[image: Balisage logo]Balisage: The Markup Conference

On Implementing string-range() for TEI
Hugh A. Cayless
Analyst/Programmer
NYU

<philomousos@gmail.com>

Adam Soroka
Engineer
UVA

<ajs6f@virginia.edu>

Balisage: The Markup Conference 2010
August 3 - 6, 2010

Copyright © 2010 Hugh A. Cayless and Adam Soroka

How to cite this paper
Cayless, Hugh A., and Adam Soroka. "On Implementing string-range() for TEI." Presented at: Balisage: The Markup Conference 2010, Montréal, Canada, August 3 - 6, 2010. In Proceedings of Balisage: The Markup Conference 2010.
 Balisage Series on Markup Technologies vol. 5 (2010). https://doi.org/10.4242/BalisageVol5.Cayless01.

Abstract
The Text Encoding Initiative Guidelines specify a number of pointer schemes for use in
 implementing standoff markup. This paper reports on an implementation of one of these
 pointer schemes, string-range(), and discusses the issues surrounding standoff markup in the
 context of TEI.

Balisage: The Markup Conference

 On Implementing string-range() for TEI

 Table of Contents

 	Title Page

 	Introduction

 	TEI, standoff markup, and string-range()

 	About the Authors

 On Implementing string-range() for TEI

Introduction
The genesis of this paper lies in a discussion[1] on the Humanist mailing last that began with a request for comment from Desmond
 Schmidt on his recent article in LLC, The inadequacy of embedded markup for
 cultural heritage texts. [[Schmidt2010]] The core of
 which is an argument (really a series of arguments) that the insertion of what I will call
 inline markup (the format of which is typically XML) into the midst of a text
 to be interpreted is in some sense a violation of that text. Schmidt comes at this from
 several angles, highlighting the overlap problem, the imposition of subjective interpretation
 on the text in the form of markup that could become obsolete before the text itself does, the
 ways in which inline markup may duplicate information that could be derived automatically, and
 the fact that markup technologies like XML are industrial and inherit from
 textual command languages designed for print.
The authors aren’t sure they completely agree with all of this, but Schmidt’s is a
 thoughtful article, and a useful contribution to the ongoing debate over how satisfactory XML
 is for representing text. The subsequent discussion on Humanist went on for an unusually long
 series of posts, and was at times quite contentious. It inspired Hugh Cayless to call a
 session on The (in)adequacies of markup
 [http://thatcamp.org/2010/the-inadequacies-of-markup/] at the THATCamp meeting
 held shortly afterwards at George Mason University. The session participants quickly agreed on
 a ruthlessly practical approach. As programmers, we are quite pleased that XML is an
 industrial tool and while we’ll happily acknowledge the shortcomings of the
 Text Encoding Initiative (TEI), the size of its install base and the number of texts already
 encoded using it led us to look for solutions to the problems inherent in inline markup that
 could be implemented within the context of XML and the TEI. The obvious alternative to inline
 markup is standoff markup, and the TEI Guidelines have at least some things to say about doing
 standoff markup in TEI.

TEI, standoff markup, and string-range()
Section 16.2.4 of the Text Encoding Initiative Guidelines outlines a number of pointer
 schemes that are related to functions defined in the XPointer specification [[XPtr]]. These can (notionally at least) be used to produce standoff markup on a
 TEI document. There are a variety of problems with the pointer schemes defined by the
 guidelines, and also with the related XPointer functions, but the most basic is that most of
 them don't have any implementation. There is therefore, no good way to use them, and, because
 they are unused, no good reason to implement them either. It is a Catch-22. The TEI pointer
 schemes are clearly meant to be used in concert with XInclude, as functions that retrieve text
 or node sets (see the example in 16.9.3), but their effects are underspecified in the
 guidelines.
Recent developments in the TEI have opened up the possibility of creating an
 implementation of at least one of these schemes, namely string-range(). The string-range()
 pointer scheme is defined thus: 16.2.4.5 string-range(fragmentIdentifier, offset [, length])
The string-range() scheme locates a range based on character positions. While
 string-range endpoints are points adjacent to character positions, they must be designated
 by the characters to which they are adjacent, in the same way that the nodes corresponding
 to XML elements are. This avoids ambiguity about which point between two characters is
 indicated when characters are interrupted by markup.
The first argument to string-range() designates a node or a range within which a
 string is to be located. No string range, even an empty one, can be defined by a
 string-range() if the fragment identified has the empty string as its value. Every
 string-range is defined based on an ‘origin character’. The origin is numbered 0, and
 designates the first character of the string-value of pointer. The offset is a character
 index relative to the origin; the start of the resulting range is the position designated
 by the sum of the origin and offset."
If length is specified, the end of the range is at a point adjacent to the character
 designated by the origin added to the offset and length. If the offset is negative, or
 length is sufficiently large, a string-range can designate characters outside the
 string-value of the initial pointer. In this case, characters are located using the
 string-value of the entire document. It is also legal for length plus the origin to exceed
 the length of the string-value of the document by one, in order to accommodate ranges that
 include the last character of a document.
If length is not specified, it defaults to the value 1, and the string range contains
 one character. If it is specified as 0, the zero-length range is interpreted as the point
 immediately preceding the origin character or offset character if there is one.
 [http://www.tei-c.org/release/doc/tei-p5-doc/en/html/SA.html#SATSSR][2]

 In theory, at least, string-range can be used to indicate an arbitrary section
 of text in a TEI document, without regard to the way that text is nested within the document's
 structure. A range could start inside one element, and end inside another. Put another way, it
 can span multiple text() nodes. This means that if string-range() can be implemented, it would
 present a solution to the overlapping hierarchies problem.
Since string-range depends on marking a starting point and length of text within a section
 of the document, it runs immediately into a problem with the way XML regards some whitespace
 as "ignorable". Space between elements, for example, is not necessarily preserved during
 operations on the document. Someone editing a document, for example, might pretty-print it in
 order to make it more readable. This would introduce extra newline and space characters into
 the document, and immediately break any string-range() pointers. In other words, the ignorable
 whitespace content of the document could be changed as a part of normal processing that
 doesn’t involve any editing of the document. This year, for the first time, TEI has begun to
 allow the xml:space attribute.
 [http://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-att.global.html] This
 means that the ignorable whitespace issue can be accommodated in a standard way.
A second problem, and one that applies to several of the pointer schemes that the
 Guidelines specify, is that they extend the XML data model. The TEI pointer scheme conceives
 of Nodes and Node Sets (both of which correspond to objects in the XML Infoset/DOM), but also
 Points and Ranges. Points are theoretical objects that must lie between element nodes or
 between characters in text nodes. This is a useful concept for marking arbitrary ranges in a
 document, but since it does not correspond to anything conceived of by the XML specifications,
 there are are no hooks in XML processing tools on which to hang Points. They cannot be passed
 to or returned by any XPath function or XSLT instruction. This makes implementation a complex
 task. At best, they can be encapsulated in special-purpose markup for passing as messages or
 handled as uninterpreted XPath expressions. The former technique introduces a problem of
 standardization and the latter requires second-order processing, with the dangers and
 difficulties that implies. Since string-range focuses on text, however, it is possible to
 count, for each text node, the concatenated length of text nodes on the preceding axis, and
 thereby to locate the text nodes containing the start and end points indicated in a
 string-range() pointer.
A third problem with string-range() as defined by the TEI, and in fact with all of its
 XPointer schemes, is that the specification (the TEI Guidelines) doesn't properly address what
 implementation would mean. The example in 16.9.3 uses string-range in XInclude elements to
 import text from one XML document to another. Of course this example doesn’t work, because
 TEI’s string-range has no XInclude implementation. But the (unstated) implication seems to be
 that the string-range() function returns plain text only. String-range could certainly be used
 to declaratively indicate arbitrary sections of a document, but without some mechanism for
 executing it, there is nothing concrete for an implementer to do. A further complication is
 that there is nothing stopping a string-range from indicating text that overlaps elements in a
 non-hierarchical fashion. Should an implementer ignore elements thus captured? Or return them
 somehow? A related issue is the fact that since string-range defines text-based locations,
 elements are effectively invisible to it. A standalone element (e.g. <lb/>)
 immediately before text that one wants to mark with a string-range() won't automatically be
 part of that range.
Given the underspecified functionality of string-range, the authors have made some
 assumptions about implementation details. We have decided not to extend any existing XInclude
 implementation. Instead, we have decided to use string-range only in a declarative fashion, as
 a pointing mechanism within TEI, and we are developing XPath 2.0 functions that complement and
 use string-range(). Where it declares a range, they will be able to retrieve that range. We
 propose three functions, with the following signatures: get-string-range(parentElt, offset1, offset2 [offset3, offset4, etc.])
- takes as arguments an XPath indicating a parent element (e.g. a div on which
 @xml:space="preserve" as been set) and a set of integer pairs of character
 offsets
- returns a sequence of strings derived from text nodes or portions of text nodes
 between the pairs of points passed in as parameters.

 get-milestone-range(parentElt,offset1, offset2 [offset3, offset4, etc.])
- takes as arguments an XPath indicating a parent element (e.g. a div on which
 @xml:space="preserve" as been set) and a set of integer pairs of character
 offsets
- returns a sequence where elements have been converted to milestones (e.g.
 <p-start> and <p-end> instead of
 <p>).

 get-fragment-range(parentElt,offset1, offset2 [offset3, offset4, etc.])
- takes as arguments an XPath indicating a parent element (e.g. a div on which
 @xml:space="preserve" as been set) and a set of integer pairs of character
 offsets
- returns a well-formed document fragment, where elements split by the range have been
 automatically opened or closed.

 An XSLT 2.0 stylesheet that implements these functions is under development at
 http://github.com/hcayless/tei-string-range.
A fourth problem lies in the ease-of-use of the string-range function. Determining the
 index location of a piece of arbitrary text in a TEI document is prohibitively difficult for a
 human editor. It would be relatively easy to programmatically generate a string-range based on
 a selected range in an XML editor, like oXygen, but without this kind of functionality, it
 will be quite hard for someone marking up a document to create the expression with facility.
 What is needed at a bare minimum is a means to mark range starts and ends, in an
 editor-independent fashion, which can then be converted to string-range expressions. We
 propose using processing instructions in the form <?range-start
 r="n"?>/<?range-end r="n"?>, where "n" identifies a particular
 range. Pairs of these will mark range starts and ends, and can be processed by an XSLT
 stylesheet to create <linkGrp>s containing links that use string-range() to
 identify the marked ranges.
Our implementation then, consists of a simple way to create string-range() pointers using
 a XSLT 2.0 stylesheet transformation and a set of functions that can be used to process the
 data marked by a string-range() in the context of an XPath 2.0 processor. Using these
 stylesheets it is possible, for example, to mark up ranges of text in a non-hierarchical way
 and then generate a set of links denoting those ranges, to which additional standoff markup
 may be linked, or one can convert a document with inline markup to one where a division
 contains plain text and a second division contains markup and pointers to the text.
While the authors intend this effort to be a practical addition to the TEI’s arsenal of
 tools, this kind of implementation raises theoretical questions that bring us back to the
 question of the adequacy of inline markup. In the example below, taken from
 http://github.com/hcayless/tei-string-range/blob/master/bgu.1.116.xml, a
 transcription of a document written on papyrus from Arsinoite in Egypt, some of the text
 content in the edition <div> is readable in the original, and some has been
 supplied by the editor.
<lb n="1"/><handShift new="m3"/> <num value="62">ξβ</num>
<lb n="2"/><handShift new="m1"/>
 <supplied reason="lost">Ἁρποκρατίω</supplied>ν<supplied reason="lost">ι</supplied>
 τ<supplied reason="lost">ῷ κ</supplied>αὶ Ἱέρακι
 <expan>β<supplied reason="lost">ασ<ex>ιλικῷ</ex></supplied></expan>
<lb n="3"/><supplied reason="lost"><expan>γρ<ex>αμματεῖ</ex></expan>
 <expan>Ἀρσ<ex>ινοΐτου</ex></expan></supplied>
 <expan>Ἡρ<supplied reason="lost">ακ<ex>λείδου</ex></supplied></expan>
 <supplied reason="lost"> με</supplied>ρίδος
<lb n="4"/><supplied reason="lost">παρὰ</supplied>
 Ὡ<supplied reason="lost">ριγέ</supplied><unclear>ν</unclear>ους
 Ἰσιδ<supplied reason="lost">ώ</supplied>ρο<supplied reason="lost">υ</supplied>
<lb n="5"/><supplied reason="lost">τῶν ἀπὸ</supplied> τῆ<supplied reason="lost">ς</supplied>
 <expan>μ<supplied reason="lost">ητρ</supplied>ο<ex>πόλεως</ex></expan>
 <expan>ἀπογε<supplied reason="lost">γρ</supplied>α<ex>μμένου</ex></expan>
<lb n="6"/><supplied reason="lost">ἐπʼ <expan>ἀμφό<ex>δου</ex></expan> </supplied>
 <gap reason="lost" quantity="1" unit="character"/><abbr>ερω</abbr>
 Θε<gap reason="lost" quantity="1" unit="character"/><abbr><unclear>μι</unclear>
 <gap reason="illegible" quantity="1" unit="character"/></abbr>.

A transcription of the first six lines following the Leiden convention reads thus:
(hand 3) ξβ
(hand 1) [Ἁρποκρατίω]ν[ι] τ[ῷ κ]αὶ Ἱέρακι β[ασ(ιλικῷ)]
[γρ(αμματεῖ) Ἀρσ(ινοΐτου)] Ἡρ[ακ(λείδου) με]ρίδος
[παρὰ] Ὡ[ριγέ]ν̣ους Ἰσιδ[ώ]ρο[υ]
[τῶν ἀπὸ] τῆ[ς] μ[ητρ]ο(πόλεως) ἀπογε[γρ]α(μμένου)
[ἐπʼ ἀμφό(δου) ̣]ερω() Θε[̣]μ̣ι̣[̣]().

 A “plain text” version, obtained by extracting the markup from the text content
 of the TEI document looks like:

ξβ
Ἁρποκρατίωνι τῷ καὶ Ἱέρακι βασιλικῷ
γραμματεῖ Ἀρσινοΐτου Ἡρακλείδου μερίδος
παρὰ Ὡριγένους Ἰσιδώρου
τῶν ἀπὸ τῆς μητροπόλεως ἀπογεγραμμένου
ἐπʼ ἀμφόδου ερω Θεμι.

 while the extracted markup, with <ptr> elements that refer
 back to the text div looks like:

<lb n="1"/>
<handShift new="m3"/>
<ptr target="#string-range('d2e120', 6, 1)"/>
<num value="62">
 <ptr target="#string-range('d2e120', 7, 2)"/>
</num>
<ptr target="#string-range('d2e120', 9, 7)"/>
<lb n="2"/>
<handShift new="m1"/>
<ptr target="#string-range('d2e120', 16, 1)"/>
<supplied reason="lost">
 <ptr target="#string-range('d2e120', 17, 10)"/>
</supplied>
<ptr target="#string-range('d2e120', 27, 1)"/>
<supplied reason="lost">
 <ptr target="#string-range('d2e120', 28, 1)"/>
</supplied>
<ptr target="#string-range('d2e120', 29, 2)"/>
<supplied reason="lost">
 <ptr target="#string-range('d2e120', 31, 3)"/>
</supplied>
<ptr target="#string-range('d2e120', 34, 10)"/>
<expan>
 <ptr target="#string-range('d2e120', 44, 1)"/>
 <supplied reason="lost">
 <ptr target="#string-range('d2e120', 45, 2)"/>
 <ex>
 <ptr target="#string-range('d2e120', 47, 5)"/>
 </ex>
 </supplied>
</expan>
<ptr target="#string-range('d2e120', 52, 7)"/>
<lb n="3"/>
<supplied reason="lost">
 <expan>
 <ptr target="#string-range('d2e120', 59, 2)"/>
 <ex>
 <ptr target="#string-range('d2e120', 61, 7)"/>
 </ex>
 </expan>
 <ptr target="#string-range('d2e120', 68, 1)"/>
 <expan>
 <ptr target="#string-range('d2e120', 69, 3)"/>
 <ex>
 <ptr target="#string-range('d2e120', 72, 7)"/>
 </ex>
 </expan>
</supplied>
<ptr target="#string-range('d2e120', 79, 1)"/>
<expan>
 <ptr target="#string-range('d2e120', 80, 2)"/>
 <supplied reason="lost">
 <ptr target="#string-range('d2e120', 82, 2)"/>
 <ex>
 <ptr target="#string-range('d2e120', 84, 6)"/>
 </ex>
 </supplied>
</expan>
<supplied reason="lost">
 <ptr target="#string-range('d2e120', 90, 3)"/>
</supplied>
<ptr target="#string-range('d2e120', 93, 12)"/>
<lb n="4"/>
<supplied reason="lost">
 <ptr target="#string-range('d2e120', 105, 4)"/>
</supplied>
<ptr target="#string-range('d2e120', 109, 2)"/>
<supplied reason="lost">
 <ptr target="#string-range('d2e120', 111, 4)"/>
</supplied>
<unclear>
 <ptr target="#string-range('d2e120', 115, 1)"/>
</unclear>
<ptr target="#string-range('d2e120', 116, 8)"/>
<supplied reason="lost">
 <ptr target="#string-range('d2e120', 124, 1)"/>
</supplied>
<ptr target="#string-range('d2e120', 125, 2)"/>
<supplied reason="lost">
 <ptr target="#string-range('d2e120', 127, 1)"/>
</supplied>
<ptr target="#string-range('d2e120', 128, 7)"/>
<lb n="5"/>
<supplied reason="lost">
 <ptr target="#string-range('d2e120', 135, 7)"/>
</supplied>
<ptr target="#string-range('d2e120', 142, 3)"/>
<supplied reason="lost">
 <ptr target="#string-range('d2e120', 145, 1)"/>
</supplied>
<ptr target="#string-range('d2e120', 146, 1)"/>
<expan>
 <ptr target="#string-range('d2e120', 147, 1)"/>
 <supplied reason="lost">
 <ptr target="#string-range('d2e120', 148, 3)"/>
 </supplied>
 <ptr target="#string-range('d2e120', 151, 1)"/>
 <ex>
 <ptr target="#string-range('d2e120', 152, 6)"/>
 </ex>
</expan>
<ptr target="#string-range('d2e120', 158, 1)"/>
<expan>
 <ptr target="#string-range('d2e120', 159, 5)"/>
 <supplied reason="lost">
 <ptr target="#string-range('d2e120', 164, 2)"/>
 </supplied>
 <ptr target="#string-range('d2e120', 166, 1)"/>
 <ex>
 <ptr target="#string-range('d2e120', 167, 6)"/>
 </ex>
</expan>
<ptr target="#string-range('d2e120', 173, 7)"/>
<lb n="6"/>
<supplied reason="lost">
 <ptr target="#string-range('d2e120', 180, 4)"/>
 <expan>
 <ptr target="#string-range('d2e120', 184, 4)"/>
 <ex>
 <ptr target="#string-range('d2e120', 188, 3)"/>
 </ex>
 </expan>
 <ptr target="#string-range('d2e120', 191, 1)"/>
</supplied>
<gap reason="lost" quantity="1" unit="character"/>
<abbr>
 <ptr target="#string-range('d2e120', 192, 3)"/>
</abbr>
<ptr target="#string-range('d2e120', 195, 3)"/>
<gap reason="lost" quantity="1" unit="character"/>
<abbr>
 <unclear>
 <ptr target="#string-range('d2e120', 198, 2)"/>
 </unclear>
 <gap reason="illegible" quantity="1" unit="character"/>
</abbr>

This example is actually a fairly unproblematic one, since it does not contain any
 alternate readings or editorial corrections or normalization. Yet even here there are
 difficulties: “Θεμι” (as is clear in the Leiden version) contains two gaps and unclear text,
 but since these visual features of the document are indicated using <gap/>
 and <unclear/> tags, it looks like an undamaged word-fragment in the plain
 text version. It must be noted that the traditional way of publishing these documents in print
 employs inline markup. So, in this example at least, a plain text version would itself be a
 somewhat misleading version of the document. This is not a refutation of Schmidt’s points,
 because there are many other ways one could encode the document, using standoff markup, that
 would mitigate this problem. But perhaps it suggests that there are at least some uses of
 inline markup (when it encodes features of the text that cannot be expressed straightforwardly
 in Unicode) that may be hard to replace.
The ability to extract the markup from the text and still preserve the manipulability it
 previously enjoyed suggests some additional possibilities: one could now layer in name and
 place information, lexical and grammatical analysis, structural information, such as line
 containment, rather than just marking line beginnings, etc. Different views could be
 generated, using these individually or using combinations of them. Nothing stops us from
 layering these on top of inline markup either.
Since it relies on character offsets, any implementation of string-range() is inherently
 somewhat brittle. The adoption of @xml:space by the TEI closes off one means by which links
 using string-range could be broken, but can do nothing to mitigate the danger of someone
 editing the text directly. Projects that use this mechanism will have to prevent the breakage
 of string-range links either through workflow or editing environments that manage shifting
 offsets.
We have already learned a good deal from our implementation efforts to date. If this
 approach is something other users of TEI or even the TEI Consortium itself wishes to support,
 there are several changes we would suggest. First, that the guidelines be emended to contain a
 more thorough specification of the TEI pointer schemes. Second, that a working group be formed
 look at practical implementations of standoff markup and on appropriate usage patterns for
 these. We must note that the example stylesheet we provide to generate a text + standoff
 markup version of a valid TEI document results in invalid TEI when applied to the bgu.1.116
 example, because elements like <ex/> can only contain text, not pointers to
 text. Moreover, if one wants to extract a string-range with the inline markup converted to
 standalone elements, then again the result will not be valid TEI. We hope our efforts outlined
 above will prompt some useful examination and perhaps revision of the TEI guidelines
 perspective on standoff markup.

Bibliography
[TEIP5] Burnard, L. and S. Bauman (eds), Text Encoding
 Initiative: P5 Guidelines, http://www.tei-c.org/Guidelines/P5/
 (2007).
[XPtr] DeRose, Steve, Eve Maler, and Ron Daniel Jr., XML Pointer Language (XPointer) Version 1.0,
 http://www.w3.org/TR/WD-xptr (2001).
[Schmidt2010] Schmidt, Desmond, The inadequacy of embedded markup for
 cultural heritage texts, Literary and Linguistic
 Computing 25.2 (2010).

[1] The discussion, in which most posts have the title the inadequacies of
 markup, began with
 http://www.digitalhumanities.org/cgi-bin/humanist/archive/archive_msg.cgi?file=/Humanist.vol23.txt&msgnum=762&start=98202&end=98321
 on April 25th and carried on for about three weeks. The postings may be found in
 http://www.digitalhumanities.org/cgi-bin/humanist/archive/archive.cgi?list=/Humanist.vol23.txt
 and
 http://www.digitalhumanities.org/cgi-bin/humanist/archive/archive.cgi?list=/Humanist.vol24.txt
[2] We are so far being quite restrictive in our interpretation of the term
 fragmentIdentifier. In theory this could encompass any means of
 identifying a section of the document, including functions in the xpointer framework,
 for example. In practise, fragment identifiers are context-dependent, relying both on
 the MIME type of the document identified by the URI and on the functionality of the
 technology used to call them. For example, in the context of an XInclude element, some
 xpointer functions will work, whereas in the context of a browser-based hyperlink,
 only @id or @xml:id values work. Since we are working outside XInclude, we take the
 narrow view that a fragment identifier in a string-range can only be the value of an
 @xml:id attribute somewhere in the current document or in an external XML
 document.

Balisage: The Markup Conference

On Implementing string-range() for TEI
Hugh Cayless
Analyst/Programmer
NYU

<philomousos@gmail.com>
Hugh Cayless works on digital papyrology for the NYU Digital Library Technology
 Services team. He holds a Ph.D. in Classics and an MS in Information Science and has
 research interests in the application of digital technologies to problems in the study of
 the ancient world.

Adam Soroka
Engineer
UVA

<ajs6f@virginia.edu>
Adam Soroka is an engineer in the Research and Development section of the Department of Digital Research and Scholarship of the University of Virginia Library. His XML-related interests include the uses of tree automata and integrating geospatial data into textual markup.

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

