[image: Balisage logo]Balisage: The Markup Conference

Towards markup support for full GODDAGs and beyond: the EARMARK approach
Angelo Di Iorio
Department of Computer Science, University of Bologna

<diiorio@cs.unibo.it>

Silvio Peroni
Department of Computer Science, University of Bologna

<speroni@cs.unibo.it>

Fabio Vitali
Department of Computer Science, University of Bologna

<fabio@cs.unibo.it>

Balisage: The Markup Conference 2009
August 11 - 14, 2009

Copyright © 2009 by the authors. Used with
 permission.

How to cite this paper
Di Iorio, Angelo, Silvio Peroni and Fabio Vitali. "Towards markup support for full GODDAGs and beyond: the EARMARK approach." Presented at: Balisage: The Markup Conference 2009, Montréal, Canada, August 11 - 14, 2009. In Proceedings of Balisage: The Markup Conference 2009.
 Balisage Series on Markup Technologies vol. 3 (2009). https://doi.org/10.4242/BalisageVol3.Peroni01.

Abstract
One of the most evident tenets of the literature on overlapping markup is that the
 philosophy of documents as trees (as dictated by meta-markup languages such as SGML
 and XML) is a simplification that sometimes fails and requires corrections. These
 corrections have been proposed at the markup level (e.g., milestones, segmentation),
 at the meta-markup level (e.g., LMNL, TexMecs, XCONCUR, etc.) or at level of the
 abstract model (e.g., GODDAG). Unfortunately full GODDAGs do not allow
 linearizations in general, and as such a restricted version of GODDAG, r-GODDAG, has
 been proposed that is guaranteed to be linearizable (in TexMecs) and still allows
 many nice features beyond trees.
In this paper we discuss that the problem of linearizing more-than-hierarchical
 structures lies basically in the embedding of markup within content and that no such
 problem arises with an appropriate standoff approach, that is able to represent full
 GODDAGs without restrictions. This gives ample opportunities to deal with
 interesting markup features that are describable with GODDAGs but not with
 r-GODDAGs, such as non-contiguous elements and virtual elements.
Besides, we discuss whether a specific constraint of full GODDAGs is really
 necessary once all residual hopes of embeddability are given up, and we further
 propose a minimal extension to GODDAG, genially called "extended GODDAG" (e-GODDAG)
 that, by removing the requirement for names in non-terminal nodes, adds support for
 additional interesting markup features such as content repetitions. In truth,
 e-GODDAGs are even less embeddable than full GODDAGs, but they are just as easily
 dealt with by using stand-off markup.
We further propose a meta-syntax for non-embedded markup, called EARMARK, that can
 be used for stand-off annotations of textual content, and that naturally represents
 e-GODDAGs with fully W3C-compliant technologies. EARMARK is based on an
 ontologically precise definition of markup that instantiates the markup of a text
 document as an OWL document, and through appropriate OWL and SWRL characterizations
 it can define structures such as trees, r-GODDAGs, full GODDAGs and e-GODDAGs, and
 can be used to generate validity constraints (including co-constraints), and to
 verify adherence to content model patterns.
As mentioned, in general the embedding of a full EARMARK document is not straightforward,
 but approaches can be taken in that direction: just like segmentation and
 fragmentation are strategies to embed in a strictly-hierarchical language a
 r-GODDAG-specific feature such as overlapping elements, similarly a number of
 strategies exist to provide embedding of GODDAG and e-GODDAG features in less
 expressive syntaxes. In the final part of the paper we discuss our wish to provide
 at the metalanguage level a series of embedding strategies of the non-hierarchical
 features of EARMARK, i.e. a number of language-independent mechanisms to express
 e-GODDAGs structures into XML (as well as in TexMecs and in LMNL) and that can be
 recognized as such (i.e., as strategies, as tricks) by tools and readers alike,
 especially for further uses of such documents.

Balisage: The Markup Conference

 Towards markup support for full GODDAGs and beyond: the EARMARK approach

 Table of Contents

 	Title Page

 	Introduction

 	Embedding multiple hierarchies

 	Could singing songs be such a big deal?
 	Dark is the overlapping sky

 	Restricted GODDAG

 	A more general data structure: the GODDAG

 	Beyond GODDAG: extensions for repeatability

 	EARMARKing cats and docs
 	General model

 	 Detailed model

 	“And I Love Her” in EARMARK

 	Embedding EARMARK documents

 	Handling the remaining EARMARK structures
 	Milestones

 	Fragmentation

 	 Repetitions

 	 Hidden variants

 	 RDFa

 	 Embedded RDF

 	 Conclusions

 	Acknowledgements

 	About the Authors

 Towards markup support for full GODDAGs and beyond: the EARMARK approach

Introduction
Not everybody working with markup languages needs support for overlaps and multiple
 hierarchies. But those that need it, usually need it badly. So badly, in fact, that a
 robust slice of markup literature is devoted to it, specialized scientific events have
 taken place, and a number of extremely varied approaches have been proposed in the last
 years for this issue.
Some of these approaches were proposed at the language level: many XML languages (TEI
 [17] being the most evident) took the decision to add specific
 language-dependent markup structures devoted to supporting overlapping. Some of such
 solutions, such as milestones and fragmentation, are so general and widely applicable
 that have been proposed even outside of the specificity of just one markup language
 (e.g., see [6]), as architectural forms available in general in
 XML languages. Further approaches have been to create new meta-markup languages,
 inspired by but independent from XML such as TexMecs, LMNL, XCONCUR, that provide at the
 metalanguage itself support for more than a single hierarchy. This makes it possible for
 any language defined within the syntax to make use of the features for overlaps, without
 the need for further special tools to make sense of the annotations.
At the conceptual level, what has shown its limits is the idea of forcing tree-like
 structures over documents. While some may be fully described by trees, some just are not,
 and we need more powerful abstract data structures to describe them. GODDAGs [19] have been proposed exactly for this purpose: direct acyclic
 ddgraphs with ordered children relax exactly the kind of constraints of trees that were
 in the way for sophisticated markup features such as overlap. Unfortunately, generalized
 GODDAGs do not allow an immediate linearization in form of an XML-like syntax (even if
 extended in some way), but a variant, restricted GODDAGs ([19] and
 then [12]), does allow a linearization in TexMECS. In general,
 though, the linearization of full generalized GODDAGs does not allow to keep all information
 expressed in the original graph. Many additional useful features of
 GODDAGs (e.g., virtual elements) can only be converted in XML structures by recurring to
 procedural tricks.
In this paper we discuss whether the problem of generalized GODDAGs lies in the
 embedding nature of meta-markup languages such as XML, TexMecs and LMNL, and whether by
 getting rid of embeddability altogether we can exploit the full potentiality of GODDAGs.
 Furthermore, we propose a minimal extension to GODDAGs to provide full support of
 repeated content in GODDAGs (currently only allowed if appearing in different
 substructures), thereby generalizing the idea of repeatability of markup structures.
Additionally, in this paper we propose a meta language for GODDAGs and extended
 GODDAGs that relies 100% on well-known and widely available W3C technologies: EARMARK
 (Extreme Annotational RDF Markup) is a language for
 standoff annotations over documents that is based on an OWL ontology and uses RDF
 annotations as its linearization approach. EARMARK annotations are facts expressed about
 OWL classes such as ranges and markup elements whose properties are fully and explicitly
 described in the OWL ontology itself, and minimally depend on syntactic constraint that
 are inherent of embedded languages. Thus all standard hierarchy assertions as usually
 expressed in XML are available in EARMARK, but the language also supports overlapping
 structures, virtual elements, anonymous elements and structured attributes, that are
 available with more sophisticated non-XML languages such as TexMECS or LMNL, as well as
 unsupported features such as repeated structures, content variants and partially
 overlapping multiple hierarchies[1] etc. are trivially expressed in EARMARK, and contribute to generate a
 language that is suited to fully support generalized GODDAGs and extended GODDAGs.
EARMARK documents are therefore OWL documents that can be expressed as RDF assertions,
 and using plain and standard W3C technologies a number of Semantic Web tools can be used
 for generating, converting, querying and displaying EARMARK documents. Particularly
 relevant here is the process of embedding EARMARK documents in traditional embedded
 languages, such as XML or TexMecs. Of course, not all EARMARK assertions can be directly
 transformed into XML markup structures. The specific subset of the EARMARK document that
 can be expressed in the destination syntax (e.g., any of the possible tree substructures
 for XML, or of the r-GODDAG substructures for TexMecs) can be directly generated, and
 the remaining ones need to be either left out or forcedly embedded using any of a number
 of well-known or newly-introduced syntactic tricks (up to, of course, leaving part of
 the EARMARK markup directly as RDF fragments within the destination document).
Providing a recognizable and repeatable two-way process for generating EARMARK
 documents out of embedded documents, and vice versa for generating embedded documents
 out of EARMARK document with embedding tricks represents also a chance to collect and
 generalize all such embedding tricks, and providing an additional conversion model
 between different syntaxes. All in all, we propose EARMARK as the most natural
 syntactical rendering of GODDAGs (and e-GODDAGs, of course) and as the intermediate
 representation of any conversion path for documents, XML or otherwise, that use
 overlapping features of any form, i.e., as a generalization of the conversion algorithms
 for overlapping structures proposed in [13].

Embedding multiple hierarchies
There comes a time, in marking up documents, where different types of annotations need
 to be placed upon the same content, and different markup needs to be used. Sometimes
 these different annotations nest easily, and sometimes they do not. Trying to express
 these different annotations using a hierarchical metamarkup language such as XML is,
 per se, unfeasible: each structure needs to be
 described by its own hierarchy, and the overlapping situations pose a big problem,
 since, as we know, XML is not naturally equipped to deal with them.
Some approaches to deal with overlapping structures in markup languages were proposed
 in past years. Each approach tries mediating between the support for overlapping and the
 hierarchical organization of XML documents, as illustrated in [6],
 as well as in [17], [20] and [13]. The five main overlap-handling techniques described in
 literature can be summarized in the following:
	
 milestones, through which one hierarchy is
 expressed using the standard hierarchical XML markup and the elements belonging
 to the other ones are represented through a pair of empty elements representing the
 start and the end tags, and connected to each other by special
 attributes.

	
 flat milestones, that represents each of the
 hierarchy elements as a milestone, i.e., an empty element placed where the start
 or the end tag should be, all of them contained as children of the same root
 element.

	
 fragmentation, in which one hierarchy (the
 primary) is expressed though the standard hierarchical XML markup, and the
 elements of the secondary hierarchies are fragmented within the primary elements
 as needed to suit the primary hierarchy and are connected to each other by
 special attributes.

	
 twin documents, in which each hierarchy is
 represented by a different document, which contains the same textual
 content but marks up the elements according to the individual hierarchy.

	
 stand-off markup, which puts all the textual
 content in a single structure with the possible specification of the shared
 hierarchy, and puts the remaining elements in other structures (e.g., files) with the
 positional association of each starting and ending location to the main
 structure, using, for instance, XPointer [5] locations.

A separate approach is to give up the XML requirements of a single hierarchy, and
 try new approaches where multiple hierarchies can be specified in the same text flow.
 The data structure itself, of course, is not a tree anymore, and needs to become
 something more general. The General Ordered-Descendant Directed
 Acyclic Graph
 [19], or GODDAG, is the most
 relevant data structure that has been used to specify complex markup hierarchies, such
 as overlapping between elements and fragmentation.
Although GODDAG is not able to handle directly other features such as anonymous
 elements and structured attributes, yet another different non-XML approach for these and
 other well-known overlapping scenarios is given by Layered Markup
 anNotation Language
 [21], or LMNL. Contrarily to
 GODDAG, that expresses the many hierarchies with a graph, LMNL uses a XML-like syntax
 where named or anonymous elements can overlap with other ones in one or more element
 layers.
A similar approach is used by XConcur [15]. An XConcur document
 is made of multiple layers coexisting in the same multi-root structure, written in a
 XML-like syntax: each layer represents an independent hierarchy that can be extracted as
 a single unit and validated against a DTD, XML-Schema or RelaxNG schema. Relationships
 and constraints between multiple hierarchies are ruled by a related constraint language
 called XConcur-CL. XConcur documents end up being very complex and few tools to
 manipulate them are available.

Could singing songs be such a big deal?
To illustrate some of the difficulties in handling complex structures, let us examine
 a fictitious karaoke application in which lyrics are displayed on a screen in sync with
 a recording of the instrumental parts of the corresponding song; in order to make the
 example even more interesting, let us consider the situation whereby, beside the
 screenfuls of lyrics, the application would also show the chords of the song for any
 additional instrument playing along, and a few fun facts popups here and there to keep
 the attention of the readers.
We will use as an example for our discussion the song "And I love her" by the Beatles,
 one of the most famous and sung songs of the history of modern music. The lyrics of the original
 version appear in Table 1.
Table 1
Lyrics and structure of “And I love
 her” by The Beatles

	
 Title

 	
 And I love her

	
 1

 	
 I give her all my love / That's all I do / And if you saw my love /
 You'd love her too

	
 Chorus

 	
 I love her

	
 2

 	
 She gives me ev'rything / And tenderly / The kiss my lover brings /
 She brings to me

	
 Chorus

 	
 And I love her

	
 3

 	
 A love like ours / Could never die / As long as I / Have you near
 me

	
 4

 	
 Bright are the stars that shine / Dark is the sky / I know this love
 of mine / Will never die

	
 Chorus

 	
 And I love her

	
 4

 	
 Bright are the stars that shine / Dark is the sky / I know this love
 of mine / Will never die

	
 Chorus

 	
 And I love her

The first difficulty for our karaoke application is to handle more than one structure
 at the same time. We may be interesting in building multiple structures over the same
 content:
	the lyrics organized in stanzas and verses

	the notation for the time-driven excerpts of lyrics as shown on screen during
 the playback

	additional time-driven visualization of the chords, with different time
 intervals

	the (either time-driven or content-driven) visualization of pop-ups with fun
 fact sentences

Furthermore, we may need to deal with small difference in lyrics if the gender of the
 loved one is female, as in Beatles' original (“and I love her”) or male, as in several
 covers (“and I love him”).
Dark is the overlapping sky
Let us concentrate on a single stanza of the song, the fourth, and its
 refrain:
Bright are the stars that shine / Dark is the sky / I know this love of mine / Will never die / And I love her
 The first hierarchy represents the lyrics. We may employ an XHTML vocabulary, using the
 class attribute for characterizing containers (e.g. “stanza” and “refrain”),
 obtaining a clear and straightforward structure.
<body>
 <div class="stanza" title="4">
 <p>Bright are the stars that shine</p>
 <p>Dark is the sky</p>
 <p>I know this love of mine</p>
 <p>Will never die</p>
 </div>
 <div class="refrain">
 <p>And I love her</p>
 </div>
</body>
 The harmony of the song uses two chords, Em and Bm, for each of the first three
 lines, then moving to the bridge G for the last line and then the refrain in A and
 D. The A chord starts while the melody is still singing the second part of the last
 line of the stanza. A possible, trivial hierarchy for chords would then be:
<chords>
 Bright are the
 <Bm>stars that shine</Bm>
 Dark is the
 <Bm>sky</Bm>
 I know this
 <Bm>love of mine</Bm>
 <G>Will never</G>
 <A>die And I
 <D>love her</D>
</chords>
 We have a different issue with the timings for the lyrics. We want each line to
 appear exactly when the music calls for it to be sung, but at the same time we want that the next
 line is shown, too, so that the singer gets ready to sing it aftwerward. Thus each line
 has to appear twice in each screenful, as in the following XML fragment:
<timing>
 <screenful starts=”68”>
 <main>Bright are the stars that shine</main>
 <next>Dark is the sky</next>
 </screenful>
 <screenful starts=”72”>
 <main>Dark is the sky</main>
 <next>I know this love of mine</next>
 </screenful>
 <screenful starts=”76”>
 <main>I know this love of mine</main>
 <next>Will never die</next>
 </screenful>
 <screenful starts=”80”>
 <main>Will never die</main>
 <next>And I love her</next>
 </screenful>
 <screenful starts=”84”>
 <main>And I love her</main>
 </screenful>
</timing>
 Only this is not nice: each line appears twice in the screen, and therefore twice
 in the XML document, and forcing them to appear only once in the XML structure would
 either require overlapping, or forcing some structural semantics into procedural
 attributes, that would imply implementing ad hoc visualization tools, as in:
 <p main=”68”>Bright are the stars that shine</p>
 <p main=”72” next=”68”>Dark is the sky</p>
 <p main=”76” next=”72”>I know this love of mine</p>
 <p main=”80” next=”76”>Will never die</p>
 <p main=”84” next=”80”>And I love her</p>
 We do not like this approach and will not consider it further. Yet the
 multiplicity of the lines is worrisome, as it creates a redundancy that has to be
 carefully considered.
As for the pop-ups, we want to show some additional text exactly at the right time
 – i.e. when the song gets to the precise point of the lyrics associated to these
 paragraphs. It is not even given that pop-ups are aligned with whole lines, indeed
 it could very well happen that the association transcends line boundaries, as in the
 following:
<funfacts>
 <popup>
 <lyrics>this love of mine Will never die</lyrics>
 <fact>
 <p>Paul McCartney wrote this about his girlfriend,
 an actress named Jane Asher.</p>
 </fact>
 </popup>
</funfacts>
 As we have seen, each of these structures, taken individually, is a single
 hierarchy and could be easily managed with a traditional XML document. There is a
 final issue related to text variants: depending on the preferences of the singer, we
 may want to decline the lyrics in the masculine or feminine gender. As such, we end
 up with two variants of the refrain, and no syntactically evident way to point out
 which variant to show and which to ignore in each given run of the application:
 <div class="refrain">
 <p>And I love her
 him</p>
 </div>
 This is not declarative at all: it is the application's job to know that when the
 feminine version is chosen, elements of class feminine are present (i.e., shown) and
 elements of class masculine are absent (i.e., hidden), and vice-versa: the class
 attribute suddenly impacts not only on the presentation of the lines, but on their
 presence and content, too.
Finally, the issue of repetitions has a further and subtler issue, that impacts on
 the difference between the content of a document and its structured content.
In the Beatles' song there are some repetitions of quite large structures, such as
 the refrain and the fourth stanza. It could be considered a pointless exercise in
 futility to decide whether the refrains of a song are to be considered as one
 instance of content to be repeated as needed after each stanza, or many different
 instances whose content happens to be identical. Yet, the praxis of transcription of
 song lyrics is usually to qualify the refrain lyrics as such the first time they are
 sung, and then refer back to them all other times without actually repeating the
 content, and as such we will treat them in our example. Yet the refrains are
 necessary handled, in an XML document, by repeating the entire structure,
 duplicating the markup code and the text. We could introduce it the first time
 only[2], and refer to it in some way the other times – for example, through an
 “href” attribute – in the other parts of the lyrics. Similarly we could handle the
 repetition of the fourth stanza, i.e., as follows:
<body>
 <h1>And I love her</h1>
 <div id=”first” class="stanza" title="1">[...]</div>
 <div id=”refrain” class="refrain">
				<p>And I love her</p>
				</div>
 <div id=”second” class="stanza" title="2">[...]</div>
 <div href=”#refrain” />
 <div id=”third” class="stanza" title="3">[...]</div>
 <div id=”fourth” class="stanza" title="4">[...]</div>
 <div href=”#refrain” />
 <div href=”#fourth” />
 <div href=”#refrain” />
</body>
 Unfortunately, we believe again that this approach is not declarative enough: it
 is the application's job to understand that the last three div elements are not
 empty, but refer to the previous-declared elements and repeat their content.
 XML entity references could be used to express repetitions too: content can be
 declared as an entity to be resolved when users view the document. From a merely
 presentation perspective, such an approach would be enough as all the repeated
 content is retrieved and merged into the final XML file. On the other hand,
 processing entities in a more sophisticated way still require entangled and
 application-dependant operations. For instance, it is rather complex to add metadata
 about entities, to extract information about that content, to process those
 fragments via XSLT or to validate entity fragments.
Joining the above mentioned different hierarchies in a single document and dealing
 with the issues mentioned so far presents issues that are not manageable
 with the plain XML armamentarium, and requires special approaches:
	the timing of the A chord overlaps two lines of the lyrics;

	the timed display of the lyrics requires each line to be shown multiple
 times;

	the popups introduce additional text content to the document, and do so
 independently of the stanza and line structure of the lyrics;

	text variants require elements that exist or do not exist depending on
 context;

	repetitions require that content is specified once, and referred to many
 times.

Some of these structural issues can be handled by standard overlapping approaches,
 and other can be dealt with by introducing ad hoc, non-declarative markup that is
 procedurally interpreted by specialized tools. But it is at the level of the data
 structure model that we prefer to study the problem.

Restricted GODDAG
Handling overlapping elements requires a more expressive data structure than
 trees, such as directed graphs. Restricted GODDAG
 ([19] and [12]) are able to deal with the
 lyrics/chord overlap, as shown in Figure 1.
Figure 1
[image:]The rGODDAG structure to handle lyrics and chords overlapping. The red
 dashed line represents, here and in the following figures, the document
 order.

Restricted GODDAGS gives strong support for overlapping structures and guarantees
 their full linearizability into TexMECS documents [9].
Restricted GODDAGs, on the other hand, will not help us with the management of
 popups. Restricted GODDAGS have some strong constraints that prevent this:
	each r-GODDAG node dominates a contiguous sequence of leaf nodes (i.e.,
 nodes that contain text);

	no two r-GODDAG nodes that are not connected by a dominance relation,
 dominate the same subsequence of leaf nodes.

For our popups, these constraints appear quite strong, and particularly the first
 one. Basically, the requirement of contiguity prevents two hierarchies to overlap on
 some leaf nodes whenever the content of other leaf nodes is different.
In our example, inserting in the same document both the lyrics
 structure and the one related to the popups implies breaking the contiguousness of
 one of the two hierarchies, because there is always a node that breaks the constraint.
Consider the situation in which a popup is associated to the string “this love of
 mine Will never die”. If the content of the fun fact is put at the end of the
 lyrics, as shown in Figure 2, the elements “funfacts” and
 “fact” both dominate non-contiguous leaf nodes, as “this love of mine” is
 non-contiguous with “Paul McCartney...”, thus breaking the constraint.
Figure 2
[image:]The first tentative to make an r-GODDAG for describing both lyrics and
 fun fact.

If, on the other hand, the content of the fun fact is put before or after the
 lines it refers to (Figure 3), the element “body” will
 dominate non-contiguous leaf nodes (two of them will be interrupted by the “Paul
 McCartney...” node that does not belong to that hierarchy) and therefore violate the
 constraint.
Figure 3
[image:]The second tentative to make an r-GODDAG for describing both lyrics
 and fun facts.

So, even if a restricted GODDAG is a more expressive data structure than a tree,
 it is still not sufficient to handle complex scenarios such as the ones described.
 The overall point of the contiguity constraint is to allow for embedding markup
 within text; thus r-GODDAG structures are indeed representable with milestones or
 fragmentation in XML, or with TexMECS documents, but more complex structures are
 still unavailable, such as those involving non-contiguous leaf nodes.

A more general data structure: the GODDAG
If we give up the feature of embedding, we already have a data structure for
 handling complex overlapping scenarios: the full GODDAG, which does not require the
 two constraints mentioned above: it does not require leaf nodes to follow document order,
 and it does not require that any two different nodes dominate
 different sets of leaf nodes.
Without these restrictions, we can describe all four hierarchies in a GODDAG, as
 shown in Figure 4. The obvious disadvantage of this data structure
 is that embedding everything in a linear structure such as an XML
 document implies either losing some information or recurring to procedural tricks that
 would subject the structural meaning of the document to specific tools.
Figure 4
[image:]A GODDAG for the four hierarchies defined for the song. Document order
 is not shown since where it is not obvious (e.g., in the lyrics lines
 it is completely arbitrary).

In Figure 4 the full GODDAG structure of the three data hierarchies is
 shown: lyrics (in blue), the time in which the lyrics are shown (in yellow), the
 chords (in violet) and the fun facts popups (in green). Non-bordered nodes are
 content, bordered nodes represent markup: rectangles are XML elements, and
 rounded rectangles are XML attributes.
Moreover, through GODDAG we can handle cases of textual variants and some simple
 cases of repetitions (for instance, specifying the presence of the class attribute
 in multiple div elements, and even specifying that the refrain text appears in
 multiple places, but is really only defined once).
GODDAG can also be employed for textual variants: as shown in Figure 5, since the refrain uses “her” if the lyrics are
 feminine and “him” otherwise, we actually generate two different and almost
 identical lyrics hierarchies that point to the text in different manners depending
 on the chosen gender.
Figure 5
[image:]A GODDAG with repetitions and textual variants depending on the gender
 of the lyrics.

Clearly, the best thing we can do for linearizing all these kinds of structures
 presented in this section is to use stand-off markup or twin documents techniques in
 order to embed all the elements in a rationally unique document. Expressing all
 information in a single XML tree requires some procedural tricks: elements
 with procedural values, for instance, are an acceptable
 trade-off between the structure and the relative document representation.

Beyond GODDAG: extensions for repeatability
Even if the GODDAG is able to handle perfectly all the above-mentioned scenarios,
 there are more things that are interesting to represent, such as a different type of
 repetition. The screenful of lines of the karaoke example is interesting in that
 sense.
Figure 6
[image:]This graph describes the structure of “And I Love Her” avoiding the
 explicit repetitions (refrain and fourth stanza).

In Figure 6 we show a plausible graph for describing the
 entire structure of “And I Love Her” that avoids the explicit repetitions of the
 refrain and the fourth stanza. Note that the body element has many arcs going to the
 div of the refrain, and two going to the div of the fourth stanza, and that we had
 to specify the order of the arcs themselves.
Unfortunately, GODDAGs do not support this kind of repetitions. In fact, for any
 non-terminal node n, the sets of arcs from
 n is ordered and, if two arcs n→a and n→b exist and if
 a
 is equal to b, then n→a and n→b are the same arc.
 This prevents us from creating
 multiple arcs from body to the refrain divs, which is exactly what we are trying to
 do.
In order to avoid this constraint, we need to extend the definition of GODDAGs. In
 particular, we believe that we can solve our problem by simply relaxing the rule
 that requires non-terminal nodes in GODDAGs to have a general identifier (a label)
 associated to them. We call anonymous all
 non-terminal nodes that do not have such general identifier and we refer to this new
 GODDAG as extended GODDAG (or e-GODDAG). Anonymous e-GODDAG nodes allow the definition of
 anonymous elements a la LMNL [21], and at the same time provide the necessary infrastructure for our repeating
 refrains.
Through e-GODDAG, in fact, we are now able to allow the previous repetitions: we
 have to add as many anonymous nodes as needed for any repetition we need. Since
 anonymous nodes do not introduce markup or content, they can be used to disambiguate
 multiple arcs going from and to the same nodes: each repeated arc from body to div is therefore
 interrupted by a different intermediate anonymous node[3].

EARMARKing cats and docs
The problems described in the previous section derive mostly from the very act of
 embedding annotations: multiple overlapping annotations, especially when referring to
 the same text multiple times and reordering the document order, do not naturally fit in
 a linear structure of an XML document, and analogously there is no natural position for
 embedding annotations to the whole document.
The opposite approach – full externalization of annotations a
 la RDF – does not satisfy our requirements, for different motivations.
 RDF annotations do not change the annotated resource in any way, but refer to it via
 URIs. The problem we face in this case is that there exists no URI referring to a
 fragment of text that is not wrapped within an XML or XHTML element provided with an ID.
 And since XHTML or XML elements need to follow a nice, hierarchical,
 document-order-compatible structure, we are back to the beginning with the problem of
 overlapping hierarchies that play with multiplicities and reshuffling of the document
 order.
An approach has been recently proposed in [10] in order to try to
 offer a way to identify precise document locations, called pointers, through different means (character positions, string indexing,
 etc.) and languages (XPath [3], XPointer [5],
 etc.). Unfortunately some languages mentioned, such as XPointer, were never standardized
 by the W3C and there is no sign that they will ever be in the foreseeable future.
 Furthermore, from the RDF point of view all URIs are opaque strings referring to
 different resources, and as such it would be difficult to create ontologies and make
 inferences that differentiate assertions on text fragments from assertions on elements
 or other structures, the required infrastructure to verify overlapping or
 superimposition of assertions.
There is another (less important) consideration that comes down against a fully
 externalized approach: the fact that assertions are disjoint from the original document
 and require a more articulated process for storing and transfer (this is known as the
 so-called fragility of standoff markup). Consider the case of
 textual variations in our karaoke example: it would be useful to handle all variations
 (and any other overlapping hierarchy) within a unique document, easier to move and
 manipulate. The variant graph approach, introduced in
 [16], goes in that direction and allows users to express these
 differences and to extract multiple text linearizations, depending on the particular
 context.
Our approach takes inspiration from this work and from the GODDAG-related theories.
 The goal is to introduce a new syntactic approach for overlapping markup that combines
 advantages of embedded and external annotations into a unified framework. In this
 section we define an ontology-based model for expressing such complex overlapping
 structures, similar but more general of existing research efforts such as [23] and [24].

A very central point of our proposal is the reliance on Semantic Web
 technologies. The reason is that we want to create tools that can exploit existing
 modules, that can be integrated with other applications and that can be extended by
 other researchers too.
As expected, RDF and OWL are the candidates for our proposal. Actually, we propose an
 intermediate language built on the top of RDF and OWL data model, that can be
 straightforwardly translated into these standards. We called this language EARMARK (Extreme Annotational RDF
 Markup). EARMARK allows us to build e-GODDAG-equivalent data structures
 that encode all the aforementioned scenarios. High-level data structures can be then
 instantiated into W3C standard documents, easy to integrate in legacy tools and
 environments.
Basically, EARMARK allows us create assertions on text fragments by using an
 intermediate ontology that subsumes the XPointer schemas in a manageable way and builds
 from there the concepts of markup structures and generic identifiers useful for the
 specification of elements and attributes.
General model
This section describes the model behind EARMARK, Extreme
 Annotational RDF Markup. The model itself is defined through an OWL
 document specifying classes and relationships. Through these classes we can produce
 EARMARK documents with assertions about individuals.
We introduce four concepts: docuverses, locations, ranges and
 markup items. Each of them is represented in
 EARMARK with a different (and disjoint) OWL class. The following code snippets are
 written using Turtle [2]
 [4].
The textual content of a EARMARK document is conceptually separated from the
 annotations, and is referred to by means of assertions on the specific class called
 “Docuverse”. This class (and its name) is based on the concept introduced by Ted
 Nelson in his Xanadu Project [14] to refer to the collection of
 text fragments that can be interconnected to each other and transcluded into new
 documents.
The individuals of this class represent the object of discourse, i.e. all the text
 containers related to a particular EARMARK document.
:Docuverse
 a owl:Class ;
 rdfs:subClassOf owl:Thing .

:has-text
 a owl:FunctionalProperty , owl:DatatypeProperty ;
 rdfs:domain :Docuverse ;
 rdfs:range xsd:string .

:has-uri
 a owl:FunctionalProperty , owl:DatatypeProperty ;
 rdfs:domain :Docuverse ;
 rdfs:range xsd:anyURI .
 Any individual of the Docuverse class – commonly
 called a docuverse (lowercase to distinguish it
 from the class) – might contain or refer to the text fragments representing the actual
 content of the document. That is expressed through two properties: has-uri if the content is stored at a particular URI and
 has-text if the content lies in the document
 itself.
A location is the expression of a position in a
 particular docuverse. It is an instance of the class
 “Location”. The property at defines a precise point in the docuverse, while the property
 refers-to indicates the docuverse the location
 refers to.
:Location
 a owl:Class ;
 rdfs:subClassOf owl:Thing .

:refers-to
 a owl:FunctionalProperty , owl:ObjectProperty ;
 rdfs:domain :Location ;
 rdfs:range :Docuverse .

:at a owl:FunctionalProperty , owl:DatatypeProperty ;
 rdfs:domain :Location ;
 rdfs:range xsd:string .
 The value for the property at is a string. The
 overall ontology is then independent from the actual addressing mechanism. In fact,
 we expect several syntaxes to be used there, including XPointers.
We then define the class “Range” for any text
 lying between two locations:
:Range
 a owl:Class ;
 rdfs:subClassOf owl:Thing .

:begins
 a owl:FunctionalProperty , owl:ObjectProperty ;
 rdfs:domain :Range ;
 rdfs:range :Location .

:ends
 a owl:FunctionalProperty , owl:ObjectProperty ;
 rdfs:domain :Range ;
 rdfs:range :Location .
 A range, i.e, an individual of the class Range, is defined by a starting and an
 ending location through the properties begins and
 ends respectively. These locations must refer
 to the same docuverse. Since this restriction cannot be directly expressed in OWL,
 we add the following SWRL [8] rules to enforce that
 constraint[5]:
(1)
[image:]

(2)
[image:]

There is no restriction on locations used for the
 begins and ends
 properties. That is very useful: it allows us to define ranges that “follow”
 or “reverse” the text order of the docuverse they refer to. For instance, the string
 “desserts” can be considered both in document order, with the begins location lower than the ends
 location or in the opposite one, forming “stressed”
 [6]
 . Thus, the properties “begins” and “ends” define the way a range must be
 read.
The class “MarkupItem” is the superclass defining
 artefacts to be interpreted as markup (such as elements and attributes).
:MarkupItem
 a owl:Class ;
 rdfs:subClassOf owl:Thing .

:has-general-identifier
 a owl:FunctionalProperty , owl:DatatypeProperty ;
 rdfs:domain :MarkupItem ;
 rdfs:range xsd:string .
 A markupitem individual is a sequence (rdf:Bag
 or rdf:Seq) of individuals belonging to the classes MarkupItem and Range. Is it then
 possible to define elements containing nested elements or text, or attributes
 containing values, as well as overlapped and complex structures.
A markupitem might have a name, specified in the property “has-general-identifier” (recalling the SGML term to refer to the
 name of elements [7]). Note that we can classify markup items
 as anonymous – as possible in LMNL[21] and e-GODDAG – by simply not asserting a general identifier
 for the items.
All the concepts represented by an EARMARK document are expressed using these four
 disjoint classes and their relative properties:
[] a owl:AllDisjointClasses ;
 owl:members (:Docuverse :Location :MarkupItem :Range) .

 Detailed model
The model discussed so far gives us a general picture of the EARMARK framework
 and, as expected, is not enough to describe all the scenarios we are interested in.
 We then need to refine our model. Such a refinement is actually a specialization of
 three classes – all except “Range” – in subclasses that apply specific
 restrictions.
First of all, the class Docuverse is specified into a “StringDocuverse” (the
 content is specified as value of has-text and no
 value is associated to has-uri) or an
 “URIDocuverse” (the actual content is located at the URL specified in has-uri and no value is given to has-text).
:StringDocuverse
 a owl:Class ;
 rdfs:subClassOf :Docuverse ;
 owl:equivalentClass
 [a owl:Class ;
 owl:intersectionOf (:Docuverse [a owl:Restriction ;
 owl:cardinality "1"^^xsd:nonNegativeInteger ;
 owl:onProperty :has-text
] [a owl:Restriction ;
 owl:cardinality "0"^^xsd:nonNegativeInteger ;
 owl:onProperty :has-uri
])
] .

:URIDocuverse
 a owl:Class ;
 rdfs:subClassOf :Docuverse ;
 owl:equivalentClass
 [a owl:Class ;
 owl:intersectionOf (:Docuverse [a owl:Restriction ;
 owl:cardinality "0"^^xsd:nonNegativeInteger ;
 owl:onProperty :has-text
] [a owl:Restriction ;
 owl:cardinality "1"^^xsd:nonNegativeInteger ;
 owl:onProperty :has-uri
])
] .

[] a owl:AllDisjointClasses ;
 owl:members (:StringDocuverse :URIDocuverse) .
 Depending on particular scenarios or on the kind of docuverse we are dealing with
 – it could be plain-text, XML, LaTeX, a picture, etc. – we need to be able to use
 different kinds of locations. Therefore, the class “Location” has at least three
 different disjoint subclasses:
:CharNumberLocation
 a owl:Class ;
 rdfs:subClassOf :Location .

:XPathLocation
 a owl:Class ;
 rdfs:subClassOf :Location .

:XPointerLocation
 a owl:Class ;
 rdfs:subClassOf :Location .

[] a owl:AllDisjointClasses ;
 owl:members (:CharNumberLocation :XPathLocation :XPointerLocation) .
	“CharNumberLocation” defines a location by counting characters. In that
 case, the string value of the “at” property must be an integer[7] that identifies an unambiguous position in the character
 stream;

	“XPathLocation” defines a location as a node of an XML docuverse. In this
 case, the property “at” will be an XPath expression [3];

	“XPointerLocation” defines a precise point in a docuverse. In that case,
 the expression “xpointer(point(.42))”, for instance, indicates the cursor
 in-between the 42nd and the 43rd character; with “xpointer(point(/1/9.3))”
 we mean the cursor between the 3rd and the 4th character of the ninth node
 of the root, and so on.

MarkupItem is specialized in three disjointed sub-classes: “Element”, “Attribute”
 and “Comment”, that allow a more precise characterization of markup items.
:Element
 a owl:Class ;
 rdfs:subClassOf :MarkupItem .

:Attribute
 a owl:Class ;
 rdfs:subClassOf :MarkupItem .

:Comment
 a owl:Class ;
 rdfs:subClassOf :MarkupItem .

[] a owl:AllDisjointClasses ;
 owl:members (:Attribute :Comment :Element) .
 Through this classification, shown also in Figure 7, we
 can describe all the concepts introduced by XML, LMNL or TexMecs, including virtual
 elements [18]
 [9], structured attributes [21] and so on.
Figure 7
[image:]The class hierarchy of the EARMARK ontology.

In order to discuss such potentialities, the next section analyses in detail the
 EARMARK encoding of the aforementioned karaoke example.

“And I Love Her” in EARMARK
The approach to mark up a complex document with EARMARK is composed of the
 following steps:
	creation of one or more docuverses depending on the number of data streams
 we must handle;

	identification of the ranges within the docuverses;

	identification of the leaf markup items,
 i.e. those containing attributes and ranges only;

	identification of the internal markup
 items, i.e. those containing markup items or a mixed content of markup items
 and ranges.

Let us take into consideration the fragment of the lyrics of “And I Love Her” by
 The Beatles, introduced in section “Dark is the overlapping sky”.
In EARMARK strings are placed in one or more docuverses. As mentioned, there are
 two different types of docuverses: autonomous
 resources (i.e., independent files identified by a URIs, appropriate
 for the actual lyrics of the song and the content of the fun fact popups) and
 local strings (i.e. an internal data value,
 appropriate for strings that do not exist as independent units like attribute
 values, metadata, and so on).
For the XML version of “And I Love Her”[8], we will employ four docuverses:
	an independent text file with the lyrics;

	a local string containing strings for all attribute values;

	a local string containing the timings of the screenfuls of lyrics;

	an independent file with a selection of fun facts. This could just as well
 be an existing, independent HTML resource such as the one in
 http://www.songfacts.com/detail.php?id=43.

Note that we have immediately introduced the machinery for overlapping elements
 and shared text fragments. We can also add any additional annotation (such as
 spaces, separators, etc.) to each docuverse in order to make it more readable. We
 will be explicitly ignoring the non-relevant text within the docuverses.
The Turtle translation of the docuverses could be[9]:

 e:lyrics
 a :URIDocuverse ; :has-uri "http://www.essepuntato.it/2009/01/andiloveher.txt"^^xsd:anyURI .

 e:funfacts
 a :URIDocuverse ; :has-uri "http://www.songfacts.com/detail.php?id=43"^^xsd:anyURI .

 e:attribute_values
 a :StringDocuverse ; :has-text "stanza - refrain - 4"^^xsd:string .

 e:time_values
 a :StringDocuverse ; :has-text "68 - 72 - 76 – 80 - 84"^^xsd:string .
 All the strings defining the actual text content of an EARMARK document are
 identified by ranges. Ranges refer to any of the docuverses, and can overlap and
 invert order. For example, the ranges for the refrain and the last chord overlap
 over the same range.
We next define a range for each text node of the song, encoded as element or
 attribute, e.g.:

 e:r_refrain_1
 a :Range ; :begins e:location0-lyrics ; :ends e:location6-lyrics .

 e:r_refrain_2
 a :Range ; :begins e:location6-lyrics ; :ends e:location14-lyrics .

 e:r_attribute_class_refrain
 a :Range ; :begins e:location9-attribute_values ; :ends e:location16-attribute_values .

 e:location0-lyrics
 a :XPointerLocation ; :refers-to lyrics ; :at "xpointer(point(.0))"^^xsd:string .

 e:location6-lyrics
 a :XPointerLocation ; :refers-to lyrics ; :at "xpointer(point(.6))"^^xsd:string .

 e:location14-lyrics
 a :XPointerLocation ; :refers-to lyrics ; :at "xpointer(point(.14))"^^xsd:string .

 e:location9-attribute_values
 a :XPointerLocation ; :refers-to attribute_values ; :at "xpointer(point(.9))"^^xsd:string .

 e:location16-attribute_values
 a :XPointerLocation ; :refers-to attribute_values ; :at "xpointer(point(.16))"^^xsd:string .
 Some ranges can be used more than once in the final EARMARK document. For
 instance, the “r_refrain_2” range is used both in the refrain of the song and in the
 last chord of the refrain.
Using these ranges we can now create the leaf markup items, i.e. all the
 attributes and all the first-level elements. The
 latter are all the elements that have a simple content, i.e., sequences of ranges
 and attributes only.
Given an e-GODDAG node N, an EARMARK markup item
 is made as follows:
	it has an identifier generated randomly;

	the name of N, if it exists, is the
 general identifier;

	all children non-terminal nodes of N are
 translated into individual markup items. They are recursively generated with
 these same rules;

	the ranges corresponding to the text content end up as the sequence of the
 new markup item.

In the next piece of code we take into consideration both the e-GODDAG structure
 and the implicitly given XML description for all the markup items, that defines the
 kind – element or attribute – of each of them. For instance, the Turtle translation of
 the attribute class and of the p element of the refrain, using the ranges previously
 defined, is:

 e:attr_refrain_class
 a :Attribute , [a rdf:Bag ; rdf:_1 e:r_attribute_class_refrain] ;
 :has-general-identifier "class"^^xsd:string .

 e:refrain_div
 a :Element , [a rdf:Seq ; rdf:_1 e:attr_refrain_class ; rdf:_2 e:refrain_p] ;
 :has-general-identifier "div"^^xsd:string .

 e:refrain_p
 a :Element , [a rdf:Seq ; rdf:_1 e:r_refrain_1 ; rdf:_2 e:r_refrain_2] ;
 :has-general-identifier "p"^^xsd:string .
 The difference between those leaf elements that are simply sequences of ranges
 and those that are sequences of attributes and ranges mirrors the difference between
 types in XML Schema [22], with the former resembling simple
 type elements with simple content, and the latter resembling complex type elements
 with simple content and attributes.
The expressiveness of e-GODDAG's is clearly within EARMARK's : through EARMARK we
 can express general digraphs with or without repeatable
 edges depending on the particular context we are taking into
 consideration.
Through such digraphs we can handle particular scenarios that involve overlapping
 – i.e. different elements partially dominate the same content, such as with chords
 and lines – as well as virtual elements – i.e. non-contiguous ranges are contained
 by a markup item, such as with the fun fact pop-up.
Finally, it is interesting to note that EARMARK is actually more expressive than
 e-GODDAGs. Consider the case of unordered items. Although e-GODDAGs always considers
 ordered markup items and ranges within a container, EARMARK allows us to specify
 whether the items are ordered or not, by simply using “rdf:Seq” and “rdf:Bag”
 container classes. The ordering of inner elements becomes a matter of explicit
 choice rather than implicitly given by the markup embedding.
Consequently, EARMARK even allows us to specify sequences of attributes, elements
 and ranges in any arbitrary order. Differently than XML, LMNL and TexMECS, EARMARK
 makes possible sequences in which attributes, elements and ranges are freely mixed
 in any order, including elements followed by attributes followed by other elements
 and so on. Moreover, the same global identifier can be specified for multiple
 attributes in the sequence (i.e., EARMARK allows multiple attributes with the same
 name for the same element). These situations are not directly expressible in any embedded
 markup model.

Embedding EARMARK documents
The process of generating a linearized structure (such as an XML document) from a set
 of EARMARK annotations is not immediate, mostly because of the substantially greater
 expressive power of EARMARK annotations. Without loss of generality, we will be
 describing a conversion to XML, since converting to LMNL or TexMecs will constitute a
 much simpler exercise of stopping the linearization a few steps earlier.
Although the conversion of any EARMARK subset that already describes a tree is
 obviously immediate and fully automatic, several different options exist for any further
 EARMARK annotations that we wish to linearize. Since these additional annotations are at
 odds with a tree-like structure, we need to use a few embedding tricks to obtain a
 well-formed XML document, and of course the choice of tricks to use is wide and rich. In
 this section we will explore the task of linearizing a chosen tree-shaped subset of the
 EARMARK document, and in the following section we will describe a few options for the
 remaining assertions.
The construction of the tree we envision is bottom up:
	the first step is deciding which docuverses (or fragments thereof) will
 constitute the content of the document, which the content of the attributes, and
 which, if any, will be ignored;

	then a subset of the first-level elements needs to be chosen, as well as the
 ranges they contain. Of course, no overlapping or reverse order ranges can be
 accepted as such;

	there might well be the situation whereby multiple independent sets of
 first-level elements exist, each of which is by itself non-overlapping, but
 combined with others would. In this situation, of course, only one set can be
 selected as the main hierarchy, and all others will need to employ an embedding
 trick to be expressed in the final linearized document. One possible way to do
 so is to create independent sets of elements and hierarchy over elements, and
 then choose the largest set as composing the principal hierarchy, and all others
 as candidates for tricks;

	mixed content elements are sequences of ranges and first-level elements, and
 are generated once all contained elements are ready;

	similarly, structure elements (only containing other elements) are available
 for creation once their content is already generated;

	finally, attributes and their ranges are selected as well and converted into
 linearized form and associated to their elements;

	the final result of this linearization is possibly a selection of separate and
 disjoint trees, each linearizing a connected component of the EARMARK document.
 It is then a linearization choice either to generate several independent XML
 documents or to employ the universal root
 pattern[10] and include these structures within a single new elements that become their container.

Whatever is left out of this linearization process needs to be approached using one or
 more of the methods described in the next section.

Handling the remaining EARMARK structures
Some kinds of EARMARK structures are not directly linearizable by embedding. In order
 to allow a full representation of the EARMARK document we therefore need to apply some
 stratagem to force the hierarchical structure to accept these remaining structures.
Reasonably, frequent unmanaged structures would include:
	overlapping leaf elements referring to contiguous ranges;

	overlapping leaf elements referring to non-contiguous ranges;

	shared ranges;

	text variants;

	overlapping structural elements;

	structured attributes.

In section “Embedding EARMARK documents” we listed the EARMARK assertions that could not be
 directly translated into an XML document. Let us examine a few potential approaches
 (which we call embedding
 tricks) for forcing the conversion. A few of such
 approaches, as well as algorithms for passing from one to the other, are described in
 [13]

Milestones
Plain overlapping leaf elements (i.e. elements that partially share the text
 content, but no lower structures) may be forced into an XML structure via milestones as proposed in CLIX [6].
The open and close tags of the unconverted elements are considered as individual
 empty elements placed in the positions where they should reside. The attribute role
 specifies whether the empty element corresponds to a start or end tag, and the
 sID and eID
 attributes connect the two elements in a single conceptual one.
<body>
 <div class=”stanza” title=”4”>
 <p>
 <chord name=”G”>Will never</chord>
 <chord name=”A” clix:role=”start-range” clix:sID=”A”/>
 die
 </p>
 </div>
 <div class=”refrain”>
 <p>
 And I
 <chord name=”A” clix:role=”end-range” clix:eID=”A”/>
 <chord name=”D”>love her</chord>
 </p>
 </div>
</body>
 Although easy to implement and appreciate, milestones are nonetheless limited in
 that only frontier overlapping (i.e., overlapping on ranges) is expressible.

Fragmentation
Another approach is to use fragmentation as introduced by the TEI guidelines [17].
Overlapping elements are separated in many multiple fragments each of which
 properly nests within their container. Individual fragments are then connected via
 attributes such as next or previous.
<body>
 <div class=”stanza” title=”4”>
 <p>
 <chord name=”G”>Will never</chord>
 <chord name=”A” xml:id=”a1” next=”a2”>die</chord>
 </p>
 </div>
 <div class=”refrain”>
 <p>
 <chord name=”A” xml:id=”a2”>And I</chord>
 <chord name=”D”>love her</chord>
 </p>
 </div>
</body>

 Repetitions
The easiest embedding trick for dealing with shared ranges is simply to multiply
 the instances of the corresponding text and possibly annotate that all instances
 except the first one is redundant.
<p>
 And I
 love her
</p>

 Hidden variants
When we have multiple variants of the same text, we may want to hide in
 substructures (such as attributes or subelements) the alternative variants.
<p>And I love her</p>

 RDFa
RDFa [1] allows arbitrary assertions to be placed on
 existing elements. It is understood that if an assertion exists over a text fragment
 that is not wrapped within an existing element, a generic element (such as the HTML
 span) is added to allow for RDFa assertions to
 attach to the corresponding content.
For instance, support for overlapping inner structures are difficult to provide in
 either fragmentation or milestones, but become possible in RDFa. Consider for
 instance the sequence which contains individual chord elements and overlaps with the
 div element containing individual p elements.
RDFa thus supports the specification of a virtual instance of the class Chords,
 expressed as a sequence of three instances of the Chord class (in fact, one instance
 each of subclasses GChord, AChord and DChord of the Chord class) as follows:
<body about=”#Chs” typeof=”#Chords”>
 <div typeof=”rdf:Seq” property=”rdf:_1” href=”#G”>
 <p property=”rdf:_2” href=”#A”>

 Will never

 <span
 about=”#A” typeof=”#AChord” property=”#has-first-part”>
 die

 </p>
 </div>
 <div property=”rdf:_3” href=”#D”>
 <p>

 And I

 love her

 </p>
 </lg>
</body>

 Embedded RDF
When all else fails, the fallback approach is simply to place the remaining
 assertions as an RDF/XML block in the XML structure, either in a block properly
 thought out for external vocabularies, or converted into some local vocabulary, or
 even as a lump of XML elements placed in a random position within the document.
This is useful, for instance, for dealing with structured attributes a la LMNL [21]. In the following
 example, a RDF block is inserted in the XML document to provide support for the
 attribute name of the chord element, which contains a structure of two different values
 wrapped by elements normal and jazzy. This allows the name of the chord to cater for both
 a pop and a jazz rendering of the tune, while at the same time remaining one
 attribute of one element.
<body>
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns="http://www.essepuntato.it/2008/12/earmark#">
 <Attribute rdf:about="#attr_chord_structured">
 <has-general-identifier rdf:datatype="xsd:string">
 name
 </has-general-identifier>
 <rdf:type>
 <rdf:Seq>
 <rdf:li rdf:resource="#normal"/>
 <rdf:li rdf:resource="#jazzy"/>
 </rdf:Seq>
 </rdf:type>
 </Attribute>
 <Element rdf:about="#normal">
 <has-general-identifier rdf:datatype="xsd:string">
 normal
 </has-general-identifier>
 <rdf:type>
 <rdfs:Bag>
 <rdf:li rdf:resource="#r_chord_D"/>
 </rdfs:Bag>
 </rdf:type>
 </Element>
 <Element rdf:about="#jazzy">
 <has-general-identifier rdf:datatype="xsd:string">
 jazzy
 </has-general-identifier>
 <rdf:type>
 <rdfs:Bag>
 <rdf:li rdf:resource="#r_chord_Dmaj7"/>
 </rdfs:Bag>
 <rdf:type>
 </Element>
 <rdf:RDF>
 ...
</body>

 Conclusions
In this paper we presented the Extreme Annotational RDF Markup (EARMARK), a proposal
 for expressing GODDAGs (and e-GODDAG) structures in a general metamarkup language that
 does not rely on embedding, and that integrates the advantages of standoff annotations
 and embedded markup into a single unifying framework.
Through EARMARK authors can express a large number of markup assertions and
 observations that would otherwise be non expressible, including overlapping elements,
 elements over non contiguous ranges, repeated structures, text variants, overlapping
 hierarchies, structured attributes, etc.
In further work we plan both to explore the application of the structural patterns
 defined in [4], trying to give a formal ontological demonstration
 if an EARMARK document follows them, and to explore, both formally and pragmatically,
 the expressive power of the EARMARK language and its applications.

Acknowledgements
The authors wish to thank all that have commented on this paper and on EARMARK in general.
 The anonymous reviewers of this and other EARMARK papers were incredibly useful in smoothing
 out both the basic concepts and the written explanation of the most oscure parts of the proposal.
 The participants to the Goddag Workshop in Amsterdam (December 2008) have in no small part
 provided thought fodder for what ended up becoming EARMARK. Finally, we wish to thank explicitly
 Michael Sperberg-McQueen and Federico Meschini for their help, comments and suggestions.

Bibliography
[[1]] Adida, B., Birbeck, M., McCarron, S.,
 Pemberton, S. (2008). RDFa in XHTML: Syntax and processing. W3C Recommendation. World
 Wide Web Consortium. http://www.w3.org/TR/rdfa-syntax/.
[[2]] Becket, D., Berners-Lee, T. (2008). Turtle -
 Terse RDF Triple Language. W3C Team Submission.
 http://www.w3.org/TeamSubmission/turtle/.
[[3]] Berglund, A., Boag, S., Chamberlin, D.,
 Fernández, M. F., Kay, M., Robie, J., Siméon, J. (2007). XML Path Language (XPath) 2.0.
 W3C Recommendation. http://www.w3.org/TR/xpath20/.
[[4]] Dattolo, A., Di Iorio, A., Duca, S., Feliziani,
 A.A., Vitali, F. (2007). Structural patterns for descriptive documents. In the
 Proceedings of the Seventh International Conference on Web Engineering 2007, Como,
 Italy, 2007.
[[5]] DeRose, S., Maler, E., Daniel, R. (2001). XML
 Pointer Language (XPointer) Version 1.0. W3C Candidate Recommendation.
[[6]] DeRose. S. (2004). Markup overlap: A review and
 a horse. In Extreme Markup Languages.
[[7]] Goldfarb, C. F. (1990). The SGML Handbook.
 Oxford University Press, USA.
[[8]] Horrocks, I., Patel-Schneider, P. F., Boley, H.
 Tabet, S., Grosof, B., Dean, M. (2004). SWRL: A Semantic Web Rule Language Combining OWL
 and RuleML. W3C Member Submission.
 http://www.w3.org/Submission/SWRL/.
[[9]] Huitfeldt, C., Sperberg-McQueen, C. M. (2001).
 TexMECS: An experimental markup meta-language for complex documents.
[[10]] Iglesias, C., Squillace, M. (2009). Pointer
 Methods in RDF. W3C Working Draft availables in
 http://www.w3.org/TR/Pointer-in-RDF.
[[11]] Manola, F., Miller, E. (2004). RDF Primer. W3C
 Recommendation. http://www.w3.org/TR/rdf-primer/.
[[12]] Marcoux, Y. (2008). Graph characterization of
 overlap-only TexMECS and other overlapping markup formalisms. Paper presented at the
 Balisage: The Markup Conference. doi:https://doi.org/10.4242/BalisageVol1.Marcoux01.
[[13]] Marinelli, P., Vitali, F., Zacchiroli, S.
 (2008). Towards the unification of formats for overlapping markup. The New Review of
 Hypermedia and Multimedia.
[[14]] Nelson, T. (1980). Literary Machines: The
 report on, and of, Project Xanadu concerning word processing, electronic publishing,
 hypertext, thinkertoys, tomorrow's intellectual... including knowledge, education and
 freedom - Mindful Press, Sausalito, CA, USA.
[[15]] Oliver Schonefeld und Andreas Witt (2006).
 Towards validation of concurrent markup. In: Proceedings of the Extreme Markup 2006,
 Montréal, Canada.
[[16]] Schmidt, D., Colomb, R. (2009). A data
 structure for representing multi-version texts online. International Journal of
 Human-Computer Studies.
[[17]] Sperberg-McQueen, C. M., Burnard, L. (2005).
 TEI P5 Guidelines for Electronic Text Encoding and Interchange (revised). The
 Association for Computers and the Humanities.
[[18]] Sperberg-McQueen, C. M., Huitfeldt, C. (2008).
 Markup Discontinued: Discontinuity in TexMecs, Goddag structures, and rabbit/duck
 grammars. doi:https://doi.org/10.4242/BalisageVol1.Sperberg-McQueen01.
[[19]] Sperberg-McQueen, C.M., Huitfeldt, C. (2004).
 GODDAG: A Data Structure for Overlapping Hierarchies. Lecture Notes In Computer Science.
 Springer.
[[20]] Tennison, J. (2008). Representing Overlap in
 XML. Article from “Jeni's Musings” blog, available in
 http://www.jenitennison.com/blog/node/97.
[[21]] Tennison, J., Piez, W. (2002). The Layered
 Markup and Annotation Language (LMNL). Paper presented at the Late breaking at Extreme
 Markup. Montreal, Canada.
[[22]] Thompson, H. S., Beech, D., Maloney, M.,
 Mendelsohn, N. (2001). XML Schema Part 1: Structures. W3C Recommendation.
 http://www.w3.org/TR/xmlschema-1/.
[[23]] Tummarello, G., Morbidni, C., Pierazzo, E.
 (2005). Toward textual encoding based on RDF. 9th ICCC Conference on Electronic
 Publishing (ELPUB 2005). Leuven, Belgium.
[[24]] W3C OWL Working Group (2009). OWL 2 Web
 Ontology Language Document Overview. W3C Working Draft.
 http://www.w3.org/TR/owl2-overview/.

[1] Defined as the “set of partial or independent overlapping hierarchies in which
 the textual content between the tags is visible in some hierarchies but not in
 others” [16].
[2] We will ignore, for the time being, that in the lyrics that are actually
 sung by the Beatles the first refrain is slightly different from the other
 ones, since they sing “I love her” instead of “and I love her”
[3] An issue to consider relates to another GODDAG constraint: no node can
 dominate another node both directly and indirectly. That simply means that
 we need to add an anonymous node for each repeated arc of a node, and just
 the ones after the first one, so that the we only have indirect dominance in all of
 them.
[4] In all code examples we will also be implying the following
 prefixes:

 @prefix : <http://www.essepuntato.it/2008/12/earmark#> .
 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
 @prefix owl: <http://www.w3.org/2002/07/owl#> .
 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
 @prefix swrl: <http://www.w3.org/2003/11/swrl#> .
 @prefix swrlb: <http://www.w3.org/2003/11/swrlb#> .

[5] Because of the functional property declarations of “begins” and “end” and
 the SWRL rules illustrated, an EARMARK document will be consistent if and
 only if the constraint is valid. Otherwise, there will be a range with two
 locations that refer to two different documents.
[6] An interesting example of semordnilap,
 http://en.wikipedia.org/wiki/Palindrome#Semordnilaps
[7] It is a positive integer (including zero) if we are counting from
 the begin of the document to the end, and a negative integer for
 vice versa.
[8] The complete Turtle example if “And I Love Her” is available at
 “http://www.essepuntato.it/2009/01/andiloveher.ttl”.
[9] The prefix “e” refers to
 “http://www.essepuntato.it/2009/01/andiloveher#”.
[10] http://www.xmlpatterns.com/UniversalRootMain.shtml

Balisage: The Markup Conference

Towards markup support for full GODDAGs and beyond: the EARMARK approach
Angelo Di Iorio
Department of Computer Science, University of Bologna

<diiorio@cs.unibo.it>
Angelo Di Iorio holds a Ph.D. in Computer Science, from the University of
 Bologna. His thesis is positioned over markup languages and document engineering
 areas, being focused on design patterns for digital documents and automatic
 processes of analysis and segmentation. During his PhD he has also worked on
 collaborative authoring, document versioning, content formatting, and semantic
 web technologies. His research interests have recently extended towards layout
 languages and algorithms. He is a member of the W3C XSL-FO working group, and
 author of several conference and journal papers on markup languages, digital
 publishing and Web technologies.

Silvio Peroni
Department of Computer Science, University of Bologna

<speroni@cs.unibo.it>
Silvio Peroni holds a degree in Computer Science at the University of Bologna.
 The main research interests in his current Ph.D. career include Semantic Web
 technologies, markup languages for complex documents, design patterns for
 digital documents and automatic processes of analysis and segmentation. He has
 published 4 scientific papers about these subjects.

Fabio Vitali
Department of Computer Science, University of Bologna

<fabio@cs.unibo.it>
Fabio Vitali is associate professor in Computer Science at the University of
 Bologna, where he teaches Web Technologies and Human-Computer Interaction. His
 interests lie in models and languages for document management and hypertext
 support, and has published more than 60 papers in national and international
 venues. He is member of the W3C Working Group on XML Schema, and member of the
 scientific committee of several conferences and journals in Web engineering and
 technologies. He is author of important standards in the legislative XML Domain,
 and work on issues related to digital publishing, Web technologies and Semantic
 Web technologies.

Balisage: The Markup Conference

content/images/Peroni01-008.png
2loc1), ends(?r,?loc2), refers-to(?loc1,?d) = refers-to(?loc2,%7d)

content/images/Peroni01-007.png
2loc1), ends(?r,?loc2), refers-to(?loc2,?d) = refers-to(?loc1,2d)

content/images/Peroni01-006.png

content/images/Peroni01-005.png

content/images/Peroni01-009.png

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Peroni01-004.png

content/images/Peroni01-003.png

content/images/Peroni01-002.png
eeeeeeeeeeeeeeeeeeeeeeeee

content/images/Peroni01-001.png

