

You Pull, I’ll Push:
on the Polarity of Pipelines

Michael Kay, Saxonica

Why pipelines?

• Keeps code simple
• Components are reusable
• Clean way of mixing different technologies
• Flexible deployment

– distributed
– asynchronous

Push components

push

control flow

data flow

write write

Pull components

pull

control flow

data flow

read read

Main-loop components

control

control flow

data flow

read write

A fully-streaming pipeline

control

Data flow

readread write write

push pushpullpull

Branching and Merging

control

Data flow

read

read

write

writepush

push

pull

pull

pull push

To handle multiple inputs, need pull
To handle multiple outputs, need push

Pipeline Granularity

• Event granularity
– startElement/endElement

• Item granularity
– node or atomic value

• Operations
– compose (events -> items)
– decompose (items -> events)

When pull comes to shove
(1) build a tree in memory

Data flow

XSLT
processor serializerparser

source
tree

Note: the tree is not only needed because there is a polarity conflict,
but also because there is an ordering conflict: many stylesheets do not
consume data in the order the parser delivers it.

When pull comes to shove
(2) Two threads and a cyclic buffer

pull pull

push Thread One

Thread Two

Data flow

saxon:stream(doc(‘a.xml’)/*/record)

XPath
iterator

XSLT
processor

parse Thread One

Thread Two

Data flow

filter

<record> elements

Serializer

Why is the filter a push filter?

• Answer: Reuse!
– it was written initially as part of the

schema validator (id/key/keyref)
– the schema validator is a push pipeline
– it’s a push pipeline because it forks

• Message:
– when you want to reuse components in

a pipeline, you might find they have the
wrong polarity.

Impact of push-pull conflicts

• Increase memory requirement
• Reduce latency
• Cited XQuery example:

– increases elapsed time from 1926ms
to 3496ms

Co-routines

• Two programs each written as if
they own the main loop

• One of them is inverted by the
compiler into a push component

• Doesn’t need two threads: only two
stacks.

Jackson Structured Programming
and the concept of Inversion

• Designed for batch magnetic tape
data processing

• How to avoid writing the output of
one processing phase to tape, to be
read by the next phase?

• Answer: invert the second phase, so
it is activated each time data
becomes available

• Designed to work with hierarchic
data

Compiler analogy

A
bottom-up

parser

is an
inversion

of A
top-down

parser

How inversion works

• Replace read() call with
– save stack
– save execution point
– exit

• Add method reenter(X)
– restore stack
– resume at saved execution point

Proposition

An XSLT compiler
can generate push or pull code

interchangeably
by applying the technique of inversion

Benefits

• Less turbulence for the intra-stylesheet
pipeline
– (less need to build temporary trees)

• The stylesheet itself can be compiled as
a push or pull component for inclusion in
an XProc pipeline

• Increased component reusability

	You Pull, I’ll Push: on the Polarity of Pipelines
	Why pipelines?
	Push components
	Pull components
	Main-loop components
	A fully-streaming pipeline
	Branching and Merging
	Pipeline Granularity
	When pull comes to shove (1) build a tree in memory
	When pull comes to shove (2) Two threads and a cyclic buffer
	saxon:stream(doc(‘a.xml’)/*/record)
	Why is the filter a push filter?
	Impact of push-pull conflicts
	Co-routines
	Jackson Structured Programming and the concept of Inversion
	Compiler analogy
	How inversion works
	Proposition
	Benefits

