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Abstract
HighWire Press is the online publishing operation of the Stanford University Libraries,
        and currently hosts online journals for over 140 separate publishers. HighWire has developed
        and deployed a new XML-based publishing platform, codenamed H2O, and is in the process of
        migrating all of its publishers to this new platform.
This paper describes four XML-based systems developed for our new H2O platform, and
        describes some of the performance characteristics of each. We describe some limitations
        encountered with these systems, and conclude with thoughts about our experience migrating to
        an XML-based platform.
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Introduction
In late 2006 HighWire had started internal discussions over whether or not we needed to
      implement a radical overhaul of our publishing, parsing and content delivery system. We wanted
      the system to be much more flexible when it came to incorporating new data, sharing data
      between systems, and delivering new features.
At that time our system, which had been built up over the past decade, followed a fairly
      traditional model consisting of a display layer, a business logic layer, and a
      metadata/storage layer. Specifically, our original system could be described as a combination
      of:
	Perl and Nsgmls based tools to process data supplied by file providers.

	NFS servers to hold derivatives (e.g., SHTML or similar files).

	Relational database servers, accessed via SQL, to hold metadata.

	Java Mediators talking to the NFS and database servers.

	Java Servlets with a custom templating language similar to JSP, named DTL, to build
          pages for the browser.


While this system has served us well, and continues to do so, there were some basic
      problems we were finding difficult to overcome:
	The translation from the relational databases model into Java Objects, and then into
          DTL objects for use in the final display layer, often forced the writing of new
          application features to become a senior developer task. In order to handle new metadata,
          the developer had to determine whether or not the existing relational tables were flexible
          enough for the new data, or whether new tables were needed. Next would be the job of
          extending, or creating, appropriate stored procedures to access the new metadata. Finally,
          work would be needed in the Java layer to add object mapping support, including routines
          to map the metadata into DTL.

	Beyond the problem of mapping new metadata from the relational layer of the system to
          the DTL layer, the introduction of completely new models was daunting. The original
          database had been built to support journals whose primary components were modeled as
          issues with articles, and articles with figures and tables. The original design of the
          system had intended that we support new models by creating new relational tables, or
          entire databases, and then building new Java mediators to handle the translation from the
          database to the display layer. Unfortunately, the reality was that it was more difficult
          than we would have liked to support customers who wanted different, non-traditional (to
          us), models.

	The original system hadn't been built with either XML or Unicode in mind. Much of the
          core system had been developed in the late 1990s, around the same time XML 1.0 was
          published, and before it was widely adopted. By the same token, the DTL system was
          developed before Unicode was supported in mainstream browsers. These shortcomings meant it
          was very difficult for us to properly ingest XML and produce valid XHTML with Unicode
          support on the display side. Attempting to add Unicode support alone was a daunting task,
          as it required careful vetting of all code which worked at the character level, beginning
          with the Perl system, moving through to the database systems and filesystems, and ending
          in the Java layers.


What we decided to build:
	An end-to-end XML-based system. We would accept incoming XML, transform it into
          different XML representations, store it as XML, query it as XML, and generate XML for the
          end user.

	We would encode certain types of oft-used relationship data up front, trying as much
          as possible to compute it only once.

	We decided to build everything following a RESTful [Fielding2000] model,
          with the idea that using a simple set of operators (GET/HEAD, POST, PUT, and DELETE),
          using unique URIs (vs. SOAP documents submitted to a single URI shared by all resources),
          and embedding hyperlink metadata into our documents would make it easier to spin off new
          services.


After about six months of discussions and prototyping, we had an outline of what we would
      be building and which new software technologies we would be using. By January of 2007 we had
      built a demonstration system which made use of XSLT and XQuery to transform incoming XML into
      metadata and XHTML, and to deliver dynamically built XHTML pages.
After about fifteen months of work following this prototyping, HighWire had a beta site
      operating, and was ready to announce its new platform, dubbed H2O. In the first week of July
      of 2008 we launched our first migrated site, Proceedings of the National Academy of Sciences
      of the United States of America (PNAS). Since that time we've launched 57 additional sites,
      consisting of a mixture of new launches and migrations.
There are three primary tiers of XML-based technology in the H2O system:
	Firenze, a HighWire-developed XSLT 2.0 pipeline execution system used to build both
          front-end sites and back-end data services.

	Schema, Addressing, and Storage System (SASS), a data store implementing an internally
          developed protocol, the HighWire Publishing Protocol (HPP) built on top of the Atom
          Publishing Protocol (APP) [AtomPub2007] and Atom Syndication Format (ASF)
            [Atom2005]. SASS is used to manage and serve content, implemented in two
          different technologies: XSLT 2.0 using Saxon-SA (read-only) and XQuery using MarkLogic
          Server 3.x (read/write).

	Babel XSLT, a HighWire-developed vector processing engine which we use to drive XSLT
          2.0 transformations.


In this paper we'll discuss how these systems work, and will examine their different
      performance characteristics.

Firenze
The first layer of the H2O system we'll describe is the Firenze application framework. The
      Firenze framework, written in 87,000 lines of code across 526 Java classes, is the core piece
      of technology we run that services all dynamic page generation requests in our public-facing
      H2O web servers. All of the dynamically generated content served by the public-facing sites
      flows through this framework.
The bulk of Firenze is a vendor-agnostic set of classes which rely on various public
      standard APIs, e.g., the Java Servlet API, JAXP, and HTTP handlers. An additional set of
      classes are then needed to provide a vendor-specific service-provider to execute XSLT
      Transformations, and to provide custom URI Resolver implementations. We've written about 30
      additional Java classes which use Saxon-SA 9.x to implement this service-provider
      functionality. The original implementation of Firenze used Saxon-SA 8.x APIs directly, but in
      a subsequent rewrite we decided that we would benefit from abstracting the smaller
      vendor-specific parts away from the larger, more general, framework.
A Firenze application pushes an incoming request through four basic stages to produce an
      outgoing response:	It transforms an incoming HTTP request from the Java Servlet API into an XML
            representation, req:request, based on an internal schema.

	Firenze pushes the req:request through zero or more Filters which may
            amend the req:request document, adding or removing data from the
            body.

	Next, Firenze pushes the amended req:request through a chain of one or
            more XSLT Templates to produce an XML response representation,
            rsp:response, which is also based on an internal schema.

	Finally, Firenze transforms the rsp:response into appropriate calls
            against the Java Servlet API to output an HTTP response to the client



The process of pushing these documents through the pipeline is handled via SAX2 events,
      implemented by various event-handlers. As each event-handler is invoked it has a chance to
      operate on parts of the req:request or rsp:response as the documents
      flow through the pipeline. Once each handler completes its area of responsibility it is
      removed from the execution stack, thereby reducing the number of SAX2 events fired across the
      length of the pipeline. Firenze Application Pipeline
[image: ]
Note
From Time 1 through Time 5, various handlers for Filters and Transforms complete
            their tasks and are removed from the pipeline, reducing the number of SAX2 events which
            have to be fired.




The demarcation of responsibilities between Filters and Templates is fuzzy: both may amend
        req:request documents in any fashion, and the decision whether to make the
      process a specific Filter or part of the Template chain is up to the author. The Template
      pipeline is then responsible for transforming the req:request into a final
        rsp:response document. It may be interesting to note that almost all of the
      Filters we've implemented are XSLT stylesheets. Only a few of the Filters have been
      implemented directly in Java.
As an example of a pipeline operation, a request flowing through the pipeline might start
      its life as a req:request document as built via the Java Servlet API: 
<req:request
  xmlns:req="http://schema.highwire.org/Service/Request"
  xmlns:ctx="http://schema.highwire.org/Service/Context"
  xmlns:msg="http://schema.highwire.org/Service/Message"
 id="SltVIKtCeVIAAFFBoFQAAAT@"
 protocol="HTTP/1.1"
 client-host="171.66.232.30"
 server-host="www.pnas.org"
 server-port="80"
 method="GET"
 secure="false"
 path="/content/106/27/10877.full"
 service-path="/content"
 extra-path="/106/27/10877.full"
 xml:base="http://www.pnas.org/content/106/27/10877.full">
  <ctx:context server-info="Apache Tomcat/5.5.23" resource-root="jndi:/localhost/pnas/">
     <ctx:attribute
       name="org.highwire.firenze.pipeline.cache">org.highwire.firenze.resolver.CachingOutputURIResolver@43861b3</ctx:attribute>
     <ctx:attribute
       name="org.apache.catalina.WELCOME_FILES">index.html, index.htm, index.jsp</ctx:attribute>
     <ctx:attribute
       name="org.apache.catalina.jsp_classpath">...</ctx:attribute>
      ...
  </ctx:context>
  <msg:header
    name="host">www.pnas.org</msg:header>
  <msg:header
    name="user-agent">Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.5; en-US; rv:1.9.0.11) Gecko/2009060214 Firefox/3.0.11</msg:header>
  <msg:header
    name="accept">text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8</msg:header>
  <msg:header
    name="accept-language">en-us,en;q=0.5</msg:header>
  <msg:header
    name="accept-encoding">gzip,deflate</msg:header>
  <msg:header
    name="accept-charset">ISO-8859-1,utf-8;q=0.7,*;q=0.7</msg:header>
  <msg:header
    name="keep-alive">300</msg:header>
  <msg:header
    name="connection">keep-alive</msg:header>
</req:request>


The initial req:request document describe the HTTP request in its entirety.
      The first Filter handler which processes this req:request may then, for example,
      add additional information about the resource being requested, shown here as an additional
        msg:attribute element added to the end of the req:request
      document: 
<req:request
  xmlns:req="http://schema.highwire.org/Service/Request"
  xmlns:ctx="http://schema.highwire.org/Service/Context"
  xmlns:msg="http://schema.highwire.org/Service/Message" ...>
  ...
  <msg:header name="keep-alive">300</msg:header>
  <msg:header name="connection">keep-alive</msg:header>
  <msg:attribute xmlns:msg="http://schema.highwire.org/Service/Message" name="content-peek">
   <content-response xmlns="">
     <content-request>
        <corpus code="pnas"></corpus>
        <content collection="/">
           <resource id="106/27/10877" specifiers="full" />
        </content>
     </content-request>
     <sdp:variant-info xmlns:sdp="http://xslt.highwire.org/Service/SASS/DataProvisioning"
                       xmlns:c="http://schema.highwire.org/Compound"
                       href="http://sass.highwire.org/pnas/106/27/10877.full"
                       c:role="http://schema.highwire.org/variant/full-text">
        <sdp:role-selector>full</sdp:role-selector>
        <view xmlns="http://schema.highwire.org/Site" name="full-text" alias="full"
              legacy-name="full"
              display-name="Full Text"
              variant-role="full-text"
              variant-short-role="full"
              type="application/xhtml+xml" />
        <sdp:entry>http://sass.highwire.org/pnas/106/27/10877.atom</sdp:entry>
     </sdp:variant-info>
     <content-ref xmlns:xlink="http://www.w3.org/1999/xlink" type="atom:entry" xlink:type="simple"
                  xlink:href="http://sass.highwire.org/pnas/106/27/10877.atom?with-ancestors=yes" />
   </content-response>
  </msg:attribute>
</req:request>


The msg:attribute element in this case, given a name
        content-peek, provides detailed information about how to retrieve the requested
      resource from the central data store, in this case via the URL
        http://sass.highwire.org/pnas/106/27/10877.atom?with-ancestors=yes. A second
      Filter may then consume this msg:attribute and use it to fill in the contents of that URL, in
      this case a full text article with metadata about its ancestry (the issue it is in, its
      volume, etc.) expanded in-line, by adding another msg:attribute to the end of the
        req:request document: 
  <req:request
    xmlns:req="http://schema.highwire.org/Service/Request"
    xmlns:ctx="http://schema.highwire.org/Service/Context"
    xmlns:msg="http://schema.highwire.org/Service/Message" ...>
    ...
            <content-ref
               xmlns:xlink="http://www.w3.org/1999/xlink"
               type="atom:entry" xlink:type="simple"
               xlink:href="http://sass.highwire.org/pnas/106/27/10877.atom?with-ancestors=yes" />
         </content-response>
      </msg:attribute>
      <msg:attribute xmlns:msg="http://schema.highwire.org/Service/Message" name="contents">
         <atom:entry xmlns:atom="http://www.w3.org/2005/Atom"
                     xmlns:nlm="http://schema.highwire.org/NLM/Journal"
                     xml:base="http://sass.highwire.org/pnas/106/27/10877.atom?with-ancestors=yes"
                     nlm:article-type="article-commentary">
            <c:parent xmlns:c="http://schema.highwire.org/Compound" xml:base="/pnas/106/27.atom">
               <c:parent xml:base="/pnas/106.atom">
                  <c:parent xml:base="/pnas.atom">
                     <c:parent xml:base="/svc.atom">
                        <atom:category
                          scheme="http://schema.highwire.org/Publishing#role"
                            term="http://schema.highwire.org/Publishing/Service" />
                        <atom:id>http://atom.highwire.org/</atom:id>
                        <atom:title>HighWire Atom Store</atom:title>
                        <atom:author>
              ...
            </c:parent>
            <atom:category
              scheme="http://schema.highwire.org/Publishing#role"
                term="http://schema.highwire.org/Journal/Article" />
            <atom:category
              scheme="http://schema.highwire.org/Journal/Article#has-earlier-version"
                term="yes" />
            <atom:id>tag:pnas@highwire.org,2009-07-02:0905722106</atom:id>
            <atom:title>Should Social Security numbers be replaced by modern,
              more secure identifiers?</atom:title>
            ...
       </atom:entry>
    </msg:attribute>
  </req:request>


In this fashion, Filters and Templates aggregate data from multiple sources until enough
      information has been accumulated to produce the final response. It is probably obvious that
      the amount of data produced within the pipeline over the lifetime of a request may greatly
      exceed the final size of the response document sent to the client. For the example above, the
      final req:request document produced by the pipeline exceeds 375 kilobytes of
      serialized XML, while the final XHTML document sent to the user is a mere 60 kilobytes.
The public-facing H2O sites run almost entirely off of Firenze, executing a codebase
      consisting of a little under 50,000 lines of XSLT 2.0 code (including comments and
      whitespace), spread across a set of 160 stylesheets. This codebase is maintained under a
      shared repository, with each site then applying overriding stylesheets for any site-specific
      functionality. Currently each site has between 10 and 23 site-specific stylesheets, though
      some of these only consist of a single include statement referencing a shared stylesheet. When
      a context is deployed, a copy of the shared and local stylesheets are pushed out to its Tomcat
      server, and the context compiles and caches a private set of Templates objects for execution.
      This means that the shared development model for stylesheets doesn't get carried all the way
      through to the runtime, and each site must allocate memory to compile and store a private copy
      of all the stylesheets.
Firenze implements two levels of caching. The first is context-wide caching. Each
      context-wide cache records all retrieved documents, e.g., JAXP Source and Templates objects,
      as well as any documents generated and cached on-the-fly by the pipeline. These cached items
      are available for any subsequent requests that execute in the context. Each context-wide cache
      may have a specific cache-retention policy and algorithm associated with it, as well as its
      own implementation of a backing store. Currently a memory-based store is used, but we are in
      the processing of implementing a disk-based store as well (our intent is to create a two-tier
      memory and disk cache).
Each context-wide cache then serves as a provider for request-specific caches. These
      request-specific caches store items in memory for the duration of a given request. The
      request-specific caches were originally developed to fulfill a contract implied by the XSLT
      specification, which requires that a document, once read via functions like doc
      or doc-available, remain immutable for the duration of the transformation. We've
      extended this policy to require that any document read during the execution of a pipeline
      remain unchanged for the duration of that request.
Currently the sites implement a very straightforward context-wide caching policy. Any
      Templates object survives for the lifetime of the context, while most Source objects will
      survive for a lifetime of 30 minutes, or until the cache size has reached a 1,000 item size
      limit. Once the cache has reached its size limit, the addition of any new entries force the
      oldest Source objects to be evicted. In some cases we fine-tune the policy for Source objects,
      ensuring they will survive for the lifetime of the context, or by increasing or decreasing the
      size of the cache. This level of caching has proved to be sufficient, if not ideal, for our
      current level of traffic. The default cache policy is most effective for the scenario of a
      user who is looking at an abstract and then the full text of the article, or the scenario of a
      user scanning the abstracts of an Issue in sequential order, clicking from one abstract to the
      next within a fairly short period of time.
To determine the response times for requests handled by Firenze, we examined 78 days'
      worth of Apache access logs, consisting of 727 million requests. These requests cover all
      types of requests, meaning it includes static file requests as well as dynamic page requests.
      We found that 214 million requests were dynamic, meaning that Firenze would have handled them.
      Examining the response times for those Firenze requests, we found the following response
      times: Table I
Response Times for Firenze requests

	Seconds	Percent
	< 1	84%
	1 - 2	8%
	2 - 3	3%
	3 - 4	2%
	> 4	3%


This means that 92% of Firenze requests took less than 2 seconds to complete, 5% took from
      2 to 4 seconds to complete, and 3% took more than 4 seconds to complete. Our performance goal
      is to be able to serve all dynamic page requests, and any associated static content, within
      1.5 seconds, so we have not yet met our performance goals.
We've been hosting sets of 15 to 20 sites per load-balanced cluster, with each cluster
      consisting of either two or five servers. Each server has 32 gigabytes of memory and between
      four and eight CPU cores operating between 2.3 and 2.5 GHz. CPU on the clusters is not heavily
      taxed; we routinely record only 15% to 25% CPU usage per server, even during peak traffic
      periods.
By far the least efficient part of the Firenze system we've seen is its memory footprint.
      What we've seen is that each 32-gigabyte server may use 9 gigabytes of memory during the
      lowest traffic periods, up to 15 gigabytes of memory in normal traffic periods, and 30
      gigabytes during very high traffic periods. During normal traffic periods, memory use can
      cycle between 9 and 15 gigabytes within the space of a minute, with all the activity occurring
      in the Eden and Survivor spaces of the JVM. The need to allocate between one and two gigabytes
      of memory per site is a serious impediment to packing enough sites onto a machine to fully
      utilize the CPUs.
In order to improve the response time of the Firenze layer, we are currently building
      Cache-Channel [Nottingham2007] support into Firenze, and are building a disk-based cache
      implementation. The disk-based cache will allow us to store dynamically generated components
      of pages for a longer period of time, and will be paired with the in-memory caches to take
      advantage of optimized Source representations.
We also plan to implement an Adaptive Replacement Cache (ARC) [Megiddo2003]
      algorithm to replace the Least Recently Used (LRU) algorithm currently used by the in-memory
      cache. The HighWire sites receive a steady stream of traffic from indexing web-crawlers, and
      we've found that these crawlers tend to push highly-used resources out of cache when they
      start crawling large amounts of archival content.

SASS
Firenze can be thought of as a framework designed to aggregate data from multiple sources,
      and then to manipulate that aggregate data into a final form. We currently aggregate data from
      many different services, gathering information for access control, running search requests,
      gathering reference data, etc. One of the primary services that the sites use is the Schema,
      Addressing, and Storage System (SASS). A SASS service is a data store that provides a unified
      view of metadata and content for publications we host.
One of the first decisions we needed to make when we were building the replacement system
      was how we would store metadata and related resources. Early on we mocked up a file-system
      based set of XML files along with an XQuery prototype that combined these files dynamically,
      feeding the combined resources to an XSLT-based display layer. These experiments proved to us
      that the fairly simple concept of using a hierarchy of XML files could actually provide enough
      flexibility and functionality for our needs. We decided we could replace some of the
      relational databases of our original system with a hierarchy of XML files. Our implementation
      of this, SASS, is the result of that decision.
A SASS service uses an HTTP-based protocol we've defined, named HighWire Publishing
      Protocol (HPP), to handle requests. HPP is built on top of the Atom Publishing Protocol (APP),
      which specifies much of the basic functionality we needed for a database system:	It specifies how resources are created, retrieved, updated, and deleted.

	It specifies the format of introspection documents, which provide configuration
            information.

	It specifies the output format for an aggregation of resources, using feeds of
            entries.

	It offers a flexible data model, allowing foreign namespaced elements and
            attributes.



After examining APP in detail, we decided we needed a little more functionality, and we
      concluded that we would adopt APP and then extend it in three ways. Our extensions give us the
      ability to:	Add Atom entries with hierarchical parent/child relationships.

	Create multiple alternative representations of an Atom entry, called variants.

	Create relationship links between Atom entries.



As with APP, we have defined a form of XML-based introspection document, similar to an APP
      Service Document. These introspection documents define which collections exist and the types
      of resources the collections will accept. Because our HPP system allows every single Atom
      entry to potentially act as a service point to which new resources may be attached, every Atom
      entry references a unique introspection document. Each introspection document describes which
      content types and roles may be used for variant representations of the entry, and defines zero
      or more collections for sub-entries, with constraints regarding the types and roles of
      resources that may be added to each collection.
Both client and server examine the introspection document, the client being responsible
      for evaluating which collection should best be used for a new resource it wishes to create,
      and the server to evaluate whether or not to allow a particular operation. Once the server has
      decided that a client's request to create a new resource is allowed, it further examines the
      introspection document to:	Determine how to name the new resource.

	Determine what, if any, modifications need to be made to the new resource, e.g.,
            creating server-managed hyperlinks to its parent.

	Determine what other resources might need to be created or modified, e.g., creating
            reciprocal hyperlinks between resources or creating a new Atom sub-entry for a media
            resource.



An example slice of resource paths in our data store shows a top level entry, a journal
      entry (pnas), a volume (number 106) entry, an issue (number 27) entry and an article (page
      10879) entry, and a child (Figure 1) of the article.
      
/svc.atom
  /pnas.atom
    /pnas/106.atom
      /pnas/106/27.atom
      /pnas/106/27.cover-expansion.html
      /pnas/106/27.cover.gif
      /pnas/106/27/local/ed-board.atom
      /pnas/106/27/local/ed-board.pdf
      /pnas/106/27/local/masthead.atom
      /pnas/106/27/local/masthead.pdf
      /pnas/106/27/focus/e3fd854717680e79.atom
      /pnas/106/27/focus/528ef4747e7bd83a.atom
      /pnas/106/27/focus/a596193d15fdf2f0.atom
      /pnas/106/27/focus/05aacbb50196a10f.atom
      /pnas/106/27/focus/c1e857a34ad4b0f3.atom
        /pnas/106/27/10879.atom
        /pnas/106/27/10879.full.pdf
        /pnas/106/27/10879.full.html
        /pnas/106/27/10879.source.xml
        /pnas/106/27/10879.figures-only.html
          /pnas/106/27/10879/F1.atom
          /pnas/106/27/10879/F1.expansion.html
          /pnas/106/27/10879/F1.small.gif
          /pnas/106/27/10879/F1.medium.gif
          /pnas/106/27/10879/F1.large.jpg          


Examining the extensions of the paths above, you will see a number of media types
      represented. The .atom files are metadata resources, while the .xml,
        .html, .gif, .jpg, and .pdf files allow
      us to serve alternative representations (variants) of those resources. SASS therefore provides a
      unified system for serving metadata paired with an array of alternative
      representations.
The system is intended to be flexible enough that we can model new relationships
      relatively quickly, and once those relationships are defined we can immediately start creating
      and serving the new resources and relationships. As an example, the hierarchy of relationships
      we originally designed was, in part:Initial SASS Journal Model
[image: ]



This model allows one or more Journals, each Journal may have one or more Volumes, each
      Volume may have one or more Issues, etc. When we encountered a journal whose hierarchy didn't
      match this model, we simply edited the templates for the introspection documents. In this
      case, we edited it to allow for an Issue to be attached directly to a Journal:Updated SASS Journal Model
[image: ]



When deciding how to implement SASS, we concluded early-on that we needed to provide both
      a read-only and a read/write service. The read-only SASS services would be used by the
      public-facing sites, and the read/write service would be used by our back-end publishing
      system. Splitting the services this way would allow us to optimize each service for its
      primary use-case: transactions and complicated searching would be needed in the read/write
      SASS service, but would not be needed in the read-only SASS service.
Read-Only SASS
Based on our early prototyping work, we were confident that we could develop a
        filesystem-based read-only implementation of the HPP protocol that would serve the needs of
        the public-facing sites. Currently we've implemented a read-only version of SASS using
        Firenze.
The description of SASS to this point has only described the basic hierarchical layout
        of resources. To take advantage of this hierarchy, HPP defines ways to request an aggregated
        view of the metadata and content representations for a resource. Specifically, a set of
        parameters may be provided when requesting an Atom entry:Table II
HPP Expansion Parameters

	Parameter	Example values
	with-variant	no, yes, 1
	variant-role	http://schema.highwire.org/variant/abstract,
                http://schema.highwire.org/variant/full-text, ...
	variant-type	application/xhtml+xml, application/pdf, application/*, video/*,
                  ...
	variant-lang	en, fr, de, ...
	with-ancestors	no, yes, 1, 2, ..., N
	with-ancestors-role	http://schema.highwire.org/Journal/Issue,
                http://schema.highwire.org/Journal/Volume, ...
	with-ancestors-content	alternate, inline, out-of-line
	with-ancestors-variant	no, yes, 1, 2, ..., N
	with-ancestors-variant-role	http://schema.highwire.org/variant/cover,
                http://schema.highwire.org/variant/manifest, ...
	with-ancestors-type	image/gif, image/*, application/xml, text/* ...
	with-ancestors-lang	en, fr, de, ...
	with-descendants	no, yes, 1, 2, ..., N
	with-descendants-role	http://schema.highwire.org/Journal/Article,
                http://schema.highwire.org/Journal/Fragment, ...
	with-descendants-content	alternate, inline, out-of-line
	with-descendants-variant	no, yes, 1, 2, ..., N
	with-descendants-variant-role	http://schema.highwire.org/variant/abstract,
                http://schema.highwire.org/variant/full-text
	with-descendants-type	application/xhtml+xml, application/pdf, application/*, video/*,
                  ...
	with-descendants-lang	en, fr, de, ...


These parameters may be combined in variations and some may be repeated. Taken together,
        the parameters serve as a way to drive the expansion of a resource along its parent, child,
        and variant axes, returning a compound document consisting of an appropriate slice of the
        hierarchy. As an example, requesting
          http://sass.highwire.org/pnas/106/27/10877.atom will retrieve the Atom entry
        associated with PNAS Volume 106, Issue 27, Page 10877:

  <atom:entry xml:base="http://sass.highwire.org/pnas/106/27/10877.atom"
    nlm:article-type="article-commentary"  ...>
     <atom:link rel="http://schema.highwire.org/Compound#parent"
      href="/pnas/106/27.atom"
      c:role="http://schema.highwire.org/Journal/Issue"/>
     <atom:category
       scheme="http://schema.highwire.org/Publishing#role"
         term="http://schema.highwire.org/Journal/Article"/>
     <atom:category
       scheme="http://schema.highwire.org/Journal/Article#has-earlier-version"
         term="yes"/>
     <atom:id>tag:pnas@highwire.org,2009-07-02:0905722106</atom:id>
     <atom:title>Should Social Security numbers be replaced by modern, more secure identifiers?</atom:title>
     <atom:author nlm:contrib-type="author">
       <atom:name>William E. Winkler</atom:name>
       <atom:email>william.e.winkler@census.gov</atom:email>
       <nlm:name name-style="western" hwp:sortable="Winkler William E.">
         <nlm:surname>Winkler</nlm:surname>
         <nlm:given-names>William E.</nlm:given-names>
       </nlm:name>
     </atom:author>
     ...
     <atom:link rel="alternate"
       href="/pnas/106/27/10877.full.pdf"
       c:role="http://schema.highwire.org/variant/full-text"  type="application/pdf"/>
     <atom:link rel="http://schema.highwire.org/Publishing#edit-variant"
       href="/pnas/106/27/10877.full.pdf"
       c:role="http://schema.highwire.org/variant/full-text"    type="application/pdf"/>
     <atom:link rel="alternate"
       href="/pnas/106/27/10877.full.html"
       c:role="http://schema.highwire.org/variant/full-text" type="application/xhtml+xml"/>
     <atom:link rel="http://schema.highwire.org/Publishing#edit-variant"
       href="/pnas/106/27/10877.full.html"
       c:role="http://schema.highwire.org/variant/full-text"    type="application/xhtml+xml"/>
     ...
   </atom:entry>
   
 while adding the parameter to expand its ancestry axis in full,
          http://sass.highwire.org/pnas/106/27/10877.atom?with-ancestors=yes,
        additionally expands the Atom entries for the article's Issue, its Volume, etc:
   <atom:entry xml:base="http://sass.highwire.org/pnas/106/27/10877.atom?with-ancestors=yes"
     nlm:article-type="article-commentary" ...>
     <c:parent xml:base="/pnas/106/27.atom">
       <c:parent xml:base="/pnas/106.atom">
         <c:parent xml:base="/pnas.atom">
           <c:parent xml:base="/svc.atom">
             <atom:category
              scheme="http://schema.highwire.org/Publishing#role"
                term="http://schema.highwire.org/Publishing/Service"/>
             <atom:id>http://atom.highwire.org/</atom:id>
             <atom:title>HighWire Atom Store</atom:title>
             ...
            </c:parent>
           <atom:category
            scheme="http://schema.highwire.org/Publishing#role"
              term="http://schema.highwire.org/Journal"/>
           <atom:id>doi:10.1073/pnas</atom:id>
           <atom:title>Proceedings of the National Academy of Sciences</atom:title>
           <atom:author>
             <atom:name>National Academy of Sciences</atom:name>
           </atom:author>
           ...
         </c:parent>
         <atom:category
          scheme="http://schema.highwire.org/Publishing#role"
            term="http://schema.highwire.org/Journal/Volume"/>
         <atom:id>tag:pnas@highwire.org,2009-01-06:106</atom:id>
         <atom:title>106</atom:title>
         <atom:author nlm:contrib-type="publisher">
           <atom:name>National Academy of Sciences</atom:name>
         </atom:author>
         ...
       </c:parent>
       <atom:category
        scheme="http://schema.highwire.org/Publishing#role"
          term="http://schema.highwire.org/Journal/Issue"/>
       <atom:id>tag:pnas@highwire.org,2009-06-11:106/27</atom:id>
       <atom:title>106 (27)</atom:title>
       <atom:author nlm:contrib-type="publisher">
         <atom:name>National Academy of Sciences</atom:name>
       </atom:author>
       ...
     </c:parent>
     <atom:category
      scheme="http://schema.highwire.org/Publishing#role"
        term="http://schema.highwire.org/Journal/Article"/>
     <atom:category
      scheme="http://schema.highwire.org/Journal/Article#has-earlier-version"
        term="yes"/>
     <atom:id>tag:pnas@highwire.org,2009-07-02:0905722106</atom:id>
     <atom:title>Should Social Security numbers be replaced by modern, more secure identifiers?</atom:title>
     <atom:author nlm:contrib-type="author">
       <atom:name>William E. Winkler</atom:name>
       <atom:email>william.e.winkler@census.gov</atom:email>
       <nlm:name name-style="western" hwp:sortable="Winkler William E.">
         <nlm:surname>Winkler</nlm:surname>
         <nlm:given-names>William E.</nlm:given-names>
       </nlm:name>
     </atom:author>
    ...
    <atom:link rel="alternate"
      href="/pnas/106/27/10877.full.pdf" type="application/pdf"
      c:role="http://schema.highwire.org/variant/full-text"/>
    <atom:link rel="http://schema.highwire.org/Publishing#edit-variant"
      href="/pnas/106/27/10877.full.pdf"
      c:role="http://schema.highwire.org/variant/full-text"   type="application/pdf"/>
    <atom:link rel="alternate"
      href="/pnas/106/27/10877.full.html"
      c:role="http://schema.highwire.org/variant/full-text" type="application/xhtml+xml"/>
    <atom:link rel="http://schema.highwire.org/Publishing#edit-variant"
      href="/pnas/106/27/10877.full.html"
      c:role="http://schema.highwire.org/variant/full-text" type="application/xhtml+xml"/>
    ...
  </atom:entry>  


The difference between the two documents is that the parent link in the entry:

     <atom:link rel="http://schema.highwire.org/Compound#parent"
       href="/pnas/106/27.atom" c:role="http://schema.highwire.org/Journal/Issue"/>

 has been expanded into an element 
     <c:parent xml:base="/pnas/106/27.atom">...</c:parent>


Because the with-ancestors value was yes, each entry has had its parent
        link expanded into a c:parent element, pulling in metadata all the way up to
        the root of the hierarchy.
Likewise, a client may also request with-descendants, and a common request
        sent by the sites is for a Journal Issue with its ancestors expanded completely, and its
        descendants expanded to a depth of one. This in effect gives them the metadata for the Issue
        and its Article children, from which they may do things like build a Table of Contents
        page.
In effect, these parameters allow us to perform operations somewhat like a join
        operation in a relational database. If you think of the Atom entries as relational tables,
        and atom:link elements as foreign keys, we have a limited ability to join documents
        together on those keys.
The read-only SASS service hosts an Apache front-end, load-balancing requests to a set
        of four Tomcat servers. Each Tomcat server uses two AMD 1210 cores, 8 gigabytes of memory,
        and two local SATA disks. Each Tomcat server runs Firenze to execute the read-only SASS
        service stylesheets. The stylesheets in turn pull data from a service named SASSFS, running
        on an Apache-only server using four AMD 2218 CPU cores, 32 gigabytes of memory, and 3.7
        terabytes of FC attached SATA storage. The SASSFS service holds a synchronized clone of the
        read/write SASS service. The SASSFS system is, in effect, a network-based storage system for
        SASS, accessed over HTTP instead of a more traditional NFS protocol.
The XSLT implementation of read-only SASS consists just under 5,000 lines of XSLT 2.0
        code (including whitespace and comments), spread across a set of 13 stylesheets. About 2,000
        of those lines of code are an interim prototype for disk-based caching.
Our initial version of the read-only SASS service used the default in-memory caching
        available in Firenze. This default would store the most recent 1,000 resources requested
        from SASSFS in memory as Source document (the underlying representation being a Saxon
        TinyTree). This caching proved to be effective, and the service performed very well under
        high load. While we were satisfied with the performance, we knew that we wanted to implement
        a more effective caching algorithm for Firenze as a whole, and we decided to use the
        read-only SASS service as a test-bed for prototyping part of this work.
Because HighWire hosts a great deal of material that does not change very often, we
        wanted to implement a caching system that could take advantage of the fact that most of our
        material is for all intents and purposes written once and then read many times. Our research
        turned up the Cache-Channel specification, describing a method where clients could poll an
        efficient service to detect when cached items were stale. If we implemented this system, we
        could cache responses built by the SASS service and, for the most part, never have to update
        them again. Thus, we could trade disk space for time, allowing us to short circuit almost
        all processing within the Firenze system when we had a cached response available
To prototype this work, we implemented a set of extensions for Saxon that allowed us to
        write serialized XML to a local disk partition. When an incoming request could be fulfilled
        by the cache, we could simply stream the data from disk, bypassing the bulk of the XSLT
        processing we would otherwise have to perform.
In the XSLT prototype, the req:request representation of the HTTP request
        is processed via the following steps:	Examine the HTTP PATH of the req:request and check that the resource
              is available on SASSFS; if it is not, return a not-found error code.

	If the media type of the requested resource is not XML, stream the resource from
              SASSFS to the client.

	If the resource is not in cache, build the response. SASS reads resources from
              SASSFS, storing the resources in local cache. Using the resources fetched from SASSFS,
              the SASS service builds an XML rsp:response, and stores that response in
              cache. Each resource written to the cache is accompanied by a corresponding XML
              metadata file.

	If the resource was in cache, check the metadata and perform HTTP HEAD requests
              against SASSFS to see whether or not the item needs to be rebuilt. The rebuild would
              be needed if any one of the constituent resources on SASSFS have changed. If nothing
              has changed, stream the response from disk to the client. Otherwise a
                rsp:response is built as in step #3.



For the XSLT-based prototype work, we decided not to implement the actual Cache-Channel
        client or to hook into the in-memory cache of frequently used Source objects. We would
        tackle these items later, when we implemented the caching logic in Java.
We expected this prototype to be slower than the original implementation, both because
        Firenze would now need to be parsing XML from disk for every request, instead of simply
        reusing cached Source objects, and because we would be polling SASSFS to see if a resource
        had changed.
Our initial analysis of the prototype's performance simply examined the average response
        time across all requests.  We were very unpleasantly surprised to find that for single Atom
        entries the average response time jumped from 0.031 seconds to 0.21 seconds. The average
        response times for compound entries jumped from 0.05 seconds to 0.26 seconds. Looking at
        those averages, we decided we needed to know whether or not the slowdown was across the
        board, or whether the averages reflected large outliers.
We examined response times for a day's worth of requests using each of the two caching
        implementations, and sorted the requests into two categories. One category was for requests
        that would return a single resource, effectively a transfer of a file from SASSFS to the
        client via SASS, with some cleanup processing applied. The second category was for requests
        that returned compound resources. These were resources built by SASS, using component
        resources fetched from SASSFS. We examined the response time for these requests, and sorted
        them into percentiles:Table III
SASS Response Times in Seconds per Cache implementation

	 	Native Firenze Cache	XSLT Prototype Disk Cache
	Percentile	Single	Compound	Single	Compound
	25%	0.0181	0.0212	0.0262	0.0266
	50%	0.0228	0.0346	0.0385	0.0616
	75%	0.0299	0.0609	0.0785	0.1121
	95%	0.0562	0.0956	0.7691	1.0838
	99%	0.1434	0.2134	4.3750	4.7483


This analysis shows that the disk-caching prototype was 1-2.5 times slower than the
        memory-based cache for about 75% of the requests, but that performance was significantly
        worse for the remaining 25% of the requests.
What we discovered were two bottlenecks occurring with the prototype. The first, and
        most significant, bottleneck was the IO subsystem. The hardware on our machines couldn't
        keep up with the level of read/write activity being asked of them. When measuring the disk
        activity, we found it was operating at around 700 block writes per second and around 100
        block reads per second. This level of activity was overwhelming the 7,200 rpm SATA disks
        used by the servers, causing high IO wait times.
The second bottleneck turned out to be the portion of XSLT code responsible for
        executing HTTP HEAD requests to determine whether or not a resource had changed. When we
        profiled the application on a stand-alone machine (eliminating disk contention), we found
        that the following snippet of code was responsible for 30% of the execution time:
    <xsl:sequence select="
      some $m in $cache:metadata
      satisfies cache:is-stale($m)" />


The cache:is-stale function takes as an argument a small XML metadata
        element storing a URL, a timestamp, and an HTTP ETag value. The function executes an HTTP
        HEAD request against the URL to determine whether or not the resource has been modified.
        As Saxon does not take heavy advantage of multi-threading, this XPath expression
        ends up running serially. Because underlying resources don't change very often, the
        algorithm usually ends up running through every metadata element only to find nothing has
        changed.
These discoveries were actually good news to us, as we knew that we could both reduce
        disk contention and parallelize the check for stale resources when we implemented the code
        in Java as a native Firenze service. We're in the process of completing this work, and in
        the meantime we have rolled the XSLT prototype code into active service.
Performance of the prototype has proven to be adequate. Examining 12 days of access logs
        from read-only SASS, the service is handling an average of 5.9 million requests per day,
        ranging from a low of 3.3 million requests to a high of 7.8 million requests. On average the
        service is processing 70 requests per second, writing 3.5 megabytes per second to its
        clients.
Overall the read-only SASS service is serving an average of 266 gigabytes per day.
        Because SASS serves both XML markup and binary data, and because binary data may be streamed
        directly from the SASSFS system without any intermediate processing by SASS, only a subset
        of those 266 gigabytes is XML processed via Firenze. A breakdown of the two types of content
        shows we serve an average of 166 gigabytes of XML data per day, and an average of 100
        gigabytes of binary data:Table IV
Gigabytes served per day by read-only SASS

	Date	XML	Binary	Total
	2009-07-01	193.05	122.33	315.38
	2009-07-02	179.54	114.36	293.90
	2009-07-03	132.53	87.73	220.26
	2009-07-04	88.69	60.18	148.87
	2009-07-05	111.07	69.61	180.68
	2009-07-06	197.56	124.15	321.71
	2009-07-07	221.43	141.19	362.61
	2009-07-08	228.73	142.96	371.69
	2009-07-09	215.75	123.90	339.65
	2009-07-10	178.74	97.77	276.51
	2009-07-11	115.11	48.31	163.42
	2009-07-12	134.76	67.93	202.68


It has proven difficult to compare these numbers against our older system because the
        SASS service combines services that are spread out across multiple database and NFS servers
        in the older system.

Read/Write SASS
In order to implement the read/write SASS service, we knew we needed to build a
        transactional system. We had to be able to know that we could roll back any operation that
        met with an error condition. In addition, we wanted a system that would allow us to search
        the XML documents without needing to write custom code or build new indexes for every new
        query we might come up with.
After exploring the available systems, we decided to license the XML server provided by
        Mark Logic Corporation. In addition, since both the MarkLogic Server and its underlying
        XQuery technology were new to us, we contracted with Mark Logic for consultants to work with
        us to build an implementation of our HPP specification. HighWire staff provided details
        regarding the specification and Mark Logic consultants wrote an implementation in XQuery.
        The implementation was written in just under 7,600 lines of XQuery code, spread across 24
        modules.
We're currently running MarkLogic Server version 3.2, which is a few years old, and
        which uses a draft version of XQuery. Newer releases of MarkLogic implement the XQuery 1.0
        specification, and we plan to eventually modify the XQuery implementation to take advantage
        of the newer releases.
We are currently running the MarkLogic implementation on one dedicated production server
        using four AMD 2218 CPU cores, 32 gigabytes of memory, and 3.7 terabytes of FC attached SATA
        storage. This server is currently handling between 7 to 8 million requests per month, and is
        used as the system of record for our production processing system. The break-down of those
        requests for the months of April, May, and Jun in 2009 were:Table V
Number of requests to SASS read/write service

	Type	April	May	Jun
	GET (non-search)	7,199,235	5,852,764	5,900,093
	GET (search)	642,681	521,106	751,463
	GET (report)	23,308	10,461	16,919
	POST 	1,097,209	730,489	913,385
	PUT 	21,214	10,284	26,905
	DELETE 	9,989	4,652	35,143
	Total Requests	8,993,636	7,129,756	7,643,908

	GET (non-search) reflects the retrieval of a single Atom entry or variant

	GET (search) reflects the execution of a search

	GET (report) reflects the execution of custom reporting modules we've
              written



What these numbers translate to is the loading of between 40,000 to 50,000 articles per
        month, though in our first month of operations, when we were migrating PNAS, we loaded
        93,829 articles that month alone.
As of Jun 18th 2009, the read/write SASS service held the following counts of resource
        types (there are others, but these are the ones whose counts may be of general interest):Table VI
read/write SASS service resource counts

	Resource Type	Count
	Journal/Volume	2,735
	Journal/Issue	17,734
	Journal/Article	421,375
	Journal/Fragment	485,792
	Adjunct	99,121
	All variants	3,511,002


In the table above, Journal/Volume, Journal/Issue, and Journal/Article resources
        correspond to the obvious parts of a journal. Journal/Fragment resources indicate resources
        extracted from an article to create a sub-resource, in this case they are representations of
        figures and tables. Adjuncts are media resources that provide supplemental data to article
        (e.g., raw data sets submitted along with an article). All variants consist of alternative
        representations, including XHTML files, PDFs, images, etc.
In general we've found the performance of MarkLogic to be very good, and have not yet
        reached the level of use that would require us to add additional servers. When we do reach
        that point, an important advantage we see in MarkLogic was that we ought be able to increase
        capacity by simply creating a MarkLogic cluster of multiple servers.
There are two areas where MarkLogic has had some trouble with our particular application:	Complex DELETE operations are slow

	Some ad-hoc XQuery reporting may be resource intensive depending on the
              expressions used.



In MarkLogic, individual delete transactions are very efficient, but to properly
        implement a DELETE operation in SASS the application executes an expensive traversal
        algorithm, building a list of resources, including:	Resources that are children of the targeted resource. 

	Resources that refer to the resource targeted for deletion or to any of its child
              resources.


The application then needs to delete all the descendant resources and remove
        all references to those deleted resources. Deleting a single article could require that the
        application perform a dozen searches, delete fifty resources, and then update all Atom
        entries that refer to those deleted resources. This algorithm is costly to execute, and it
        makes DELETE far slower than the other operations.
For each type of HTTP operation a selection for 5,000 log entries were examined for
        their execution times:Table VII
Seconds to complete a request

	 	Percentiles
	Type	Mean	Minimum	Maximum	50%	75%	99%
	GET (non-search)	0.0397	0.0073	3.6032	0.0133	0.0328	0.2670
	GET (search)	0.4611	0.0098	23.9744	0.2342	0.3818	3.9794
	POST	0.0775	0.0259	0.5822	0.0592	0.0977	0.1750
	PUT	0.1304	0.0159	4.3666	0.0897	0.1487	0.6931
	DELETE	6.1802	0.0084	628.9670	3.4020	4.1776	33.2024

	GET (non-search) reflects the retrieval of a single Atom entry or a variant

	GET (search) reflects the execution of a search



Performance is excellent for the GET (non-search), POST, and PUT operations, and fairly
        good for GET (search), but DELETE operations are far slower than any other operation. The
        intrinsic problem with handling a DELETE is the complexity of the algorithm and the number
        of documents that need to be searched and modified. In theory we ought to be able to
        optimize how the searches are performed, implementing a more efficient algorithm, thereby
        speeding up the execution. Because DELETE operations make up such a small number of the
        requests we execute, we have not yet seriously investigated implementing such an
        optimization.
The other problem area we've had with MarkLogic is constructing efficient ad-hoc
        queries. MarkLogic automatically creates indexes for any XML that it stores, and while these
        indexes cover many types of possible queries, it is possible to construct queries that do
        not take advantage of these indexes. At various times we want to run ad-hoc reports against
        the database, and we've found that some of these queries can time out if they are written
        without applying some knowledge of how the server's query optimizer work. Given the
        structure of our XML, for some of our ad-hoc queries, a challenge has been that our version
        of MarkLogic Server will not use an index if the expression is within nested predicates. As
        an example, if we have an index built on the two attributes @scheme and
          @term for atom:category in an Atom entry, which together
        function as a key/value pair:	
              /atom:entry/atom:category/@scheme
            

	
              /atom:entry/atom:category/@term
            


 as well as on the element:	
              /atom:entry/nlm:issue-id
            


 then if we wanted to find those entries with the values represented by the
        variables $scheme, $term, and $issue-id, the XPath
        expression must be written along the lines of
        
  for $cat in /atom:entry[nlm:issue-id = $issue-id]/atom:category[@scheme eq $scheme and @term eq $term]
  return $cat/parent::atom:entry


Writing it in an alternative way, using nested predicates,
        
  /atom:entry[atom:category[@scheme eq $scheme and @term eq $term] and nlm:issue-id = $issue-id]


        results in the server's not using the @scheme and @term indexes,
        resulting in longer execution times. As more predicates are added to a query, it can become
        very difficult to figure out how best to structure the query to take full advantage of the
        indexes.
As an example, the following XQuery expression searches for Atom entries under a
        specified $journal-root location, and identifies those Atom entries that match particular
        atom:link and atom:category criteria. The nested predicates listed are required to ensure no
        false positives are returned:
        
  xdmp:directory($journal-root, "infinity")/hw:doc
    /atom:entry
      [atom:link[@rel eq $hpp:rel.parent and @c:role = $hpp:model.journal]]
      [atom:category[@scheme eq $hpp:role.scheme and @term eq $hpp:model.adjunct]]
      [not(atom:link[@rel eq 'related' and @c:role = $hpp:model.adjunct.related])]


This query takes some 472 seconds to run against a $journal-root which
        contains a little over 1.8 million resources. Rewriting the query to first look for one half
        of the criteria for each nested predicate listed above, thereby allowing the server to use
        more indexes, reduces the execution time to around 4.6 seconds:
        
  for $entry in
    xdmp:directory($journal-root, "infinity")/hw:doc
      /atom:entry
        [atom:link/@c:role = $hpp:model.journal]
        [atom:category/@term = $hpp:model.adjunct]
        [not(atom:link/@c:role = $hpp:model.adjunct.related)]
  where
    $entry/atom:category[@scheme eq $hpp:role.scheme and @term eq $hpp:model.adjunct]
    and $entry/atom:link[@rel eq $hpp:rel.parent and @c:role = $hpp:model.journal]
    and not($entry/atom:link[@rel eq 'related' and @c:role = $hpp:model.adjunct.related])
  return
    $entry

Both
        queries produce the correct results; it's just a matter of how quickly those results are
        computed. Another way we could improve the performance of this query is to change the
        structure of our XML to be better aligned with MarkLogic's indexes. For this application,
        that was not an option.
MarkLogic Server is able to provide detailed information about which parts of a query
        are using an index, and is able to provide very detailed statistics regarding cache hit
        rates for a query. Many queries in MarkLogic can be fully evaluated out of the indexes, and
        these queries are very efficient, usually returning in sub-second time. However, as queries
        become more complex, the developer needs to understand the impact of the query's conditions
        and the way they interact with the indexes. MarkLogic provides accurate responses to
        queries, and as the query is made to make more use of the indexes, response times are
        typically reduced.
As an example, the following query makes full uses of the indexes to identify those
        resources that contain a given DOI value $doi, and MarkLogic can return results for this
        type of query in less than 0.1
        seconds:
       for $doc in
         xdmp:directory("/pnas/", "infinity")/hw:doc/
           atom:entry/nlm:article-id[@pub-id-type eq "doi"][. eq $doi]
       return
         base-uri($doc)
     



Babel XSLT
The final component of the XML-based systems used in H2O is the Babel XSLT processing
      engine. Babel XSLT is a batch processing engine that we use to transform incoming source XML
      into resources for loading into the read/write SASS service. We've implemented an HPP aware
      client in XSLT 2.0 (using Java extensions to allow XSLT programs to act as an HTTP client),
      and we perform the bulk of our content loading using the Babel XSLT engine to POST the content
      into the read/write SASS service.
Babel XSLT is an HTTP service that accepts XML documents describing a batch operation to
      perform. A batch consists of an XSLT stylesheet to run, an optional set of XSLT parameters
      (these parameters may be complex content, meaning they may contain document fragments or node
      sequences), and one or more input sources to process, along with corresponding output targets.
      When a batch is submitted, it is queued for processing until the server has free
      capacity.
Once the server begins processing a batch, it draws from a pool of threads to apply the
      specified stylesheet to each specified input source in parallel. Upon completion, a batch log
      report is produced that indicates the start and stop time of each transformation, as well as
      any xsl:message log events captured during the execution of the individual
      transformations. As with the input parameters, the xsl:message log events may be
      complex content.
An example batch input 
<babel-xsl:batch xmlns:babel-xsl="http://schema.highwire.org/Babel/XSLT/Batch"
  name="HWX.jmicro_iss_58_4.intake.StyleCheckPMC.runPMCArticleValidator"  
  stylesheet="stylesheets/third-party/pmc-nlm-style/default/nlm-stylechecker.xsl">
  <babel-xsl:transform
    source="file:/HWE1/process/intake/jmicro/jmicro_iss_58_4/TagTextFiles/StyleCheckPMC/dfp013.xml" 
    result="file:/HWE1/process/intake/jmicro/jmicro_iss_58_4/TagTextFiles/StyleCheckPMC/dfp013.xml" />
  <babel-xsl:transform
    source="file:/HWE1/process/intake/jmicro/jmicro_iss_58_4/TagTextFiles/StyleCheckPMC/dfp010.xml" 
    result="file:/HWE1/process/intake/jmicro/jmicro_iss_58_4/TagTextFiles/StyleCheckPMC/dfp010.xml" />
  <babel-xsl:transform
    source="file:/HWE1/process/intake/jmicro/jmicro_iss_58_4/TagTextFiles/StyleCheckPMC/dfp018.xml" 
    result="file:/HWE1/process/intake/jmicro/jmicro_iss_58_4/TagTextFiles/StyleCheckPMC/dfp018.xml" />
  <babel-xsl:transform
    source="file:/HWE1/process/intake/jmicro/jmicro_iss_58_4/TagTextFiles/StyleCheckPMC/dfp002.xml" 
    result="file:/HWE1/process/intake/jmicro/jmicro_iss_58_4/TagTextFiles/StyleCheckPMC/dfp002.xml" />
  <babel-xsl:transform
    source="file:/HWE1/process/intake/jmicro/jmicro_iss_58_4/TagTextFiles/StyleCheckPMC/dfp017.xml" 
    result="file:/HWE1/process/intake/jmicro/jmicro_iss_58_4/TagTextFiles/StyleCheckPMC/dfp017.xml" />
</babel-xsl:batch>

 would apply the specified stylesheet in to all five
        babel-xsl:transform/@source inputs in parallel, producing five result files and
      a batch log:
<babel-xsl:log xmlns:babel-xsl="http://schema.highwire.org/Babel/XSLT/Batch"
  name="2009/07/15/09/HWX.jmicro_iss_58_4.intake.StyleCheckPMC.runPMCArticleValidator" 
  stylesheet="jndi:/localhost/babel-xslt-01/stylesheets/third-party/pmc-nlm-style/default/nlm-stylechecker.xsl">
  <babel-xsl:start time="2009-07-15T09:16:23.652-07:00" />
  <babel-xsl:transform-start time="2009-07-15T09:16:23.667-07:00" 
    source="file:/HWE1/process/intake/jmicro/jmicro_iss_58_4/TagTextFiles/StyleCheckPMC/dfp013.xml" />
  <babel-xsl:transform-start time="2009-07-15T09:16:23.667-07:00" 
    source="file:/HWE1/process/intake/jmicro/jmicro_iss_58_4/TagTextFiles/StyleCheckPMC/dfp010.xml" />
  <babel-xsl:transform-start time="2009-07-15T09:16:23.667-07:00" 
    source="file:/HWE1/process/intake/jmicro/jmicro_iss_58_4/TagTextFiles/StyleCheckPMC/dfp018.xml" />
  <babel-xsl:transform-start time="2009-07-15T09:16:23.667-07:00" 
    source="file:/HWE1/process/intake/jmicro/jmicro_iss_58_4/TagTextFiles/StyleCheckPMC/dfp017.xml" />
  <babel-xsl:transform-start time="2009-07-15T09:16:23.668-07:00" 
    source="file:/HWE1/process/intake/jmicro/jmicro_iss_58_4/TagTextFiles/StyleCheckPMC/dfp002.xml" />
  <babel-xsl:transform-success time="2009-07-15T09:16:24.406-07:00" 
    source="file:/HWE1/process/intake/jmicro/jmicro_iss_58_4/TagTextFiles/StyleCheckPMC/dfp018.xml" />
  <babel-xsl:transform-success time="2009-07-15T09:16:24.647-07:00" 
    source="file:/HWE1/process/intake/jmicro/jmicro_iss_58_4/TagTextFiles/StyleCheckPMC/dfp002.xml" />
  <babel-xsl:transform-success time="2009-07-15T09:16:24.756-07:00" 
    source="file:/HWE1/process/intake/jmicro/jmicro_iss_58_4/TagTextFiles/StyleCheckPMC/dfp010.xml" />
  <babel-xsl:transform-success time="2009-07-15T09:16:24.769-07:00" 
    source="file:/HWE1/process/intake/jmicro/jmicro_iss_58_4/TagTextFiles/StyleCheckPMC/dfp013.xml" />
  <babel-xsl:transform-success time="2009-07-15T09:16:24.795-07:00" 
    source="file:/HWE1/process/intake/jmicro/jmicro_iss_58_4/TagTextFiles/StyleCheckPMC/dfp017.xml" />
  <babel-xsl:success time="2009-07-15T09:16:24.795-07:00" />
</babel-xsl:log>


The Babel XSLT service keeps a permanent cache of compiled Templates for the stylesheets
      it is asked to execute. Because a batch requires the uniform application of any XSLT
      parameters to every input source in a batch, the server is then able to set up its processing
      workflow once and then apply that workflow en masse to all the inputs listed in the
      batch.
We currently use Babel XSLT to produce and, via its HTTP and HPP client extensions, to
      load and update almost all H2O content. The production process includes tasks such as applying
      Schematron assertions to produce reports on the content, applying normalization routines to
      the article source XML, enriching the article source XML to include extra metadata, and
      converting those article source files into Atom entries and variant representations (e.g.,
      XHTML). HighWire has written about 48,000 lines of XSLT 2.0 code (including comments and
      whitespace), spread across 318 stylesheets, to perform this work.
We are currently running Babel XSLT on two servers. Each server uses two AMD 1210 cores, 8
      gigabytes of memory, and various NFS mounted storage arrays. Across both servers we are
      executing an average of 3,839 transformations per hour. At peak times we've run anywhere from
      23,000 to 57,000 transformations in an hour. Transformation execution times range from a low
      0.20 seconds to a high of 20.0 seconds, with 95% of transformations taking less than 7.0
      seconds to complete.
The biggest efficiency headache we've encountered with the Babel XSLT service has been
      related to its memory requirements. A large enough batch job can run into memory limits as it
      converts the incoming batch into a JDOM object, runs its XSLT transformations, and uses JDOM
      to produce the batch log report. The Babel XSLT servers have a minimum memory footprint
      ranging from 200 to 300 megabytes, but can easily use up to 5 gigabytes of memory to process
      their workloads. In the space of one minute, a server might jump from needing 500 megabytes to
      needing 2.5 gigabytes of memory.
Currently HighWire uses a Perl-based framework to submit Babel XSLT jobs. The Perl code is
      responsible for identifying which stylesheet and which input and output files need to be
      submitted for a given batch, based on the phase of processing in a workflow. The Perl code is
      responsible for producing a batch, submitting it to the Babel XSLT system, and then examining
      the batch log report to determine whether or not the job was completed successfully, and to
      report any messages emitted by the stylesheet.

Conclusion
By far our most challenging experience has been that of educating everyone within our
      organization. Our developers are faced with new systems that make use of a bewildering array
      of specifications and standards, and it has not been easy for everyone involved to come up to
      speed on everything; our developers have demanded better documentation and clearer
      explanations of how the new systems work.
In terms of performance, we've found the XML-based technologies to be adequate, if not
      stellar. When we've needed to improve performance we've applied traditional techniques:	Don't perform work if you don't need to (e.g., Firenze's ability to remove handlers
            from the stack when the handler has completed its task).

	Take advantage of optimized representations of your data, if available (e.g., using
            compiled Templates, making use of optimized Source implementations).

	Develop caching techniques at multiple layers, trading space for time.

	Examine your algorithms to determine if they are the best fit for the
            application.



Applying these techniques, the XML-based technologies we've discussed here can be made
        fast enough for most of our needs.
The advantages we see to using a unified, RESTful, XML data store paired with high-level
      declarative programming languages like XSLT and XQuery are:	It is easier to introduce changes to our data models.

	There's no need to spend time writing code that converts data from one data model
            into another (e.g., from relational form to an object-oriented form and back).
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