieve the same task. Document parsing time is not included in the numbers.
Table II
Walking a 20 MB XML DOM

	Implementation	Average Runtime (ms)	Standard Deviation (ms)
	Saxon	78.6	1.1
	xDB	204.2	0.8
	xDB (-Xmx64M)	348.9	0.8
	Xerces	95.8	0.4

Again, processing takes about twice as long on xDB's DOM implementation. Runtime
 increases slightly with constrained memory.

XSL transformation
In this test, we transform the aforementioned document using a simple XSLT 1.0
 stylesheet. We use the Saxon and Xalan XSLT implementations, both on their native DOM
 implementations (Xerces for Xalan), and both on xDB's DOM implementation.
We can again see that xDB's DOM is slower than the XSLT processor's native
 implementations, but again the overhead is tolerable. Saxon performs slightly worse than
 Xalan on xDB's DOM; initial investigation suggest this might be due to Saxon's DOM driver
 that operates on DOM node lists, which are computationally expensive as they have to be live
 lists, directly reflecting any changes in the parent node. This is problematic in an
 implementation such as xDB, where single logical DOM nodes can be represented by many
 different objects. In addition, xDB does not maintain a list with all children of a node, so
 that indexed access to a child within a DOM list is not O(1) in all cases.
Table III
XSLT transformation of a 20 MB XML document

	Implementation	Average Runtime (ms)	Standard Deviation (ms)
	Saxon	90	6
	xDB (Xalan)	160	4
	xDB (Saxon)	251	10
	Xalan (Xerces)	155	17

We performed the same test on an identically structured document of 900 MB. Neither
 Saxon nor Xalan were able to parse the document, even with 3.5 GB of memory available.
 Running Xalan on xDB exhausted memory as well, as the implementation appears to copy some of
 the DOM structure into it's own data structures, exhausting memory in the process.
Running Saxon on top of xDB's DOM implementation managed to transform the document in
 reasonable time. Both with a large (512 MB) and a small heap (64 MB), the document was
 transformed in less than a minute. Available memory has no noticeable impact on performance;
 runtime is effectively limited by IO throughput as xDB loads cache pages from the disk. This
 also explains the supra-linear runtime growth from 250 ms for a 20 MB document to 45 seconds
 for a 900 MB document; the first test exclusively uses heap memory, while the second test is
 limited at least in part by disk performance.
Table IV
XSLT transformation of a 900 MB document using Saxon on an xDB DOM with different
 Java heap sizes

	Available JVM Heap Memory	Average Runtime (seconds)	Standard Deviation (seconds)
	64 MB	47	1
	512 MB	45	2

Interestingly, runtime profiling of these simple XSLT transformations shows that
 significant time (15-20%) is spent looking up element names by their namebase code. This
 could be entirely avoided if the DOM API provided an interface to create an implementation
 specific node name matcher. That would not only allow us to avoid the namebase lookup but
 also reduce relatively expensive string comparisons on node names to integer comparisons on
 namebase codes in xDB's case.

Discussion
The benchmark results show that xDB's hard-disk backed DOM implementation is slower than
 alternative main memory based implementations for small document sizes. On the other hand,
 our scheme makes it possible to handle documents of sizes that simply cannot be processed
 using main memory implementations. Beyond that, xDB ofcourse offers many other database
 features that might be useful to users.
The fact that xDB performs well compared to a DOM implementation such as Xerces might be
 surprising, given that, when navigating to the first child of an element, a Xerces DOM node
 can simply return the value of a field (or the first value of an array) where xDB has to
 perform a whole series of bit manipulations. We believe that this is an effect of a modern
 processor's memory hierarchy. As CPU internal caches and clock rates are significantly
 faster than main memory access, modern CPUs spend most of their clock cycles waiting for
 memory to be loaded into the CPU's cache (Manegold00, Chilimbi99). xDB's compact storage layout sacrifices several CPU
 operations for reduced memory use, but those CPU operations can execute in the time a CPU
 would normally spend waiting for memory to be loaded. Because related nodes are allocated in
 contiguous byte arrays, it is also more likely that the CPU already holds the memory
 location for the next node in a cache line.
Note that these benchmarks assume a document that is parsed once to be processed, and
 then discarded. In real world applications, documents will often be processed many times.
 Because of its persistent storage, xDB can avoid re-parsing documents over and over again,
 giving substantial benefits for such applications.

Conclusion

Bibliography
[Peng05] F Peng, S S Chawathe: XSQ: A Streaming
 XPath Engine. ACM Trans. Database Syst (2005). doi:https://doi.org/10.1145/1071610.1071617
[Florescu03] Daniela Florescu, Chris
 Hillery, Donald Kossmann, Paul Lucas, Fabio Riccardi, Till Westmann, Michael J. Carey, Arvind
 Sundararajan, Geetika Agrawal: The BEA Streaming XQuery Processor. The VLDB Journal
 (2003)
[STX] Streaming Transformations for XML. Homepage, on
 the web at http://stx.sourceforge.net/
[Kay10] Michael Kay: XSL Transformations (XSLT) 2.1.
 World Wide Web Consortium Working Draft (2010), on the web at http://www.w3.org/TR/xslt-21/
[ONeil04] P. O’Neil, E. O’Neil, S. Pal, I. Cseri, G.
 Schaller, and N. Westbury. ORDPATH: Insert-Friendly XML Node Labels. SIGMOD,
 2004. doi:https://doi.org/10.1145/1007568.1007686
[Meier02] Wolfgang Meier: eXist: An Open Source Native
 XML Database. NODe Workshop (2002)
[Manegold00] Manegold, S., Boncz, P.A., and
 Kersten, M.L: Optimizing database architecture for the new bottleneck: memory access. VLDB
 Journal (2000)
[Chilimbi99] T. M. Chilimbi, B. Davidson J. R.
 Larus: Cache-conscious structure layout. ACM Sigplan Notices (1999). doi:https://doi.org/10.1145/301631.301633
[Tatarinov02] I. Tatarinov, S. D. Viglas, K. Beyer,
 J. Shanmugasundaram, E. Shekita, C. Zhang: Storing and Querying Ordered XML Using a Relational
 Database System. SIGMOD (2002). doi:https://doi.org/10.1145/564691.564715
[vanRotterdam09] J. van Rotterdam: EMC
 Documentum xDB 9.0 Scalability Tests. Whitepaper, on the web at http://www.emc.com/collateral/software/white-papers/h4662-xdb-performance-wp.pdf

[1] Encoded as UTF-8 text. In UTF-16, the same document (as expected) takes about 40
 MB.
[2] While technically, DOM is the name of a particular standardized XML document model
 programming interface, for the sake of this paper, any document model implementation is
 equivalent. We are concerned with how to store XML documents as navigable structures, not
 any particular programming interface against them. As the DOM is the most prevalent
 document model interface, we use the term interchangeably.
[3] When flushing data to disk, it is only guaranteed that an individual page is written
 atomically. Thus, if your data pages are larger than the file system data page, you
 might risk partially-written pages in the case of system failures.
[4] xDB databases are structured like UNIX file systems; all documents are contained in
 libraries, which in turn belong to other libraries, and the complete database is
 descendant of a root library.
[5] These benchmarks, as all benchmarks, should be taken with a grain of salt. We do not
 claim that these benchmarks hold much scientific significance or represent performance in
 your particular XML application. Readers should also be aware that there is always bias if
 an implementer tests his own implementation. However the results should give a rough
 impression of the overhead associated with this DOM implementation model.

Balisage: The Markup Conference

Processing Arbitrarily Large XML using a Persistent DOM
Martin Probst
Martin Probst is a senior software engineer at EMC, working on EMC Documentum xDB. He
 has been working on XML databases and XQuery in particular since 2004. Martin holds a MSc.
 in Software Engineering from Hasso Plattner Institute in Potsdam, Germany.

Balisage: The Markup Conference

content/images/Probst01-001.png
Element

name: String
uri: String

attrbutes: Attriap
prevSibiing: Node
nextSibiing: Node
parentNode: Node
frstChild: Node
ownerDoc: Document

content/images/Probst01-002.png
Administrative
data

siot
slot

in memory
page cache

data file (segment)

content/images/Probst01-003.png
Next Sibling null?

node type
Prev Sibling null?
Read only. URInuil?
Namespace Node Prefix nuil?

FistChilnull? | | Primitive Type nul?
First Child next? Type Name nuil?
Last Child null? PSVI Props null?
First Attr nuil? (unused)

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

