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Abstract
As the adoption of XML reaches more and more application domains, data sizes increase,
        and efficient XML handling gets more and more important. Many applications face scalability
        problems due to the overhead of XML parsing, the difficulty of effectively finding
        particular XML nodes, or the sheer size of XML documents, which nowadays can easily exceed
        gigabytes of data. 
In particular the latter issue can make certain tasks seemingly impossible to handle, as
        many applications depend on parsing XML documents completely into a Document Object Model
        (DOM) memory structure. Parsing XML into a DOM typically requires close to or even more
        memory as the serialized XML would consume, thus making it prohibitively expensive to handle
        XML documents in the gigabyte range. Recent research and development suggests that it is
        possible to modify these applications to run a wide range of tasks in a streaming fashion,
        thus limiting the memory consumption of individual applications. However this requires not
        only changes in the underlying tools, but often also in user code, such as XSLT style
        sheets. These required changes can often be unintuitive and complicate user code. 
A different approach is to run applications against an efficient, persistent, hard-disk
        backed DOM implementation that does not require entire documents to be in memory at a time.
        This talk will discuss such a DOM implementation, EMC's xDB, showing how to use binary XML
        and efficient backend structures to provide a standards compliant, non-memory-backed,
        transactional DOM implementation, with little overhead compared to regular memory-based
        DOMs. It will also give performance comparisons and show how to run existing applications
        transparently against xDB's DOM implementation, using XSLT stylesheets as an example.
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   Processing Arbitrarily Large XML using a Persistent DOM

Introduction
As the adoption of XML reaches more and more application domains, data sizes increase, and
      efficient XML handling gets more and more important. Many applications face scalability
      problems due to the overhead of XML parsing, the difficulty of effectively finding particular
      XML nodes, or the sheer size of XML documents, which nowadays can exceed gigabytes of
      data.
Parsing a sample 20 MB XML document[1] containing Wikipedia document abstracts into a DOM tree using the Xerces library
      roughly consumes about 100 MB of RAM. Other document model implementations[2] such as Saxon's TinyTree are more memory efficient; parsing the same document in
      Saxon consumes about 50 MB of memory. These numbers will vary with document contents, but
      generally the required memory scales linearly with document size, and is typically a
      single-digit multiple of the file size on disk. Extrapolating from these (unscientific)
      numbers, we can easily see that handling documents that range in the hundreds of megabytes
      will easily outgrow available memory on today's workstations, that typically have several
      gigabytes of memory available. Even when documents do not outgrow available memory, memory use
      is a concern in many applications, particularly in servers processing multiple requests in
      parallel.
Parsing the 20 MB XML file into xDB requires 16 MB of disk space. The amount of memory
      required is not related to document size and can be very small (in the kilobyte range).
Related Work
One approach to overcome memory issues is to perform streaming operations in very
        specific situations. Peng and Chawathe (Peng05) present a
        streaming implementation for a limited subset of XPath operations, Florescu, Hillery et al.
          (Florescu03) achieve the same for XQuery; the Streaming
        Transformations for XML (STX) language defines a language similar to XSLT geared at streamed
        execution (STX); and the unreleased XSLT 2.1 specification will
        contain special syntax to allow a limited streaming execution mode (Kay10).
However, streaming is a very limiting programming model. Many real world XML
        applications require access to preceding or following nodes, like the title of the section a
        node is contained in. To achieve streaming execution, the above approaches have to exclude
        or severly limit commonly used operations like backwards navigating axes.
Another approach is to use databases to store XML documents, moving them out of memory
        to secondary storage. There is a wide range of literature on the topic, with early efforts
        focusing on shredding XML documents to store them in relational databases, either in tables
        tailored to a specific XML schemata, or in a generic structure (Tatarinov02). As requiring schemata upfront contradicted user expectations and a generic database
        layout results in too many join operations for common hierarchy navigation, later approaches
        propose a variety of numbering schemes to encode the document structure (Meier02). While different solutions with different features exist, these
        numbering schemes generally support resolving at least some structural queries based on the
        numbering. Early schemes required re-numbering on document modifications, later ones
        overcome this limitation (ONeil04).
Using databases with numbering schemes, we can overcome main memory limitations for
        storage and search. However the question of how to efficiently process potentially large XML
        documents in application code remains.

Contributions
This paper presents a different approach: a persistent, hard-disk based DOM that can
        store arbitrarily large XML documents and provides read/write access to them through the
        regular Java DOM API without using a node numbering scheme. Regular XML applications can use
        the familiar DOM programming model and the wealth of available XML tools relying on the DOM
        interface. This paper is based on EMC Documentum xDB's implementation of the presented
        concepts.
xDB differs from other persistent XML stores and other persistent DOM implementations in
        that it is optimized for direct DOM access. Navigation operations corresponding to the
        common DOM operations are executed in constant time comparable to main-memory based DOM
        implementations. xDB, unlike other XML databases, does not use a node numbering scheme but
        relies on indexes for fast value lookups.
We extensively describe xDB's data organization and storage layout, with a particular
        focus on efficient encoding of node data. We provide performance comparisons with two
        different main memory DOM implementations.


Document Model Storage Structure
Traditional Document Model Implementation
DOM implementations (or any document model) usually create classes for the various XML
        node types, and have fields to store the node's properties, like the node name, the list of
        children, the parent node, and so on.
Figure 1 shows a typical DOM element implementation, ignoring
        any inheritance chain and inlining all fields for the sake of simplicity. We can see that
        the Element node keeps references to other nodes in the tree, some basic references like the
        first child and the next sibling to implicitly form the tree itself, and some to enhance
        navigation speed, like the parent reference or the previous sibling reference, that could be
        emulated using the basic references.
Figure 1: A typical DOM Element Implementation (simplified)
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There are many different ways of representing an XML document, differing in memory
        consumption, navigation speed for particular axes, whether the document can be modified
        after parsing, and so on. Some implementations avoid storing immediate object references to
        limit the number of objects held in memory, but still store the complete document in memory.
        However they all rely on the assumption that the complete document is parsed at once, and
        kept in memory while operating on it.
This leads to the observed limitations in supported document size caused by memory
        exhaustion.

Disk based DOM architecture
Our DOM implementation avoids this limitation by storing a binary representation of an
        XML document on the hard disk. While this representation avoids keeping the whole document
        in memory at all times, it is still directly navigable from the programming interface,
        without requiring re-parsing or buffering parts of the document during program execution.
        Documents are also mutable — nodes can modified after initial parsing, again without
        requiring the whole document to be in memory.
Nodes are identified using a 64 bit number and stored in data pages that allocate
        individual nodes in slots. The first 54 bit of a node identifier point to the page, the
        latter 10 bits identify a slot within a particular page. As the pages are stored in files in
        the file system, within the first 54 bits, 20 bits are used to identify a particular file
        used for storage. Node identifiers directly point to the physical location of a node; there
        is no indirection between node identifiers and physical node location (see section “Modifications” for a detailed discussion of the impact on updates).
        xDB node identifiers can be considered "physical identifiers".
This approach is quite different from other XML databases, that typically use a node
        numbering scheme to identify nodes, separating the logical node identifier from its physical
        identifier/location. A node numbering scheme can be helpful to answer unbounded structural
        queries, such as the XPath /bib//book//author. On the other hand, such
        numbering schemes only help evaluating queries over a large node set; navigating within
        individual nodes in a DOM-like fashion will probably be slower due to the additional
        indirection required (i.e., typically an index lookup by node ID). We assert that unbounded
        structural queries are rare in actual applications. Applications typically either search for
        specific pieces of information, or process a complete document or document fragment.
          Searching within XML can be mapped to value based indexes, while
          processing XML commonly means visiting more or less every node of the
        document, thus requiring efficient navigation. xDB provides configurable index structures
        that can answer combined structure and value queries (e.g. /bib//book[author/lastname
          = 'Doe']) to support efficient searching for nodes. To process nodes once they have
        been found, xDB resorts to efficient navigation using physical node identifiers.
Pages are of configurable size but should be identical in size to the underlying file
        system's page size, for reasons of data consistency in write operations[3]. This means pages are usually 4 kilobytes (Windows, Linux, Mac OS X) or 8
        kilobytes (certain UNIXes).
Individual XML documents can spread across any number of physical files, pages, and
        slots, but always use at least one complete page; pages are not shared between multiple
        documents. The minimum storage size consumed by a document is thus one page (typically 4
        kilobytes). The theoretical maximum size for an individual document is the number of
        possible files times the number of pages in a file, times the individual page size. A
        database configured with just a single file can thus (assuming 4096 bytes page size, using
        non-SI prefixes) hold documents up to 234 *
          212 bytes = 246 ≈ 64
        terabytes in size; an ideally configured database with 220 files
        could theoretically hold 266 bytes ≈ 64 exabytes. The
        attentive reader will have precluded that we have not been able to test the implementation
        with exabytes of storage. This is left as an exercise to the first customer reaching that
        database size. Databases with dozens of terabytes of data are common in customer
        deployments.
These theoretical storage limits refer to the size of documents in xDB's internal,
        proprietary binary XML format. We will show that this does not necessarily correspond to
        regular serialized XML size, but is typically comparable or slightly less.
Storage Layout
xDB's storage layout is depicted in Figure 2. Pages are
          stored in one of potentially many data files grouped together in segments. Data files are
          cached in main memory within a data structure called page cache. Each page contains
          multiple slots, which in turn store individual nodes. Slot size is not fixed - different
          nodes, even of the same type, can have different lengths. Slot allocation information is
          stored in an administrative section within the data page, giving start and end locations
          for each slot.
Figure 2: Storage Layout in xDB
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The layout of an individual slot depends on the node's type. Storage layout is defined
          through an XML dialect, which is then used to generate Java source code through an XSL
          transformation as part of the build process.

Node Structure
xDB stores node trees much like other DOM implementations, spanning a tree through
          first-child and next-sibling pointers. The major difference is that xDB takes great care
          to reduce the size of objects, and that xDB directly operates on byte arrays to store
          nodes.

          Figure 3 shows the bit layout of the two bytes comprising an
          XML Element header. All nodes start with a sequence of bits determining the node type. The
          most common nodes (elements and text nodes) only need two bits of storage for the type, as
          their type codes are 01 and 00. Other node types are stored
          using longer bit sequences starting with a bit 1. The following bits all
          represent booleans, indicating the presence or absence of fields in the elements storage
          and other properties of the node and its storage layout. This reduces on-disk storage
          consumption for elements that do not have children or siblings and documents that do not
          use various features like namespaces, post schema validation infoset (PSVI) information,
          and so on. The bit fields read only and namespace node handle two special cases. Inlined
          entity reference nodes are marked as read only to protect against incorrect modifications,
          thus the bit field. Additionally, xDB supports DOM Level 1 documents that do not have
          namespace support. For those documents, compliant DOM implementations must return
            null for calls to the namespace-aware methods like
            getLocalName(). If the bit is set to 0, xDB will return
            null on those calls. 
Figure 3: DOM Element Header
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For an element, this header is followed by the following, partially optional fields: 	Parent reference

	Next sibling reference (optional)

	Previous sibling reference (optional)

	First child reference (optional)

	Last child reference (optional)

	Local name code (integer)

	Namespace URI code (integer, optional)

	Prefix name code (integer, optional)

	First attribute reference (optional)

	Primitive type name code (integer, optional)

	Complete type name code (integer, optional)

	PSVI properties (integer, optional)



        
These fields following this header can have different types: 32 bit numbers, 64 bit
          numbers, node references as relative 64 bit node IDs, strings, and string lists. The
          presence of optional fields if governed by their respective bit field in the element
          header. If a field is absent, it takes no storage space at all and retrieving it will
          return a specified default value, for example null for node references or
            -1 for undefined namebase codes.
Another storage size optimization is the First Child next? bit field. If
          true, the following node on the data page is the first child of this node, allowing us not
          to store the node ID. This reflects the observation that most XML documents are parsed
          once and rarely modified. In that case, the parsing process will cause an element's
          children to be stored directly following the element within the data page.
xDB stores all different DOM node types using this scheme, exploiting the various
          optimizations possible for different node types - for example, attribute nodes do not need
          a type field as their type is implicitly known at the place where they are
          referenced.

Encoding of Primitives
All numeric fields, i.e. integers, longs, and node references, are stored using
          run-length encoded numbers. This means that, for example, a 64 bit number that would
          normally consume 8 bytes of storage space will be compressed depending on its actual
          magnitude. Values below 0x80 (128 decimal) take only one byte of storage
          space, values below 0x4000 (16384 decimal) take only two bytes, and so on.
          This significantly reduces storage size as node references are not stored as the complete
          node ID, but as the relative offset to the current node ID, giving small numbers even in
          large databases. Node references are additionally left shifted and then complemented if
          negative so that small negative offsets are stored as small positive numbers, giving a
          more compressed number. Because nodes are typically added in batch (either during parsing,
          or during larger modifications), nodes usually reference other nodes that are very close
          to them on the data pages. This means we can typically store node references in a byte or
          two. The same applies to the 32 bit numbers used for namebase codes (see below).
Text data from XML text nodes, CDATA sections, and attribute values is stored using an
          encoding scheme similar to UTF-8. In UTF-8 encoded text, it is always possible to identify
          whether a byte is starting a new Unicode codepoint, or if it is part of a multi-byte
          encoded codepoint that started earlier. To support this, UTF-8 'wastes' some bits that
          could otherwise be used to encode the codepoints themselves more compact. xDB does not
          need this functionality as our storage layout explicitly marks start and end of strings,
          allowing us to encode text data a bit compacter. Text data longer than a single database
          page is stored using special text-only database pages to avoid the overhead of page
          administration.
String lists, such as the value of attributes of type NMTOKENS, are stored as a list
          of zero-byte separated strings.

Namebase Codes
xDB stores node names using a so-called namebase, a table mapping integer codes to
          individual NCNames. This both reduces storage size and replaces string comparisons with
          simple integer comparisons for name comparisons. URI, prefix, and local name are stored
          separately to speed up queries using wildcard XPath name tests like prefix:*.
          While namespace prefixes are not significant according to the XML infoset standard and
          standards like XPath, they are significant in other standards, like the DOM. Because of
          this, and because of the user expectation to have complete document fidelity, we store the
          namespace prefix.

Modifications
Modifying a node simply means modifying the underlying data page, to reflect the
          changes that are made to the node. All DOM operations, such as replaceNode,
          are directly reflected in the underlying byte arrays.
A problem with the very condensed layout of nodes is that a node might require more
          storage space than available in its slot after an update. For example, if we add a child
          element to an XML element node that was previously empty, the element will need more
          storage space. In the simple case, the space in the data page that is immediately
          following the element is unused, and we can simply grow the element.
In the complex case however, the space following the element node is already used by
          another node, and we cannot grow the node. At the same time, we cannot simply store the
          element at a different place and free the originally used storage space, as other nodes
          will be directly pointing to the current location of the node. If we were to move a node,
          we would have to update all existing pointers to this node, which is a potentially very
          expensive operation, requiring the complete database to be scanned.
To avoid this, xDB replaces the current node store with a forwarding pointer that will
          always be small enough to fit in the available space. The pointer references the actual
          location of the node in the database, and all operations on nodes are safeguarded by a
          check for a forwarding reference.
This scheme has the drawback that documents receiving many update operations can
          fragment over time. It is possible to create degenerate cases where many nodes will be
          replaced by forwarding pointers. Again, the observation is that most XML documents are
          parsed exactly once and hardly ever modified.

Implementation
Nodes are represented at runtime by regular Java objects. The node storage layout is
          defined by an XML file that also specifies class name, super class, and the class this
          node is owned by (e.g. document for most DOM nodes). In the build process, an XSLT
          stylesheet transforms these XML definitions into a Java source file, by convention ending
          in 'Store' (e.g. DomElementStore). The Java file defines an abstract class
          that provides getters and setters for the node's fields operating directly on the page
          byte array. This is then extended by a concrete class that provides the public API for a
          given DOM node, e.g. DomElement. This class then implements the respective
            org.w3c.dom interface, typically along several other xDB specific ones.
          That allows us to keep generated and handwritten code separate.
From a Java perspective, every DOM node object instance references only the page (as a
          Java object) and the slot (as an int), thus instantiated DOM node objects consume,
          depending on JVM implementation and CPU architecture, between 16 and 32 bytes of main
          memory. The page object references the byte array storing page data only through a level
          of indirection, so even if a DOM node is instantiated in a Java program, the underlying
          data page can be swapped out by the cache manager.
Method calls on a DOM interface cause the data page to be obtained (and loaded into
          memory, if necessary), after which we decode the requested information through a sequence
          of bit operations. The traditional "fields" of an XML element like children, node name,
          etc. are never cached. This allows us to keep the memory footprint of a Java application
          minimal - only DOM nodes directly referenced by a user program are actually kept in
          memory.
 shows the Java code retrieving the first child
          of a DOM element node, pretty printed and simplified from the original, generated version.
          The actual code is guarded by a method that checks permissions and whether the current
          transaction is open or interrupted.
The code then retrieves the byte array holding the data of the page where the node is
          stored. This might trigger the page to be swapped in if needed. The code then determines
          the start and end offsets of this node within the data page. If the node is marked as a
          forwarding object, the code will retrieve the actual data page and update start and end
          offsets (not shown).
In the series of if statements afterwards, we check the bit fields in the
          first byte of the element header, referenced by a[start]. The first
          comparison checks the third bit ("First Child null?") and returns null if true, the second
          comparison checks if "First Child Next?". In that case, the diff (offset of
          the first child node relative to this node) is one — it is the next node on this
          page. Otherwise, we have to actually read the node reference, by first finding it in the
          storage and putting the position in the variable fs. First we add two to skip
          the element header (two bytes). Because we don't know the length of the first reference
          (the parent), we then read the long, and skip as many bytes as it consumes in storage
            (packedLongLen()). The next two references are optional, so we check
          whether they are present using bit comparisons again, and skip ahead if they are present.
          Afterwards we read the actual difference, convert the transformed relative difference
          back, and add it to our current node identifier (getPageAndSlot() in the
          code), retrieve a page object and compute the slot from the number. The call to
            DomNode.newDomNode() will inspect the type field of the referenced object
          and return a new instance of the appropriate subclass, pointing to the new node ID.
Figure 4: Retrieving the first child of an element (Java)
DomNode getFirstChildRef() {
  Page slotpage = getPage();
  byte[] a = slotpage.getDataReadOnly();
  int slot = getSlot();
  int offset = getOffset(a, slot);
  int start = Page.unpack2(a, offset);
  int end = Page.unpack2(a, offset - 2);
  if (a[start] <= FORWARD_OBJECT) {
    // handle forwarded objects by updating a, start, and end
  }

  long diff;
  if ((a[start] & 1 << 3) != 0) {
    return null;
  } else if ((a[start] & 1 << 2) != 0) {
    diff = 1L;
  } else {
    int fs = start;
    fs += 2;
    fs += packedLongLen(a, fs);
    if ((a[start + 1] & 1 << 7) == 0)
      fs += packedLongLen(a, fs);
    if ((a[start + 1] & 1 << 6) == 0)
      fs += packedLongLen(a, fs);

    assert fs < end;
    diff = getRelDiff(unpackLong(a, fs));
  }
  long id = getPageAndSlot() + diff;
  Page idpage = getPageFromPS(id);
  int idslot = getSlotFromPS(id);

  return DomNode.newDomNode(idpage, idslot);
}


Because we don't reference or cache constructed child objects, in xDB's DOM
          implementation one logical node might be represented by many different Java object
          instances. This is in line with the W3C DOM specification that requires users to compare
          nodes for identity using the function isSameNode(), but sometimes surprising
          to programmers that expect a simple equality comparison (node1 == node2) to
          be sufficient. Modifications to logical nodes are immediately reflected by all Java DOM
          node instances, because they are reflected in the underlying byte arrays.
The amount of work needed for something as simple as retrieving the first child of an
          element might seem staggering, but the time these bit shift operations take is quite small
          in practice, as we will show in section “Performance Comparisons”.
On Disk Layout Example
Figure 5 shows a simple example document, and the
            binary representation of the first two elements on disk in the canonical hex formatting.
            The bytes surrounding the two elements are blanked out as they are of no
            interest.
The document root element, <address_list/>, is stored in the five
            bytes on the first line. The first two bytes, representing the element header, indicate
            that this is a regular element node with no sibling or attributes, but a first and a
            last child, the first child being the immediately following node on the page. These
            bytes are then followed by the parent offset (encoded as 01, meaning an
            offset of -1, i.e. the previous node), the offset of the last child (70),
            and the namebase code of the local name (00).
The document was parsed with the element-content-whitespace option
            disabled, so the white space characters preceding the first <address/>
            element were stripped and did not result in a DOM text node.
The first <address/> element is stored in 8 bytes. The header
            indicates that all node reference fields are present, except for the previous sibling.
            This is then followed by the encoded offset of the parent (again, -1), the next sibling
              (1a), the offsets of first and last child (04 and
              16), the namespace code (01), and the offset of the first
            attribute (02, meaning +1).
Figure 5: On disk layout of a sample document
<address_list>
  <address id='1'>
    <firstname>...</firstname>
    ...
  </address>
  ...
</addresslist>

0001e0d0  __ __ __ __ __ __ __ __  __ __ __ 15 ff 01 70 00  |ttmjtu2/ynm...p.|
0001e0e0  10 7f 01 1a 04 16 01 02  __ __ __ __ __ __ __ __  |........?...B...|


The root element <address_list/> consumes 29 bytes of disk storage
            when stored as regular XML on disk in UTF-8 (opening and closing tag). In xDB's binary
            format, it shrinks to 5 bytes, plus 4 bytes for the slot information (not shown above),
            plus a certain amount of storage for the namebase entry which is shared among all
            elements with the same name. The more complex <address/> element
            consumes 19 vs 8 bytes. This reduction in size depends on the document and the use of
            XML features, such as validation and namespaces. However we can see that in particular
            elements containing predominantly elements will shrink in size.
The original addresslist XML document consumed 1138 bytes of disk space, 975 bytes
            with ignorable whitespace removed. The binary document representation consumes 768 bytes
            (within a 4kb page), giving a bloat factor of ~0.78. These numbers can greatly vary from
            document to document, depending on factors such as namespace use, number of nodes, and
            so on. The general experience with XML documents is that the bloat factor will typically
            be around 0.9, giving a 10% compression.




Memory Consumption
As mentioned above, in xDB DOM nodes are only shallow pointers into the data storage. The
      data itself is stored in files, and partially paged into memory in a page cache. These pages
      are kept in Java byte arrays at runtime and DOM operations directly operate on the byte
      arrays. As DOM nodes only indirectly reference these byte arrays, the database engine is free
      to evict data pages from the cache and/or load other cache pages in.
A JVM running an xDB database server will allocate a fixed amount of memory to the xDB
      page cache, similar to other databases. The amount of memory taken is configurable, and the
      database can run correctly with only one data page of cache memory. However, again like other
      databases, less cache memory means more page faults, which in turn means slower operation. The
      ideal amount of memory to allocate for cache pages is difficult to determine, as more cache
      memory will mean that less memory is available to the regular Java application code. A very
      large cache will thus cause more garbage collection runs, which will again slow down the
      application. Depending on the application, the available Java heaps space might even get
      exhausted if it is mostly consumed by xDB cache pages. As a rule of thumb, users are advised
      to allocate half of the Java heap to the database cache, which works well in most
      cases.
xDB's page cache uses a combination of Least Recently Used (LRU) and an aging cache
      scheme. This means that if the cache has to evict a page, it will attempt to first evict pages
      that have not been used for a long time, but prefer evicting pages that have been used few
      times over pages that have been used frequently. If a user program uses a piece of data
      frequently and also scans a large set of data, only referencing every page once, this means
      that the cache will not be completely overwritten by the large scan.
Beyond the amount of memory allocated for the page cache, xDB itself uses some memory for
      internal data structures like the cache itself, administrative data for background threads,
      and so on. The amount of memory used for these data structures is however fixed, and not
      proportional to the size of documents or other structures contained in the library. A full xDB
      database server can run in a JVM with 16 megabytes of RAM allocated to it.
Because xDB does not force DOM structures to stay in memory, applications can perform DOM
      operations on documents of effectively arbitrary size. However it is still possible to write
      the user application in a way that causes memory exhaustion. For example, a program traversing
      a large document and adding all DOM nodes it encounters to a data structure will exhaust
      memory, because it keeps the individual DOM node objects from being garbage collected. Our
      experience however shows that such programs are a not common.

Programming Model
xDB is a compliant implementation of the W3C DOM level 3 standard. xDB's DOM nodes
      implement the relevant Java interfaces of the org.w3c.dom package, including the
      extensions for loading and saving documents (DOM LS).
This means that program code written against the familiar classes, such as e.g.
        org.w3.dom.Element, will work without modification when using xDB. The only
      differences in program code will be in the way the initial Document instance is
      obtained.
Figure 6 shows a sample code snippet operating on an
      xDB-backed DOM. The code first obtains an XhiveDriverIf, which is the main Java
      entry point to all xDB operations. After initializing the driver, which will start background
      threads and allocate the page cache, the code creates a new XhiveSessionIf, which
      represents the context of transactional operations. The code then begins a new transaction,
      retrieves a document that is stored in the database's root library[4]. The object representing the document implements the
        org.w3c.dom.Document interface. Any program code written for any Java DOM
      implementation can now operate on the document. In particular, XSLT engines that support DOM
      documents (i.e. all Java XSLT engines) can transparently perform transformations on these
      documents. All changes to the document will be persisted in the session.commit()
      call, or rolled back on session.rollback(), if the user code throws an unexpected
      exception. Multiple transactions can operate on database and library contents concurrently in
      complete isolation. xDB transactions are of serializable isolation level and conform to the
      ACID properties.
Figure 6: Obtaining a Document reference from xDB
XhiveDriverIf driver = XhiveDriverFactory.getDriver("xhive://localhost:1235");
driver.init();
XhiveSessionIf session = driver.createSession();
session.connect("username", "password", "Database");
session.begin();
try {
  XhiveLibraryIf rootLibrary = session.getDatabase().getRoot();
  org.w3c.dom.Document document = rootLibrary.get("somedocument.xml");
  // operate on document
  session.commit();
} finally {
  if (session.isOpen()) session.rollback();
  session.terminate();
  driver.close();  
}


xDB locks database contents to avoid concurrent modifications. Locking happens on a
      per-document basis; parallel transactions can modify separate documents concurrently, but if a
      document is already locked by another transaction, the transaction will block. Deadlocks are
      resolved by selecting a victim, whose transaction will be cancelled and rolled back.

Performance Comparisons
While the indirection of storage and the bit operations cause a certain overhead,
      performance is comparable to other DOM implementations. Some synthetic benchmarks[5] show that common XML operations take on the order of twice as long in execution as
      in other implementations, while requiring significantly less memory. XSL transformations on
      gigabyte-sized XML documents are possible and run in reasonable time.
All the following benchmarks have been run on a MacBook Pro 2.8 GHz Core 2 Duo machine
      with 4 GB of DDR3 RAM and a solid state disk drive. The Java implementation was Apple's
      modified distribution of the Sun HotSpot JVM in server mode (-server), giving 512
      MB of RAM if not otherwise indicated (-Xmx512M). All times were measured after
      running the benchmark code several times in a warmup phase to account for Just-In-Time
      compilation (JIT). All implementation tests were run in a clean JVM to avoid skewing results
      through the effects of class loading and the different compilation results it can produce.
      After warmup, individual benchmarks were run 100 times (except for the long running large XSLT
      transformation tests, which were run 10 times each); results are given as the average runtime
      with standard deviation.
The three implementations used were Saxon 9.2.0.6 Home Edition, xDB 10.0.0, Xerces 2.10.0,
      and Xalan 2.7.1.
Parsing
An important performance benchmark in XML processing is parsing XML documents. In this
        benchmark, we parsed a 20 MB XML document of Wikipedia article titles, URLs, abstracts, and
        links. The document has a relatively simple, flat structure, with an element for every
        document that has several children for the document's details.
Table I
Parsing a 20 MB XML document

	Implementation	Average Runtime (ms)	Standard Deviation (ms)
	Saxon	696	45
	xDB	1388	8
	xDB (-Xmx64M)	1565	7
	Xerces	624	98

xDB's parser and DOM implementation take about twice as long to parse a document,
        probably due to the conversions necessary for xDB's internal storage. The lower standard
        deviation compared to the other two implementations is most likely because xDB creates less
        objects in memory, and thus is affected less by Java garbage collection.
Reducing the available memory to 64 megabytes, the other two implementations failed
        parsing the document due to memory exhaustion. xDB's parsing time increases, as the parsed
        document will no longer easily fit the available cache memory and parts have to be paged
        out. If we increase document size further or decrease available memory more, the parsing
        process will be effectively limited by the throughput of the hard disk.
More thorough scalability tests of xDB XML parsing can be found in a whitepaper by
        Jeroen van Rotterdam (vanRotterdam09)

DOM navigation
 In this test, we walk the document from the parsing test using DOM navigation, or in
        the case of Saxon using it's XDM data model. The tests performs an in-order visit of all
        nodes in the document, retrieving text values for attributes and text nodes, and node names
        for nodes that have a name (elements, attributes, processing instructions). The numbers for
        Saxon are not entirely comparable, as the code uses a different document object model to
        achieve the same task. Document parsing time is not included in the numbers.
Table II
Walking a 20 MB XML DOM

	Implementation	Average Runtime (ms)	Standard Deviation (ms)
	Saxon	78.6	1.1
	xDB	204.2	0.8
	xDB (-Xmx64M)	348.9	0.8
	Xerces	95.8	0.4

Again, processing takes about twice as long on xDB's DOM implementation. Runtime
        increases slightly with constrained memory.

XSL transformation
In this test, we transform the aforementioned document using a simple XSLT 1.0
        stylesheet. We use the Saxon and Xalan XSLT implementations, both on their native DOM
        implementations (Xerces for Xalan), and both on xDB's DOM implementation.
We can again see that xDB's DOM is slower than the XSLT processor's native
        implementations, but again the overhead is tolerable. Saxon performs slightly worse than
        Xalan on xDB's DOM; initial investigation suggest this might be due to Saxon's DOM driver
        that operates on DOM node lists, which are computationally expensive as they have to be live
        lists, directly reflecting any changes in the parent node. This is problematic in an
        implementation such as xDB, where single logical DOM nodes can be represented by many
        different objects. In addition, xDB does not maintain a list with all children of a node, so
        that indexed access to a child within a DOM list is not O(1) in all cases.
Table III
XSLT transformation of a 20 MB XML document

	Implementation	Average Runtime (ms)	Standard Deviation (ms)
	Saxon	90	6
	xDB (Xalan)	160	4
	xDB (Saxon)	251	10
	Xalan (Xerces)	155	17

We performed the same test on an identically structured document of 900 MB. Neither
        Saxon nor Xalan were able to parse the document, even with 3.5 GB of memory available.
        Running Xalan on xDB exhausted memory as well, as the implementation appears to copy some of
        the DOM structure into it's own data structures, exhausting memory in the process.
Running Saxon on top of xDB's DOM implementation managed to transform the document in
        reasonable time. Both with a large (512 MB) and a small heap (64 MB), the document was
        transformed in less than a minute. Available memory has no noticeable impact on performance;
        runtime is effectively limited by IO throughput as xDB loads cache pages from the disk. This
        also explains the supra-linear runtime growth from 250 ms for a 20 MB document to 45 seconds
        for a 900 MB document; the first test exclusively uses heap memory, while the second test is
        limited at least in part by disk performance.
Table IV
XSLT transformation of a 900 MB document using Saxon on an xDB DOM with different
            Java heap sizes

	Available JVM Heap Memory	Average Runtime (seconds)	Standard Deviation (seconds)
	64 MB	47	1
	512 MB	45	2

Interestingly, runtime profiling of these simple XSLT transformations shows that
        significant time (15-20%) is spent looking up element names by their namebase code. This
        could be entirely avoided if the DOM API provided an interface to create an implementation
        specific node name matcher. That would not only allow us to avoid the namebase lookup but
        also reduce relatively expensive string comparisons on node names to integer comparisons on
        namebase codes in xDB's case.

Discussion
The benchmark results show that xDB's hard-disk backed DOM implementation is slower than
        alternative main memory based implementations for small document sizes. On the other hand,
        our scheme makes it possible to handle documents of sizes that simply cannot be processed
        using main memory implementations. Beyond that, xDB ofcourse offers many other database
        features that might be useful to users.
The fact that xDB performs well compared to a DOM implementation such as Xerces might be
        surprising, given that, when navigating to the first child of an element, a Xerces DOM node
        can simply return the value of a field (or the first value of an array) where xDB has to
        perform a whole series of bit manipulations. We believe that this is an effect of a modern
        processor's memory hierarchy. As CPU internal caches and clock rates are significantly
        faster than main memory access, modern CPUs spend most of their clock cycles waiting for
        memory to be loaded into the CPU's cache (Manegold00, Chilimbi99). xDB's compact storage layout sacrifices several CPU
        operations for reduced memory use, but those CPU operations can execute in the time a CPU
        would normally spend waiting for memory to be loaded. Because related nodes are allocated in
        contiguous byte arrays, it is also more likely that the CPU already holds the memory
        location for the next node in a cache line.
Note that these benchmarks assume a document that is parsed once to be processed, and
        then discarded. In real world applications, documents will often be processed many times.
        Because of its persistent storage, xDB can avoid re-parsing documents over and over again,
        giving substantial benefits for such applications.


Conclusion
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[1] Encoded as UTF-8 text. In UTF-16, the same document (as expected) takes about 40
          MB.
[2] While technically, DOM is the name of a particular standardized XML document model
          programming interface, for the sake of this paper, any document model implementation is
          equivalent. We are concerned with how to store XML documents as navigable structures, not
          any particular programming interface against them. As the DOM is the most prevalent
          document model interface, we use the term interchangeably.
[3] When flushing data to disk, it is only guaranteed that an individual page is written
            atomically. Thus, if your data pages are larger than the file system data page, you
            might risk partially-written pages in the case of system failures.
[4] xDB databases are structured like UNIX file systems; all documents are contained in
          libraries, which in turn belong to other libraries, and the complete database is
          descendant of a root library.
[5] These benchmarks, as all benchmarks, should be taken with a grain of salt. We do not
          claim that these benchmarks hold much scientific significance or represent performance in
          your particular XML application. Readers should also be aware that there is always bias if
          an implementer tests his own implementation. However the results should give a rough
          impression of the overhead associated with this DOM implementation model.
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