
 

You Pull, I’ll Push: 
on the Polarity of Pipelines 

Michael Kay, Saxonica



 

Why pipelines?

• Keeps code simple
• Components are reusable
• Clean way of mixing different technologies
• Flexible deployment

– distributed
– asynchronous
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Main-loop components
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A fully-streaming pipeline
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Branching and Merging
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To handle multiple inputs, need pull
To handle multiple outputs, need push



 

Pipeline Granularity

• Event granularity
–  startElement/endElement

• Item granularity
– node or atomic value

• Operations
– compose (events -> items)
– decompose (items -> events)



 

When pull comes to shove
(1) build a tree in memory
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Note: the tree is not only needed because there is a polarity conflict,
but also because there is an ordering conflict: many stylesheets do not
consume data in the order the parser delivers it.



 

When pull comes to shove
(2) Two threads and a cyclic buffer
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saxon:stream(doc(‘a.xml’)/*/record)
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Why is the filter a push filter?

• Answer: Reuse!
– it was written initially as part of the 

schema validator (id/key/keyref)
– the schema validator is a push pipeline
– it’s a push pipeline because it forks

• Message:
– when you want to reuse components in 

a pipeline, you might find they have the 
wrong polarity.



 

Impact of push-pull conflicts

• Increase memory requirement
• Reduce latency
• Cited XQuery example:

– increases elapsed time from 1926ms 
to 3496ms



 

Co-routines

• Two programs each written as if 
they own the main loop

• One of them is inverted by the 
compiler into a push component

• Doesn’t need two threads: only two 
stacks.



 

Jackson Structured Programming
and the concept of Inversion

• Designed for batch magnetic tape 
data processing

• How to avoid writing the output of 
one processing phase to tape, to be 
read by the next phase?

• Answer: invert the second phase, so 
it is activated each time data 
becomes available

• Designed to work with hierarchic 
data



 

Compiler analogy
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How inversion works

• Replace read() call with
– save stack
– save execution point
– exit

• Add method reenter(X)
– restore stack
– resume at saved execution point
 



 

Proposition

An XSLT compiler
can generate push or pull code

interchangeably
by applying the technique of inversion



 

Benefits

• Less turbulence for the intra-stylesheet 
pipeline
– (less need to build temporary trees)

• The stylesheet itself can be compiled as 
a push or pull component for inclusion in 
an XProc pipeline

• Increased component reusability
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