[image: Balisage logo]Balisage: The Markup Conference

Keyboarding Frege’s concept writing
A case study in the use of invisible XML
C. M. Sperberg-McQueen
Founder and principal
Black Mesa Technologies LLC

Balisage: The Markup Conference 2023
July 31 - August 4, 2023

Copyright 2023 by the author

How to cite this paper
Sperberg-McQueen, C. M. "Keyboarding Frege’s concept writing." Presented at: Balisage: The Markup Conference 2023, Washington, DC, July 31 - August 4, 2023. In Proceedings of Balisage: The Markup Conference 2023.
 Balisage Series on Markup Technologies vol. 28 (2023). https://doi.org/10.4242/BalisageVol28.Sperberg-McQueen01.

Abstract
Gottlob Frege’s 1879 book
 Begriffsschrift (Concept Writing) poses a
 number of problems for the would-be digitizer, most notably its
 extensive use of a two-dimensional notation not easily reduced
 to a linear sequence of characters. With careful study,
 however, the notation can be seen to possess a clear internal
 logic, and an easily keyboardable serialized form for data
 capture can be designed, which makes it easy to transcribe even
 complex formulas. Invisible XML supports the key step of
 parsing that data capture format and turning it into usefully
 structured XML, from which routine stylesheets can generate SVG
 images of the two-dimensional formulae and other useful outputs.

Balisage: The Markup Conference

 Keyboarding Frege’s concept writing

 A case study in the use of invisible XML

 Table of Contents

 	Title Page

 	Background

 	The problem

 	The solution
 	Understanding the notation
 	Survey of the notation

 	Discussion

 	Using ixml to define the data capture language

 	Relation to other work

 	Extensions and follow-on work
 	Generating SVG

 	Generating first-order logical formulas

 	Follow-on work

 	Lessons learned

 	Appendix: ixml grammar in full

 	About the Author

 Keyboarding Frege’s concept writing
A case study in the use of invisible XML

This paper describes the use of invisible XML to solve a
 problem arising in the preparation of an electronic book version of
 Gottlob Frege’s 1879 pamphlet Begriffsschrift
 (concept writing). On many accounts, Frege’s work
 marks the beginning of modern logic, but the two-dimensional
 notation which gives the book its title poses some challenges for
 data capture. Most alarmingly, it is not obvious at first glance
 where the transcriber should begin and where they should end:
 Frege’s notation exploits both dimensions of the writing surface,
 but for keyboarding it would be helpful to reduce the
 two-dimensional input to a one-dimensional linear sequence.
 Invisible XML provides a convenient way to define an ad-hoc language
 for transcribing Frege’s formulas.[1]

The first section of the paper provides some background on
 Frege’s notation (section “Background”); the second section
 defines the problem to be solved (section “The problem”). The
 third section describes the use of invisible XML to solve the
 problem (section “The solution”). A final section describes
 some additional uses of the digitized formulas that go beyond the
 initial task and identifies some follow-on work to be done in the
 future (section “Extensions and follow-on work”).
Background
Oversimplifying slightly, the consensus of those concerned
 with formal logic is that formal logic in its modern form was
 introduced by the German mathematician Gottlob Frege in 1879 in
 his book Begriffsschrift: eine der arithmetischen
 nachgebildete Formelsprache des reinen Denkens (Frege 1879). The title can be translated as
 Concept writing [or: concept notation, or: concept script,
 or even: ideographic script]: a formula language for pure thought,
 modeled on that of arithmetic. Frege used his notation in
 his two-volume work on the fundamental laws of arithmetic (Frege 1893), which attempted to show that numbers and
 arithmetic can be derived from purely logical assumptions without
 appeal to empirical observation and which influenced the similar
 efforts of Russell and Whitehead in their Principia
 mathematica.
It must be noted, however, that logicians and historians of
 logic appear to cite Frege’s work somewhat more frequently than
 they read it. And although late in life Frege thought of his
 conceptual notation as his most lasting achievement, he appears to
 be the only student of logic who ever used it in published work.
 When historians of philosophy describe it, words like
 idiosyncratic and
 eccentric are deployed, and there are few
 efforts to explain the notation and none to use it. This is not
 unique to Frege: Russell and Whitehead’s notation is also
 increasingly distant from the way logicians now write formulas,
 and sometimes needs paraphrase and commentary. But Russell and
 Whitehead’s notation mostly looks archaic; Frege’s notation is
 completely foreign.
When logicians claim that Frege created modern logic in
 1879, they probably have in mind things like his rejection of the
 traditional subject + predicate analysis of propositions
 (traditional since Aristotle) in favor of an analysis of
 propositions in terms of functions and arguments (similar in
 crucial ways to the functions and arguments of mathematics, and
 for that matter of computer programming), his introduction of an
 operator for universal quantification, and his approach of
 constructing his logical system on the basis of a very small set
 of primitive logical operators (material implication, negation,
 and universal quantification). Contrary to his own evaluation of
 his work, his notation, like some aspects of the notation of Peano
 and Russell and Whitehead, is not regarded as his major
 contribution.
Some time ago the author of this paper conceived the idea of
 republishing the book in ePub format (IDPF/W3C 2019), to
 make it more readily available to students. The 1879 book is
 rather short -- more a booklet than a book -- and its high
 historical interest makes it seem an ideal candidate for such a
 project.
It is clear on even a casual examination of Frege’s text,
 however, that the project is not a quick or simple one. A sample
 page from a scan of the copy of Frege’s book held in the
 Bibliothèque nationale may make the problem clear.
 Figure 1
[image:]

Some aspects of the page are perfectly familiar in technical
 writing and other academic writing: numbered sections (here
 §16 at the beginning of the page), displayed formulas with
 numbers (here, numbers on the right margin mark formulas 8 and 9),
 the mixture of prose text with display material, and even the use
 of inline formulas.
But the formulas themselves appear to defy description, and
 even more so to defy transcription. We see italic Roman letters
 (a, b, c, d) running down the right side of each formula, and they
 are connected by a network of horizontal and vertical lines whose
 meaning, if they have one, is unclear to the casual
 observer.
It is perhaps no wonder that the reviewers of Frege’s book
 found his notation off-putting. It is not just that it was
 unfamiliar. Any new notation is unfamiliar, but mathematics is
 full of work which introduces new notations. Not all of them are
 rejected as decidedly as Frege’s was. But at a first
 approximation, mathematical notation is by and large linear. It
 can be written left to right, and when an equation gets too long
 to fit on a line it can be broken over two lines in much the same
 way as prose. There are non-linear components and other
 complications in standard mathemtical notation, of course:
 individual symbols may be decorated with subscripts and
 superscripts, symbols from non-Latin alphabets can be pressed into
 service, new operators of unfamiliar shape may be introduced. But
 to a large extent, equations have a left-hand side, an equals
 sign, and a right-hand side, and they can be read aloud or
 transcribed by starting at the left and working towards the
 right. There are certainly mathematical notations which are not
 purely linear: matrix notation, summations, integrals, and so on.
 Note that all of these are associated with somewhat advanced
 mathematics and that all of them create identifiable expressions
 which can in turn be integrated into a linear flow. Also,
 notations like that for summations and integrals have a fixed
 number of argument positions.
Earlier
 nineteenth-century works on logic, like that of Boole, used an
 essentially similar linear notation; Boole even borrowed the
 conventional notation for addition and multiplication to represent
 logical disjunction and conjunction. Frege, by contrast, exploits
 the two-dimensionality of the writing surface in ways that are
 unfamiliar. His two-dimensional structures appear to have a
 variable number of argument positions, and to have more internal
 variation than other two-dimensional mathematical notations have.
 There is no real opportunity to apply habits acquired in other
 reading, no transfer of training. This may or may not explain the
 failure of others to adopt Frege’s notation, but it does seem to
 represent a problem for the would-be transcriber who would like to
 spend an hour or so in the evenings typing in a few pages of the
 book, until a usable electronic text is created.[2]

The problem
The problem as it presented itself to the author is fairly
 simple to describe: to make an XML version of Frege’s book, how on
 earth do we capture the diagrams? And once they are captured, how
 do we display them?
One possibility is to treat the formulas as graphics; this
 is not unheard of in ebook publication. The quality of the
 available images speaks against using extracts from them in that
 way: as the reader can observe by consulting the page reproduced
 above, not all of the horizontal and vertical lines are registered
 clearly in the scan; some are interrupted, and a few have
 disappeared entirely.[3] And as users of ebooks will be aware,
 treating formulas as graphics leads to a variety of
 inconveniences. When the user switches the book to night
 mode, or sets a sepia background, or changes the font size,
 formulas digitized as graphics often stubbornly refuse to
 change; this is particularly distracting when graphics have
 been used as a substitute for unusual characters by publishers
 who do not really trust Unicode fonts. In a commercial
 project, perhaps deadline pressure would force the use of the
 formulas-as-graphics approach. But this is not a commercial
 project and the author had the luxury of postponing further
 work on the ebook until a way could be found to represent the
 formulas in a more congenial way.
The requirements and desiderata for the project are these:
 	There should be a natural XML
 representation of Frege’s notation, expressible as an
 extension to the TEI vocabulary.[4]

The XML representation should ideally focus on the
 meaning of the formula and not on its layout, in order to make
 it possible to generate representations of the formulas in
 conventional logical form.

	It must be possible, from the XML representation, to
 generate acceptable SVG representations of the formulas in
 Begriffsschrift, suitable for use in an
 EPub-conformant electronic book.

	Experiment suggested that entering the formulas directly
 in such an XML representation would be tedious, time
 consuming, and error-prone.
So there should be an input language, comparatively
 easy to keyboard,[5] which can be translated mechanically into the
 appropriate XML. The input language will be used only for
 Frege’s concept notation, so it can be simple and
 specialized.

	The translation from the language used for keyboarding
 into the desired pure representation may be
 done in a single step or in multiple steps; there may thus be
 multiple XML representations, some closer to the data-capture
 format and some closer to a general-purpose representation of
 logical formulas.
It is neither a requirement nor a desideratum to have
 just one XML representation; equally it is not a requirement
 or a desideratum to have more than one.

	Brevity in the input language is helpful but less
 important than clarity and simplicity: the keyboardist should
 be able to focus on transcribing the formula, not on trying to
 remember the rules for the input language.

The solution
In order to make a usefully processable representation of
 Frege’s notation, the first task is to understand it better. Then
 the task of representing it in a keyboardable form can be
 undertaken.
Before proceeding to a discussion of the use of invisible
 XML in this project, therefore, it will necessary to spend some
 time outlining the meaning of Frege’s notation, for several
 reasons. Without some understanding of the notation, it will be
 hard for the reader to understand the examples or the design of
 the invisible-XML grammar. And as mentioned above, it’s safe to
 assume that with few exceptions almost no one now living is
 actually familiar with Frege’s formula language. And finally, the
 author has developed such a strong enthusiasm for Frege’s notation
 that he cannot resist the temptation to explain it and show other
 people some of its virtues. Those who do not find questions of
 notation and two-dimensional layout interesting are given
 permission to skim.
Understanding the notation
Survey of the notation
The fundamental goal of the notation is to make explicit
 the logical relations among ideas. In that regard it is
 similar to the philosophical language often imagined by
 Leibniz, who hoped by that by relating each complex content to
 the primitive ideas from which it was compounded it would be
 possible to achieve greater clarity and more reliability in
 reasoning. Unlike Leibniz, however, Frege does not appear to
 contemplate an alphabet of all possible primitive ideas.
 Instead, he assumes that those ideas will be expressed in a
 suitable form developed by the appropriate discipline, and
 that the concept notation will be used to express logical
 connectives. In the foreword to the 1879 book, Frege mentions
 the symbolic languages of arithmetic, geometry, and chemistry
 as examples. Part III of the book is devoted to developing
 some ideas relevant to the foundations of mathematics, using
 in part standard mathematical notation (e.g. for function
 application) and in part notations invented by Frege and not
 (as far as I can tell) part of
 Begriffsschrift proper. In Parts I and
 II, however, when introducing his notation and developing some
 general logical rules (what he refers to as laws of
 pure thought), Frege uses uppercase Greek and
 lowercase italic Latin letters to represent primitive (and
 atomic) propositions.
A full presentation would probably exceed the patience of
 the reader, but the essentials of Frege’s notation as
 presented in 1879 can be summarized fairly simply.[6]
 We introduce the major constructs of the notation, with
 examples.
Basic statements. The
 basic units of a formula are sentences which can be judged
 true or false, more or less what modern treatments of logic
 would call propositions.[7]
 As noted, Frege does not specify a language or notation for
 these; in practice, most of the formulas in the book use
 variables to represent the basic statements: uppercase Greek
 letters (e.g. Α, Β, Γ)
 in the initial presentation of the notation, later often
 lowercase italic Latin letters (a, b, c,
 ...). Some basic statements take the form of
 function applications, or predicates with one or more
 arguments; here, too, both the functors and the arguments are
 typically represented by variables
 (e.g. Φ(Α),
 Ψ(Α,
 Β), and later
 Ψ(a) and
 similar). It should be noted that applying the notions of
 function and argument in logical contexts was one of Frege’s
 most important and far-reaching innovations. Equivalence
 claims of the form (Α ≡ Β)
 also appear as basic statements. (As may be seen,
 basic statements are not necessarily
 atomic.)

Affirmation. Given a
 proposition (e.g. Α), it is
 possible to signal explicitly that one believes the
 proposition to be true. In Frege’s notation, this is signaled
 by a horizontal line to the left of the proposition, with a
 vertical stroke at its left end.
 Figure 2
[image:]

 To denote the proposition without expressing any view of
 its truth, the vertical stroke (the affirmation
 stroke) is omitted.
 Figure 3
[image:]

 The horizontal line (content stroke) can be
 rendered roughly as the proposition that
 (In Frege 1893, Frege dropped the name
 content stroke and explained the
 horizontal line as a function which maps a proposition, or a
 truth value, to a truth value. This change has implications
 for what we would call the type system which are interesting
 but which cannot be pursued here.)
Note: In some discussions, the affirmation stroke is
 glossed as a claim that the statement is
 provable, not simply that it is true,
 perhaps because a speaker’s attitude towards the truth or
 falsity of a statement is in general a psychological question
 with little direct relevance to the actual truth or falsity of
 the statement.
Conditionals. The main
 logical connective of the Begriffsschrift
 is what is sometimes called material
 implication, in logic textbooks written variously
 as ⇒ and ⊃ (or with other symbols). The
 sentence Β ⇒ Α is false in
 the case that Β is true and Α false, and otherwise
 it is true. Frege renders this thus:
 Figure 4
[image:]

 As can be seen, the antecedent Β is written directly
 below the consequent Α, and each has a content stroke.
 The two content strokes are joined by a vertical line (a
 conditional stroke) and a sort of T junction,
 and the conditional has its own content stroke to the left of
 the T junction. The horizontal line across the top of the
 formula is thus divided into two parts: the part to the right
 of the conditional stroke represents the proposition
 that Α, and the part to the left represents
 the proposition that Β implies
 Α.
Composition of
 conditionals. Conditionals can be combined, by
 joining the content strokes of the antecedent and consequent
 with a new conditional stroke. We can thus combine
 Β implies Α with a third
 proposition Γ, to form a compound conditional. The
 identity of the antecedent and consequent will be evident from
 the position of the conditional stroke which joins them. Thus
 Figure 5
[image:]

 is visibly a conditional whose antecedent is Γ and whose
 consequent is Β implies Α, or in
 linear notation ((Γ ⇒ (Β ⇒
 Α)), while
 Figure 6
[image:]

 has the nested conditional as the antecedent and Γ as
 the consequent, in linear notation ((Β ⇒
 Α) ⇒ Γ).
Inference. Frege
 describes one and only one rule of inference, which
 corresponds to the traditional inference called
 modus ponens. From (the truth of) a
 conditional and the antecedent of that conditional, we can
 infer the consequent of the conditional. In principle, one
 can write out an inference step by listing the two premises,
 then drawing a horizontal rule and writing the conclusion
 below the horizontal rule. Writing out an inference in full
 thus entails writing both the antecedent and the consequent of
 the conditional premise twice; to save trouble, Frege allows
 theorems already proved (and given numbers) to be used as
 premises by reference: the number of the theorem is given to
 the left of the horizontal rule. In practice, Frege also
 makes use of a rule allowing consistent substitution of new
 terms for variables in a theorem, giving tables of
 substitutions in the left margin of an inference. A typical
 example may be seen at the bottom of the page given
 above.
Negation. In Frege’s
 notation, negation is indicated by a short vertical stroke
 descending from the content line. To the right of the stroke,
 the content line is that of the proposition being negated, and
 to the left it is the content stroke of the negation. (In
 Frege 1893, negation is simply a function
 that maps each truth value to its opposite.) The denial of a
 proposition Α, or equivalently the proposition
 that Α is false, is represented thus:
 Figure 7
[image:]

 To assert that Α is false, we can add an affirmation
 stroke:
 Figure 8
[image:]

Universal
 quantification. Logic has dealt with quantifiers
 like all, some,
 not all, and none
 since Aristotle. Since the introduction of algebraic
 notation, mathematics has used formulas like
 x × (y +
 z) = x ×
 y + x ×
 z) with the understanding that
 such formulas are to be understood as holding for all values
 of the variables x,
 y, and z.
One of Frege’s important innovations in logic was to
 introduce notation explicitly introducing a variable like
 x, with the meaning for all values
 of x, it is the case that ...,
 with an explicitly understood scope for
 the binding of x, which was not
 necessarily the entire formula. The rules for working with
 variables of limited scope are subtly but crucially different
 from those governing variables whose scope is the entire
 formula — different enough that Frege uses distinctive
 typographic styling for the two kinds of variables. Variables
 written as letters of the Latin alphabet (invariably in
 italic) are implicitly bound throughout the entire formula,
 while variables written in Fraktur have meaning only within
 the scope of an explicit universal quantification.[8]
 The conventional formula (∀
 a)(Χ(a))
 can thus be written as:
 Figure 9
[image:]

 Since the explicit universal quantifier immediately follows
 (i.e. is immediately to the right of) the affirmation
 stroke, the formula just given is equivalent to a formula
 using an implicit universal quantification for
 a:
 Figure 10
[image:]

Other topics. The
 summary just given reflects Frege’s account of the notation as
 given in Part I of Frege 1879, but omits some
 further development given in passing in Parts II and III of
 the book. The major omissions are:
 	formula numbers provided for theorems

	the labels on premises given explicitly to show the
 formula number of the premise

	tables showing how premises used in an inference are
 derived by substitution from the formula whose number is
 given

	a notation allowing new notations to be defined in
 terms of pure Begriffsschrift
 expression

	several uses of that notation to introduce compound
 symbols meaning property F is
 inherited in the f-series,
 y follows
 x in the
 f-series,
 y appears in the
 f-series beginning with
 x
 (i.e. y is either identical to
 x or follows x
 in the f-series) the
 operation f is unambiguous
 (i.e. f is a function).

 These all have substantive interest, and some of them pose a
 challenge for the task of generating suitable SVG to display
 them, but the only serious problem they pose for the design of
 the data capture notation is understanding the meaning of the
 new notations well enough to provide plausible linear forms
 for them.

Discussion
One of the frequent criticisms of Frege’s notation is
 the observation that any formula typically takes more space on
 the page as Frege writes it than it would take if written in a
 more conventional linear style. The simple formula
 Β implies
 Α (or equivalently
 Β only if
 Α) would be written by
 Russell and Whitehead as Β ⊃
 Α. The formula takes two lines in Frege’s
 notation (with or without the affirmation stroke):
 Figure 11
[image:]

 The sixth axiom of Principia Mathematica
 takes one line in the notation
 (q ⊃ r) ⊃ [(p ∨ q) ⊃ (p ∨ r)]

 but expands to take six lines in
 Begriffsschrift:
 Figure 12
[image:]

 It is easy to see why Frege’s contemporaries and successors
 have judged the notation unpromising and wasteful of
 space.
It should be noted, however, that Frege regarded
 formulas like these as artificially simple. His expected
 application of the notation was to construct proofs related to
 the foundations of mathematics, in which the conditions of
 validity should be explicitly stated; a typical formula chosen
 at random from the Grundgesetze may
 involve eight or ten or more basic statements, each
 represented not by a single variable but by a mathematical
 formula of five or ten characters.

For such formulas, the comparison of Frege’s notation
 and linear notation is more complex. Consider, for example,
 the following formula from page 32 of
 Frege’s book:[9]
 Figure 13
[image:]

 In conventional logical notation, this would be written in
 much less space:
 ((b ⇒ a) ⇒ ((c ⇒ (b ⇒ a))
 ⇒ ((c ⇒ b) ⇒ (c ⇒ a)))) ⇒
 (((b ⇒ a) ⇒ (c ⇒ (b ⇒ a)))
 ⇒ ((b ⇒ a) ⇒ ((c ⇒ b) ⇒
 (c ⇒ a))))

 But now consider another formula of similar size. Is this the
 same as the previous formula, or different?
 ((b ⇒ a) ⇒ ((c ⇒ (b ⇒ a))
 ⇒ ((c ⇒ b) ⇒ (c ⇒ a)))) ⇒
 ((b ⇒ a) ⇒ (c ⇒ ((b ⇒ a)
 ⇒ ((b ⇒ a) ⇒ ((c ⇒ b) ⇒
 (c ⇒ a))))))

 Different readers may experience different results, but I
 expect many readers will find it hard to tell without careful
 examination and the counting of parentheses whether the
 conventional linear formula just given is the same as that
 given earlier, or different.
Many readers, on the other hand, may find it easier to
 detect the difference (a change in parentheses) by comparing
 the equivalent formula in Frege’s notation to the one above:

 Figure 14
[image:]

 A quick look at the horizontal lines across the top of the two
 formulas shows that they have different numbers of what might
 be called top-level conditionals.
As this example illustrates, Frege’s notation provides a
 compact visual representation of the structure of the formula,
 analogous to that provided by a parse tree for any string
 described by a suitable grammar, and also at least roughly
 analogous to the structure made explicit in the element
 structure of an XML document.
In fact, Frege’s notation is not just
 like a parse tree. It can be most easily
 read as a parse tree, for a particular
 logical syntax, with the root drawn at the upper left instead
 of the top center, and the leaves written vertically in
 sequence down the right-hand side of the diagram instead of
 horizontally across the bottom. Compared to linear notations,
 parse trees do take more space. Compared to other parse-tree
 notations, Begriffsschrift is noticeably
 more compact than most.
Consider the conventional linear representation for
 Frege’s theorem 2:
 (c ⇒ (b ⇒ a)) ⇒ ((c ⇒ b)
 ⇒ (c ⇒ a))

 A parse tree for this expression, drawn more or less
 conventionally, might look like this:
 Figure 15
[image:]

 If rotated 45 degrees counter-clockwise, it might look like
 this:
 Figure 16
[image:]

 Arranging all the leaves vertically on the right we have:
 Figure 17
[image:]

 And if we now replace diagonal lines with vertical and
 horizontal lines, we have something that bears a striking
 visual resemblance to Frege’s notation:
 Figure 18
[image:]

 The actual form of this expression in
 Begriffsschrift is:
 Figure 19
[image:]

 The shape of the tree is identical; the only change is that
 the internal nodes denoting conditionals are not labeled.
 They need no labels: since there is only one binary operator
 in the language, any internal node in the tree with two nodes
 is a conditional. Negation and universal quantification are
 unary operators and have only one child; so also affirmation
 (which in any case occurs only as a sort of annotation on the
 root of the tree).
Writing the leaves top to bottom instead of left to
 right also has the effect of reversing the order of the
 children of conditional nodes, which works out conveniently
 here since Frege writes the consequent before (above) the
 antecedent. His practice gives visual prominence to the
 consequent of the sequence of conditionals, which is likely to
 be of more interest for the argument being developed than the
 antecedent(s).
Like any parse tree, Frege’s notation makes the
 structure of an expression much easier to perceive than a
 linear notation with multiple levels of nested
 parentheses.
The relation between Frege’s notation and parse trees
 appears to have passed unnoticed (or at least unmentioned)
 until recently, but has now been independently observed and
 usefully discussed by Dirk Schlimm (Schlimm 2018). For what it is worth, the author’s
 experience suggests that it is much easier to learn to
 understand Begriffsschrift formulas
 fluently by reading them as parse trees than by attempting to
 translate them mentally into conventional notation.

Using ixml to define the data capture language
One obvious natural representation of Frege’s notation
 would be an XML vocabulary for the representation of
 conventional first-order logic, with elements for propositional
 variables and other basic statements, and for the various
 logical operations: negation, conjunction, disjunction, material
 implication, and quantification. In transcribing Frege, only
 basic sentences, material implication, negation, and universal
 quantification would be used. The representation is natural
 enough, but the idea did not survive contact with even simple
 examples: even for a user with long experience editing XML
 documents, data entry was very cumbersome.
A second possibility was to record each formula not in XML
 but in an easily keyboardable representation of conventional
 logic. Formula 2 (used as an example in the discussion of parse
 trees above) might be represented as (c implies (b
 implies a)) implies ((c implies b) implies (c implies
 a)). A post-processing step would be needed to
 parse this into the XML form, but the syntax is not very
 complicated and writing a parser would be an interesting
 exercise. This approach worked a little better than direct
 entry of the XML, but it was found cumbersome and error prone.
 Transcribing the antecedent of a conditional before the
 consequent requires reading Frege’s formulas bottom to top, as
 it were, and the correct placement of parentheses was a constant
 challenge.
The key step towards a simpler notation came with the
 realization that Β implies Α can also
 be verbalized as if Β, then Α, and
 the order can be reversed to put the consequent first if we just
 say Α if Β. And indeed
 Alpha if Beta is the form taken by
 the formula
 Figure 20
[image:]

 in the data capture language developed for this project. (It
 will be convenient to give the language a name; in the remainder
 of this paper it will be referred to as kB for
 keyboardable Begriffsschrift.)

Perhaps the easiest way to introduce kB is to give the kB
 equivalents for the examples given in the survey above, and to
 introduce the key ixml definitions for each construct. (The
 full ixml grammar is given in an appendix.)
Variables. Uppercase
 Greek letters may be entered directly or spelled out:
 Α, Β, Γ can be entered as
 Alpha, Beta, Gamma. Variables
 spelled with italic Latin letters have an asterisk before the
 letter itself (so F and
 f are spelled
 *F and
 *f); for lower-case letters, the
 asterisk is optional.[10]
 Fraktur letters may be written directly (using the
 mathematical Fraktur characters of Unicode / ISO
 10646) or with a preceding f or
 F: 𝔣 and 𝔉 are written
 ff and
 FF.

In each case, the translation of the string into the
 appropriate character sequence is handled by marking the data
 capture form using -
 (hide) and inserting the form that should occur
 in the XML produced by the ixml parser. So the rule for
 upper-case Greek letters takes the form:

-Greek-letter: [#391 - #03A9] { 'Α'-'Ω' }
 ; -'Alpha', + #0391 {'Α'}
 ; -'Beta', + #0392 {'Β'}
 ...

 The first line of the production rule accepts any upper-case
 Greek character typed by the user; the later lines accept the
 names of the characters, written with an initial capital,
 suppress the string typed by the user and insert the appropriate
 Greek character.
The rules for Fraktur and italic are handled similarly:

-italic: (-'*')?, ['a'-'z'].
-Italic: -'*', ['A'-'Z'].

-fraktur: [#1D51E - #1D537]
 ; -'fa', + '𝔞' {#1D51E}
 ; -'fb', + #1D51F
 ; ...
 .
-Fraktur: [#1d504 - #1d51d] { not all letters are present! }
 ; -'FA', + #1D504 {'𝔄'}
 ; -'FB', + #1D505 {'𝔅'}
 ; ...
 .

 These simple short-forms are possible without conflict because
 no variable name in Frege’s book is more than one character
 long. So using fa to denote Fraktur
 a or 𝔞 does not
 conflict with any other possible uses. This is an advantage of
 devising an input format for such a specialized usage.

These various forms are gathered together as varying
 possible expansions of the nonterminals var
 and bound-var.

var: Greek-letter; italic; Italic.
@bound-var: fraktur; Fraktur.

 The distinction between the two non-terminals is not strictly
 necessary but it may make it easier to check that no Fraktur
 variables are used outside the scope of their quantifier.
Function applications.
 Function applications are written in the obvious way. In
 Frege’s book, no concrete functions actually appear in any
 formulas (other than the identity function ≡, which is
 written with infix notation): all function applications use
 variables both for their arguments and for the function name.
 By convention, Frege writes function names with upper-case
 variables (Greek, italic Latin, or Fraktur); arguments use
 upper-case Greek, lower-case italic Latin, and lower-case
 Fraktur. So
 Φ(Α),
 Ψ(Α,
 Β), and later
 Ψ(a) are encoded
 in kB as Phi(Alpha),
 Psi(Alpha, Beta), and
 Psi(a).

Affirmation. In kB, the
 presence of an affirmation stroke is signaled by the keyword
 yes at the beginning of the formula.
 The absence of the affirmation stroke may optionally be
 explicitly signaled using the keyword
 maybe.
So yes Alpha is the kB
 encoding of
 Figure 21
[image:]

 And the formula
 Figure 22
[image:]

 can be encoded either as maybe Alpha
 or just as Alpha.
Conditionals. In kB, the
 keyword if takes the consequent as
 its left-hand argument and its antecedent as its right-hand
 argument; it is thus the converse of conventional implication
 (⇒ or ⊃). The formula
 Figure 23
[image:]

 is transcribed

 Alpha if Beta

 So in kB the left-right order of basic statements matches their
 top-to-bottom order in Frege’s notation.
Composition of
 conditionals. The kB if
 keyword is left-associative, so the formula
 Figure 24
[image:]

 is transcribed in kB as:

 Alpha if Beta if Gamma

 Parentheses are used for the case where the antecedent itself is
 a nested conditional: the formula
 Figure 25
[image:]

 is transcribed

 Gamma if (Alpha if Beta)

 As an empirical matter, in Frege’s formulas nested conditionals
 more frequently occur in the consequent than in the antecedent
 of other conditionals, so making if
 left-associative saves a considerable number of parentheses. A
 similar saving could be achieved in conventional notation for
 these formulas, if the material implication were taken to be
 right-associative. In practice, definitions of conventional
 logical syntax typically require parentheses for all nested
 conditionals.
The rules used in ixml to make conditionals
 left-associative interact with other operators and will be
 discussed below.
Inference. The simple
 form of an inference simply lists both premises and the
 conclusion. Frege gives this example:
 Figure 26
[image:]

 The kB transcription of this is:

we have: yes Alpha if Beta
 and: yes Beta
from which we infer: yes Alpha.

 For the case where either premise becomes long and complicated,
 an optional comma is allowed after it to help the human reader
 understand the structure of the formula more easily.

In practice, Frege’s inferences typically replace one of
 the premises with a numeric reference to that premise which
 appears parenthetically to the left of what may be called the
 inference line (the horizontal rule separating premises from
 conclusion), followed by either one or two colons. One colon
 means the elided premise is the first premise in the
 modus ponens, a conditional; two colons
 means the elided premise is the second one, which matches the
 antecedent of the first premise. Here is Frege’s example of the
 second form, assuming that formula XX
 asserts the truth of Α:
 Figure 27
[image:]

 The kB representation uses the keyword
 via to introduce the elided premise:

we have: yes Alpha if Beta,
from which via (XX)::
we infer: yes Alpha.

Further elaborations allow multiple inference steps each
 of which elides one premise. Overall, the rules for inferences
 are thus the most complex seen so far:

inference: premises, sep,
 infstep++sep.

-premises: -'we have:', s, premise++(sep, -'and:', s).

infstep: -'from which', s,
 (-'via', s, refs, s)?,
 -'we infer:', s, conclusion.

premise: formula.

conclusion: -formula.

-refs: premise-ref-con; premise-ref-ant.
premise-ref-con: -'(', s, ref++comma, s, -'):'.
premise-ref-ant: -'(', s, ref++comma, s, -')::'.

ref: 'X'+; ['0'-'9']+.

 The nonterminal sep identifies a separator:
 either whitespace or a comma followed by whitespace:

-sep: ss; (-',', s).

The XML being produced by all of these grammar rules
 follows naturally from the rules of invisible XML, but perhaps
 an example should finally be given. This is the XML produced by
 the sample inference shown just above.

<inference>
 <premise>
 <formula>
 <yes>
 <conditional>
 <consequent>
 <leaf>
 <var>Α</var>
 </leaf>
 </consequent>
 <antecedent>
 <leaf>
 <var>Β</var>
 </leaf>
 </antecedent>
 </conditional>
 </yes>
 </formula>
 </premise>
 <infstep>
 <premise-ref-ant>
 <ref>XX</ref>
 </premise-ref-ant>
 <conclusion>
 <yes>
 <leaf>
 <var>Α</var>
 </leaf>
 </yes>
 </conclusion>
 </infstep>
</inference>

Negation. In keeping with
 the general trend of trying to let the transcriber keep their
 fingers on the keyboard characters, kB uses the keyword
 not to encode negation, in
 preference to other symbols often used for negation
 (~,
 ¬,
 !, ...). The negation
 Figure 28
[image:]

 is encoded

 not Alpha

 and the formula
 Figure 29
[image:]

 is encoded

 yes not Alpha

Since negation is a unary operator, it must be
 right-associative (unless we want double negation to require
 parentheses, which we do not). But its binding strength
 relative to other operators interacts with the rules for those
 other operators and so the ixml rules for negation will be
 discussed and given below.
Universal quantification.

The conventional formula (∀
 a)(Χ(a))
 can be written as:
 Figure 30
[image:]

 In kB, it is written using the keywords
 all and
 satisfy:

 yes all fa satisfy Chi(fa)

Associativity and
 binding. In order to define rules for conditionals,
 negation, and universal quantification which work acceptably, it
 is necessary to consider how they interact. In technical terms,
 we must consider the binding strength and associativity of the
 relevant operators. In less technical terms, we must decide
 what structure should be inferred when ... if
 ..., not ..., and
 all ... satisfy ... occur together
 without parentheses to show the desired structure. For some
 examples, the desired structure seems obvious; there may not be
 any plausible alternative:

 not not Alpha

 not all fa satisfy Phi(fa)

 all fa satisfy not Phi(fa)

 not all fa satisfy not Phi(fa)

 all fa satisfy all fd satisfy Phi(fa, fd)

 all fa satisfy not all fd satisfy not Phi(fa, fd)

 not all fd satisfy not all fa satisfy Phi(fa, fd)

 Alpha if not Beta

 Alpha if not all fa satisfy Phi(fa)

 Beta if all fa satisfy not Phi(fa)

 Gamma if not all fa satisfy not Phi(fa)

 If these examples are legal, it is obvious what structure they
 must have; the only alternative would be to require that
 explicit parentheses be used:

 not (all fa satisfy (Phi(fa)))

 all fa satisfy (not (Phi(fa)))

 not (all fa satisfy (not (Phi(fa))))

etc.

 These parenthesized forms should of course be allowed, but
 ideally not required.
For some combination forms, we have already decided how
 they should be parsed. Nested conditionals should be handled as
 described above, so

 Alpha if Beta if Gamma

 should be equivalent to

 (Alpha if Beta) if Gamma

 and not to

 Alpha if (Beta if Gamma)

A more serious design question arises with the possible
 interactions of conditionals with the other two operators. How
 should examples like these be parsed?

 yes not Alpha if Beta

 all fa satisfy Phi(fa) if Gamma

 In most programming languages, and in most forms of symbolic
 logic, negation is held to bind more tightly than the
 conditional, so yes not Alpha if
 Beta should probably be interpreted as
 yes (not Alpha) if Beta
 Figure 31
[image:]

 and not as yes not (Alpha if Beta)
 Figure 32
[image:]

So for negation and conditional, a simple rule seems
 possible: conditionals can govern unparenthesized negations in
 both antecedent and consequent, but negation never governs an
 unparenthesized conditional.
For conditionals and universal quantification, both
 possible rules seemed plausible. On the one hand, the syntax may
 be easier to remember if the rule for quantifiers and the rule
 for negation are the same. So perhaps all fa
 satisfy Alpha if Beta should be parsed as
 (all fa satisfy Alpha) if Beta). On
 the other hand, quantifiers tend to be introduced late in the
 exposition of any syntax, and operators introduced late
 typically bind loosely. So perhaps all fa satisfy
 Alpha if Beta should be parsed as
 all fa satisfy (Alpha if
 Beta).
If one form of construct were dramaticaly more common than
 the other, it would be natural to encode the more common
 construction without parentheses. But a brief examination of
 examples suggested that in Frege’s formulas, the number of
 quantifiers which govern conditionals and the number of
 quantifiers which appear in the consequent of conditionals were
 roughly comparable. So neither choice will save a dramatic
 number or parentheses.
A third possibility was also considered: if it is this
 hard to choose the relative binding strength of all
 ... satisfy ... and ... if
 ..., then perhaps parentheses should be required
 either way, and the construct all fa satisfy Alpha
 if Beta should simply be a syntax error.
In the end, the arguments of simplicity won. In this case,
 simplicity took two forms. First, making universal
 quantification behave the same way as negation seemed to be
 simpler to remember; the rule is simply that neither unary
 operator governs an unparenthesized conditional. And second,
 making the two unary operators behave the same way made the
 formulation of the grammar easier.
The basic requirement is that in some contexts, any
 proposition should be allowed, while in other contexts,
 unparenthesized conditionals are not allowed but any other
 propostion is syntactically acceptable. We thus define rules
 for three kinds of propositions.

-prop-no-ifs: leaf; not; univ; parenthesized-prop.
-proposition: prop-no-ifs; conditional.
-parenthesized-prop: -'(', s, proposition, s, -')'.

 The nonterminals not and
 univ are defined below. The nonterminal
 leaf covers all basic statements (the name
 leaf is shorter than
 basic_stmt). Here, too, the nonterminal
 could be hidden, but it turns out to be convenient to have a
 single element type as the root of every basic statement.

With the help of the two nonterminals
 proposition and
 prop-no-ifs, we can now define the various
 mutually recursive compound operators. Conditionals have a
 consequent and an antecedent. These could be marked hidden to
 make the XML syntax simpler, but it’s convenient for some
 purposes to be able to select consequents using an XPath
 expression like ./consequent rather
 than ./*[1].

conditional: consequent, s, -'if', s, antecedent.
consequent: proposition.
antecedent: prop-no-ifs.

 Using proposition as the definition of
 consequent and
 prop-no-ifs as the definition of
 antecedent has the effect of making
 conditionals left-associative.
Since negation never binds a non-parenthesized
 conditional, its definition uses
 prop-no-ifs.

not: -'not', s, prop-no-ifs.

The ixml rule for universal quantifiers also uses
 prop-no-ifs, for the same reason.

univ: -'all', s, bound-var, s, -'satisfy', s, prop-no-ifs.

@bound-var: fraktur; Fraktur.

A note on whitespace
 handling. The handling of whitespace is one of the
 trickiest and least expected problems confronted by the writer
 of invisible-XML grammars. Even those with long experience
 using and writing context-free grammars may be tripped up by it,
 partly because most practical tools for parser generation assume
 an upstream lexical analyser or tokenizer which can handle
 whitespace rules, and most published context-free grammars
 accordingly omit all mention of whitespace. Because ixml does
 not assume any upstream lexical analyser, whitespace must be
 handled by the grammar writer.
If care is not taken, then either whitespace will not be
 allowed in places where it should be allowed, or it will be
 allowed by multiple rules, introducing ambiguity into the
 grammar. (In this case, the ambiguity is usually harmless,
 since the position of whitespace seldom affects the intended
 meaning of the input. But there is no way for the parser to
 know when ambiguity is harmless, so it will warn the user.) On
 the other hand, if care is taken, then
 whitespace handling can begin to consume all too much of the
 grammar writer’s thoughts. It would be convenient to have a
 relatively simple systematic approach to the handling of
 whitespace. So far, there appear to be two such, although
 neither has (as far as the author is aware) been described in
 writing. They may be called the token-boundary
 approach and the whitespace floats upward
 approach.
Both typically assume some nonterminal for whitespace,
 which for concreteness I’ll call s. I
 assume s matches zero or more whitespace
 characters, so whitespace is usually optional; if whitespace is
 required, the paired nonterminal ss can be
 used.
The two approaches can be simply described.
 	The token-boundary approach to
 whitespace allows s at the end of every
 token in the grammar.
This may sound unhelpful, since ixml does not assume a
 separate tokenizer and does not identify tokens as such.
 Tokens may nevertheless appear in ixml grammars, identiable
 as units within which whitespace is not allowed, and between
 which whitespace (usually) is
 allowed.
In the grammar for kB, for example, the nonterminals
 Greek-letter,
 italic, etc. can be regarded as
 defining tokens. So in a grammar using this approach to
 whitespace handling, italic might have
 been defined as

-italic: (-'*')?, ['a'-'z'], s.

Note that whitespace is not allowed at the beginning
 of a token; any whitespace occurring before an occurrence of
 italic will belong to whatever token
 precedes the italic variable in the input. This rule avoids
 ambiguity caused by whitespace between two tokens being
 claimed by both.
Quoted and encoded literals are also usually tokens in
 the sense intended here. So in a grammar using this
 approach, conditional might be defined:

conditional: consequent, -'if', s, antecedent.

 The s must
 be supplied, in order to allow whitespace after the
 keyword.
The specification grammar of ixml (that is, the
 grammar for ixml grammars, as given in the specification) is
 a good example of the token-boundary approach. The approach
 has the advantage that any rule not itself defining a token
 does not need to worry about whitespace, with the possible
 exception of the top-level rule, which must mention
 s as its first child, in order to allow
 leading whitespace in the strings recognized by the
 grammar.

	The whitespace-floats-upward
 approach to whitespace can perhaps best be understood as an
 application to ixml of a principle followed by many users of
 XML and SGML, which is that whitespace occurring at the
 boundaries of phrase-level elements belongs outside the
 phrase-level element, not inside it. Following this
 principle, many users would encode the beginning of this
 paragraph as

<p>The <term>whitespace-floats-upward</term> approach ...

 and not as

<p>The<term> whitespace-floats-upward </term>approach ...

On this principle, the whitespace before and after a
 term (or a token) is not strictly speaking part of the token
 and should be outside it, not inside it.
So in the whitespace-floats-upward approach, the basic
 rule is that as a rule no nonterminal
 begins or ends with whitespace, and if whitespace is needed
 at the boundaries of any nonterminal, the parent should
 provide it. This approach thus has the disadvantage that
 s is mentioned in many high-level
 nonterminals, which can distract readers who have not yet
 learned to read past it. Another drawback is that rules
 with optional children become more complex: instead of
 writing xyz? for an optional child, one must
 write (xyz, s)? in the simple case, and complex
 cases can become tedious.
The grammar given here uses this approach.

Relation to other work
For a notation routinely declared dead, the
 Begriffsschrift has inspired a surprising
 number of tools and electronic representations.
The programming language
 Gottlob. There is an imperative programming language
 named Gottlob whose notation is inspired by Frege (Dockrey 2019, see also Temkin 2019) and
 which has an in-browser code editor which assists the user in
 constructing formulas. Parts of the code really do look like
 bits of formulas from Frege’s book. Unfortunately, the notation
 of the programming language deviates from Frege in ways that
 make using the editor a slightly painful experience for anyone
 who has internalized those rules.[11]
 The editor offers an export mechanism but the output is a mass
 of Javascript which is not really suitable for further
 processing (at least, not by this author). The imperative
 nature of the language is also a barrier: a purely declarative
 language in the style of a theorem prover or Prolog would suit
 the notation better.
TeX libraries for typesetting
 Begriffsschrift. There appear to
 be at least four TeX macro libraries for typesetting the
 notation; all are available from CTAN, the standard archive for
 TeX libraries. The first three appear to be genetically
 related.
 	Josh Parsons appears to have developed
 begriff.sty in 2003 or so, with later
 changes and additions by Richard Heck and Parsons (Parsons 2005). It satisfies the basic requirement
 (i.e. it can be used to typeset formulas written in Frege’s
 notation), but it has the reputation of being a little
 awkward. For example, it requires the user to align the
 formulas on the right manually.

	Quirin Pamp’s frege.sty started
 from Parsons’s package but eventually reworked it to the
 point of incompatibility. It aligns the style more closely
 with that used by Frege’s typesetters.

	Marcus Rossberg developed
 grundgesetze.sty beginning in 2008 for
 use in an English translation of Frege’s
 Grundgesetze (Rossberg 2021). It is based on Parsons’s library,
 but seeks to match the typographic style of Frege 1893 rather than Frege 1879.

 These all differ from the current work in two important ways.
 First, because they use TeX to render the formulas, they can be
 used to generate PDF or printed pages, but they can be used to
 help produce an ebook conforming to the EPub standard only if
 the formulas are to be presented as graphics, not if live text
 is desired. Second, although the authors have made a certain
 effort to give mnemonic names to the macros, their fundamental
 concerns appear to be typographic. Also, the context in which
 they are working imposes certain limitations on them, and the
 TeX formulations for formulas are not notable for their
 perspicuity.
As an example, consider the following formula, used as an
 example in Rossberg’s documentation (If
 F(a) holds, then there
 exists some 𝔞 such that
 F(𝔞)):
 Figure 33
[image:]

 Using the macros of grundgesetze.sty and
 the native facilities built into LaTeX, this can be rendered
 thus:

\GGjudge\GGconditional{Fa}
 {\GGnot \GGquant{\mathfrak a} \GGnot F \mathfrak a}

 This formulation has the drawback, however, that it does not
 align the basic statements of the formula vertically on the
 right. That can be done by specifying an overall formula width
 and marking the basic statements as such using the
 \GGterm{} macro:

\setlength{\GGlinewidth}{25.2pt}
\GGjudge\GGconditional{\GGterm{Fa}}
 {\GGnot \GGquant{\mathfrak a} \GGnot
 \GGterm{F \mathfrak a}}

 In kB, this formula becomes yes not all fa satisfy
 not *F(fa) if *F(a). I will leave to others to
 judge if it is more easily understood: familiarity will make
 almost anything easily readable. But it is certainly shorter
 and almost certainly easier to type. In a large general-purpose
 ecosystem like TeX or LaTeX, short, convenient codes must be
 reserved for phenomena common across many texts, and the content
 / markup distinction must be maintained. The result is a
 notation that fits fine within TeX, but is a little daunting to
 the prospective typist.[12]

Reacting in part to the perceived shortcomings of the
 earlier macro libraries, Udo Wermuth developed yet another set
 of macros, gfnotation (Wermuth 2015). He provides both a low-level language to
 allow fine-grained control over the typesetting of a formula and
 a terser higher-level short-form language. As an
 example consider the formula:
 Figure 34
[image:]

 In the short-form language, this formula is produced by the TeX
 code ..\gA.{*.a.{f(\da)}}. It must
 be admitted that this is shorter than the formulation
 Alpha if all fa satisfy f(fa)
 suggested by the work described above. It may be suspected,
 however, that a reader will reach fluency in reading kB than in
 reading Wermuth’s short-form.
Etext versions of Frege.
 Some traces in sources like Wikipedia suggest that there have
 been some efforts to transcribe Frege 1893 in
 electronic form, and the author has vague memories of having
 seen at least a partial transcript online, but the links all
 appear to be broken and the author’s belief that there was such
 an electronic text cannot be substantiated.
Pamp (Pamp 2012) writes of a plan to
 transcribe Frege 1879 and include it with his
 macro library as an illustration of the usage of the library,
 but the current version of the library contains no file matching
 that description.

Extensions and follow-on work
The invisible-XML grammar described here makes it possible
 to produce without great effort reasonably perspicuous XML
 representations of formulas in Frege’s notation. But that XML
 representation has value only to the extent that it can be used to
 do interesting and useful things with the formulas. The following
 sections describe some things it should be possible to do.
Generating SVG
To present Frege’s formulas in an EPub in their original
 form, the appealing representation is to use SVG. The
 representation of Begriffsschrift in SVG
 is relatively straightforward, once the rules for laying out a
 formula are well understood. (The layout rules are worth some
 discussion, perhaps, but that discussion must be left to
 another document.) For each construct (basic statement,
 conditional, negation, and univeral quantifier) a simple
 pattern specifies what lines are to be drawn and where any
 sub-formulas are to be written. For each element in the input,
 the appropriate pattern is written to the SVG document as a
 definition; sub-formulas are not expanded in place but instead
 their definitions are referred to.[13]

Frege’s inference chains complicate things very slightly.
 The original plan was to generate an SVG image for each
 inference chain, but for ebook publication that is unlikely to
 produce acceptable results. Ebook readers must break the book
 into pages for display, and long inference chains will not fit
 comfortably on any reasonably sized page. Frege’s typesetters
 allow page breaks to occur below the inference line, so that the
 premises occur on one page and the conclusion on the next. In
 order to provide similar flexibility to ebook readers, it seems
 best to render each premise and the conclusion in separate SVG
 images, and to position them and the inference line using CSS.
 It is not currently clear whether it will be better to handle
 formula numbers by including them in the SVG for the numbered
 formula or to supply them outside the SVG.
At the time this paper was submitted, SVG generation was
 working for all parts of the notation described in this paper
 (which is everything presented by Frege in Part I of the book).
 Apart from the scan of the sample page of Frege 1879, the images in this paper were all
 generated by an XSLT stylesheet from the output of the ixml
 processor. The complications and elaborations introduced in
 Parts II and III are not yet supported by the SVG
 generator.

Generating first-order logical formulas
It is not an essential part of the project, but once
 Frege’s formulas are in a suitable XML format, it is
 straightforward to translate them into other syntaxes for
 symbolic logic. This can help explain the meaning of a formula
 to readers familiar with conventional symbolic logic but not
 conversant with Frege’s notation,[14]
 and indeed a recent edition of Frege 1893
 performs that task for the entire book, on the theory that
 Frege’s mathematical work is worth studying that that no one can
 be expected to learn to read
 Begriffsschrift in order to do so.
A translation into a conventional linear notation can can
 also be used to process Frege’s formulas with other software.
 By translating Frege’s theorems into the input syntax of
 automated theorem provers (e.g. that described in Sutcliffe/Suttner 2022 and Sutcliffe 2022, which is
 accepted as input by a number of programs), it is possible to
 check to see whether those propositions are theorems in the
 logic supported by the theorem provers. This is not likely to
 be of much interest as a check on Frege, since his 1879 book
 does not suffer (as far as I know) from the paradox found by Russell in Frege’s
 later work. But the exercise does provide a form of mechanical
 check on the correctness of the transcription: any theorem from
 the book which is not proven as a theorem by an automated
 theorem prover is likely to suffer from transcription
 errors.
So far experiments with the proof assistant ACL2 and the
 automated theorem prover E have been successful.

Follow-on work
One possible follow-on to the work described here is work
 on using an extension of Frege’s notation to display formulas in
 conventional symbolic logic. When conventional linear notation
 is used, the presentation of long formulae can be challenging:
 how can line breaking and indentation be used to make the
 structure of the formula easier to see, and make the formula
 itself easier to understand?
As discussed above, Begriffsschrift
 can be read as a parse tree for a conventional symbolic
 representation of a formula which uses only basic statements,
 negation, conditionals, and universal quantifications. Linear
 formulas not limited to those operators can also be represented
 using a parse tree drawn in Frege’s style, if we are content to
 label nodes with their operators.
More work is needed, but experiments thus far have been
 encouraging.
Another possible follow-up is the automatic generation of
 alt-text descriptions of formulas in Frege’s notation, to
 improve the accessibility of digital versions of Frege’s
 book.

Lessons learned
Some points illustrated by the work described here may be
 worth calling attention to.

 	It is much easier to work with information if you
 understand it. It is much easier to design a shorthand
 representation for information if you understand it.
Even a superficial understanding may help. At first
 glance, the two-dimensional notation devised by Frege seemed
 impenetrable to this author, but a little study, given
 particular focus by the task of data entry, made it possible
 to develop a terse and (I think) easily comprehensible
 linear representation of the notation.

	Context-free grammars allow much more convenient data
 entry formats than regular expressions.
By bringing the full power of grammars to bear, we can
 devise a data format to handle more complex expressions than
 would be possible with regular expressions. By exploiting
 ixml’s notation for grammars, we can annotate the grammar
 and explain it to the maintenance programmer (that is,
 ourselves in a few months’ time) better than is typically
 feasible with regular expressions.

	Compact notations defined by context-free grammars may
 be both more compact and easier to keyboard than
 corresponding XML. This is particularly helpful for what
 Josh Lubell calls SANDs (specialized arcane non-trivial
 data) with high information density (and, in a useful XML
 representation, a high tag-to-content-character ratio). It
 is likely to be expecially helpful when the data format in
 question is recursive.

	Like various tag minimization features of SGML,
 invisible XML makes it feasible to use much deeper nesting
 of elements and a much higher markup-to-content ratio than
 is usual in tag sets designed for manual application.
The extra tags can make later processing simpler, and
 can make the XML representation of the information denser
 and harder to read without custom display options for
 selective hiding of markup.[15]

	Small things can make a big difference in the
 development and use of an ixml grammar.
Invisible-XML deletions and insertions make it
 possible to perform simple transliteration while parsing, as
 illustrated here by the treatment of Greek and of Fraktur.
 And a simple systematic approach to the definition of
 whitespace (here, the
 whitespace-floats-upward approach) can
 minimize the whitespace-related troubles of grammar
 development.[16]

	Like a schema, an ixml grammar does not need to
 enforce every rule.
If downstream software will break when a rule is not
 followed, that rule is probably worth enforcing. But often
 the grammar can be slightly simpler if it allows some
 constructions that don’t actually occur in practice, by not
 enforcing some exceptions as special cases.
In Frege’s notation, for example, both explicitly bound
 variables (typeset in Fraktur) and implicitly bound variables
 (italics) can be used as function arguments, but Fraktur
 variables are never used to stand for basic statements (as
 propositional variables), only italic variables. Frege also
 uses upper-case Greek variables as function arguments, but
 only within tables of substitutions, where they have a special
 meaning. The grammar is much simpler if it does not try to
 enforce these conventions. A more complex grammar would make
 it easier to catch some transcription errors, but those errors
 are not actually very common. Making the grammar simpler
 makes it easier to avoid errors in the grammar. In this case,
 the tradeoff is clear. Several other examples of regularities
 found in Frege but not enforced by the grammar are noted in
 the kB grammar.

	Even if the grammar does not enforce every rule, it may
 be necessary to write escape hatches into it.
Because he is presenting a new notation, Frege from time
 to time discusses the notation and alternatives he has
 considered and rejected. At the beginning of the book, for
 example, he shows examples of content strokes and affirmation
 strokes which are accompanied by no basic statements and thus
 have nothing whose content and affirmation they can denote.
 After showing how the conditional and negation together can be
 used to express the logical operators AND and OR, he shows how
 an alternative notation based only on conjunction and negation
 could similarly be used to express the conditional. And
 towards the end of the book, he illustrates why certain
 subexpressions in a particular notation must be subscripted,
 by showing a similar expression in which they are not
 subscripted and discussing the problems that would arise in
 that case.
Such examples of syntactically invalid forms have been
 ignored in the discussion here, but if an ebook is to be
 produced they must be handled one way or another. Either kB
 must be extended to include ways to express these negative
 cases, or they must be routed through a different secondary
 workflow. (Re-organizing kB to focus on typographic form and
 not on meaning is also theoretically an option, but it would
 involve giving up on most of the requirements and desiderata
 identified above.)

Appendix: ixml grammar in full
For reference, the full ixml grammar for the data capture
 language kB is given below.

{ Gottlob Frege, Begriffsschrift, eine der arithmetisschen
nachgebildete Formelsprache des reinen Denkens (Halle a.S.:
Verlag von Louis Nebert, 1879. }

{ Revisions:
 2023-04-18 : CMSMcQ : allow page breaks in inferences.
 2023-04-05 : CMSMcQ : move on to Part III.
 2023-04-05 : CMSMcQ : move on to Part II.
 . allow braces for parenthesized propositions
 . support formula numbers
 . unhide conclusion/formula
 . allow tables of substitutions
 2023-04-01 : CMSMcQ : add italic caps (*F)
 2023-03-31 : CMSMcQ : tweaks (make functor an element)
 2023-03-29 : CMSMcQ : tweaks (hiding, Greek, Fraktur)
 2023-03-28 : CMSMcQ : everything in Part I is now here
 2023-03-27 : CMSMcQ : started again from scratch
 2020-06-23 : CMSMcQ : made standalone file
 2020-06-03/---06: CMSMcQ : sketched a grammar in work log
}

{ Preliminary notes:

 The grammar works mostly in the order of Frege's presentation, and
 top down.

 We follow the basic principle that no nonterminal except the
 outermost one starts or ends with whitespace.
}

{ **
 Top level
 **}

{ What we are transcribing -- an inline expression that needs special
 attention, or a typographic display -- can be any of several things:

 - a formula expressing a proposition, either with an affirmative
 judgement (nonterminal 'yes') or without (nonterminal 'maybe'),

 - the declaration of a new notation, or

 - an inference (one or more premises, and one or more inference
 steps, or

 - a basic formula without a content stroke (perhaps not strictly
 to be regarded as a full formula in Frege's notation, but in
 need of transcription).

 If there are other kinds of expressions, I've missed them so far.

 After any of these, we allow an optional end-mark.

}

-begriffsschrift: s,
 (formula
 ; inference
 ; notation-declaration
 ; mention
),
 s, (end-mark, s)?.

{ **
 Formulas
 **}

{ A formula is one sequence of basic statements with a logical
 superstructure given by content strokes, conditional strokes,
 negation strokes, and possibly an affirmation stroke.

 As mentioned in §6 but not shown in detail until §14, formulas can
 be numbered (with a label on the right), and when used as a premise
 they can be (and in practice always are) numbered with a label on
 the left, to show where the formula was first given. Call these
 right-labels and left-labels.

 Only one label ever appears, but we don't bother trying to enforce
 that. If two labels appear, there will be two @n attributes and the
 parse will blow up on its own.

 For that matter, only judgements carry numbers, so unless the
 formula's child is 'yes', it won't in practice get a right-label.
 But that, too, we will not trouble to enforce.

}

formula: (left-label, s)?, (yes; maybe), (s, right-label)?.

{ A right-label of the form (=nn) assigns a number nn to this formula;
 it occurs when the formula is a theorem. }

-right-label: -'(', s, -'=', s, @n, s, -')'.

{ A left-label of the form (nn=) identifies a fully written out
 premise of an inference as a theorem given earlier. Left-labels do
 not appear in Frege's presentation of inference steps in Part I, but
 they appear on all fully written out premises in Parts II and III.

 Note that left-hand labels may have tables of substitutions, which
 are defined below with inferences.

}

-left-label: -'(', s, @n, s, (substitutions, s)?, -'=', s, -')'.

{ In left- and right-labels, the number becomes an @n attribute on the
 formula. }

@n: ['0'-'9']+.

{ ..
 Propositions
}

{ §2 The content stroke (Inhaltsstrich). }

maybe: (-'maybe', s)?, proposition.

{ §2 The judgement stroke (Urtheilsstrich). }

yes: -"yes", s, proposition.

{ Frege speaks of content which may or may not be affirmed; in effect,
 we would speak of sentences to which a truth value may be attached.
 I think the usual word for this is 'proposition'.

 A proposition can be a basic proposition (leaf), or a conditional
 expression, or a negation, or a universal quantification. For
 technical reasons (operator priorities, associativity) we
 distinguish the set of all propositions from the set of 'all
 propositions except unparenthesized conditionals'.

}

-prop-no-ifs: leaf; not; univ; analytic; parenthesized-prop.
-proposition: prop-no-ifs; conditional.
-parenthesized-prop: -'(', s, proposition, s, -')'
 ; -'{', s, proposition, s, -'}'.

{ The simplest binding story I can tell is roughly this:

 The 'if' operator is left-associative. So "a if b if c" = ((a if b)
 if c).

 This allows a very simple transcription of formulas with all
 branches on the top or main content stroke, and allows the simple
 rule that parentheses are needed only when the graphic structure is
 more complicated (for conditionals not on the main content stroke
 and not on the main content stroke for the sub-expression), or
 equivalently: parens are needed for conditionals in the antecedent,
 but not for conditionals in the consequent.

 A very few glances at the book show that when conditionals nest,
 they nest in the consequent far more often than in the antecedent,
 so this rule coincidentally reduces the need for parentheses.

 For negation and universal quantification, right-association is
 natural. But should "not Alpha if Beta" mean ((not Alpha) if Beta)
 or (not (Alpha if Beta))? By analogy with other languages, negation
 is made to bind very tightly: we choose the first interpretation.
 So we say that the argument of 'not' cannot contain an
 unparenthesized 'if'.

 For universal quantification, the opposite rule is tempting: unless
 otherwise indicated by parentheses, assume that the expression is in
 prenex normal form. That would make "all ka satisfy P(ka) if b"
 parse as (all ka satisfy (P(ka) if b)), instead of ((all ka satisfy
 P(ka)) if b).

 But I think the rule will be simpler to remember if both unary
 operators obey the same rule: no unparenthesized conditionals in the
 argument.

 So "all ka satisy P(ka) if b" should parse as a conditional with a
 universal quantification in the consequent, not as a universal
 quantification over a conditional. Preliminary counts suggest that
 the quantification may be slightly more common than the conditional,
 but both forms are common, as are cases where a quantifier governs a
 conditional which contains a quantifier.

 So we want a non-terminal that means "any proposition except
 a conditional'. That is prop-no-ifs.

}

{ ..
 Basic propositions (leaves)
}

{ The expressions on the right side of a Begriffsschrift formula
 are basic propositions. We call them leaves, because they are
 leaves on the parse tree.

 They are not necessarily atomic by most lights, but they are
 normally free of negation, conjunction, and other purely logical
 operators.

 For the moment, we distinguish four kinds of basic propositions:
 expressions (variables and function applications), equivalence
 statements, introduction of new notation (a special kind of
 equivalence statement), and jargon (material in some format
 not defined here).

}

leaf: expr; equivalence; jargon; -new-notation; ad-hoc.

{ In addition, we define one ad-hoc kind of leaf, to handle
 some otherwise ill-formed formulas.
}

ad-hoc: nil.
nil: -'nil'.

{ A 'mention' formula is a basic statement with no content stroke.
 The name reflects the fact that these formulas appear (§10, §24)
 as objects of metalinguistic discussion, typically in sentences
 of the form "[formula] denotes ..." or "the abbreviated form
 [formula] can always be replaced by the full form [formula]".

 The keyword 'expr' used here is intended to suggest reading a
 formula like "expr a" as "the expression 'a'".
}

mention: -'expr', s, leaf.

{ ..
 Expressions
}

{ Expressions are used for basic statements, function arguments,
 either side of an equivalence, and the left-hand side of a
 substitution.

 The most frequent form of expression in the book is a single-letter
 variable: upper-case Greek, lower-case italic Roman, later also
 lower-case Greek and upper-case italic. These are often used as
 basic statements; today we would call them propositional variables.

 Bound variables are syntactically distinct from variables with
 implicit universal quantification (bound variables are Fraktur,
 others italic). We carry that distinction into the syntax here, just
 in case we ever need it.

 Bound variables do not, as far as I know, ever show up as basic
 statements, but I don't see anything in Frege's explanations that
 would rule it out. He says explicitly that a variable explicitly
 bound at the root of the expression (a bound-var) is equivalent to
 an implicitly bound variable (an instance of italic or Italic).

 Some basic statements have internal structure which we need to
 capture (either to be able to process the logical formulas usefully
 or for purely typographic reasons). So what we call leaves are not,
 strictly speaking, always leaves in OUR parse tree.

}

-expr: var; bound-var; fa.

{ Details of variables are banished down to the 'Low-level details'
 section at the bottom of the grammar. }

var: Greek-letter; greek-letter; italic; Italic.

{ In the general case, the leaf expressions may come from any notation
 developed by a particular discipline. To allow such formulas
 without changing this grammar, we provide a sort of escape hatch,
 using brackets ⦑ ... ⦒ (U+2991, U+2992, left / right angle bracket
 with dot). For brevity, we'll call the specialized language inside
 the brackets 'jargon'. }

jargon: #2991, ~[#2991; #2992]*, #2992.

{ ..
 Conditionals
}

{ §5 Conditionals are left-associative. Since the consequent is
 always given first and the antecedent second, we could hide those
 nonterminals and just rely on the position of the child to know its
 role. But it feels slightly less error-prone to keep the names;
 it makes a transform that shifts into conventional order easier
 to write and read.

}

conditional: consequent, s, -'if', s, antecedent.
consequent: proposition.
antecedent: prop-no-ifs.

{ **
 Inferences
 **}

{ §6 Inferences. In the simple case we have multiple premises
 and a conclusion. More often, one of the premises is omitted.
 (Oddly, never both premises, I do not understand why not.)

 There may be more than one inference step.
}

inference: premises, sep,
 infstep++sep.

-premises: -'we have:', s, premise++(sep, -'and:', s).

premise: formula.

conclusion: formula.

{ An inference step may also refer to further premises by number.
 These are NOT given explicitly, only be reference.}

infstep: -'from which', s,
 (-'via', s, premise-references, s)?,
 -'we infer:', s,
 (pagebreak, s)?,
 conclusion.

{ Page breaks sometimes occur after the inference line;
we encode them just after the "we infer:", but n.b.
the replacement table for the premise ref is printed after
the page break, though transcribed before it. }

pagebreak: -'|p', s, @n, s, -'|'.

{ ..
 References to premises
}

{ References may refer to the first premise of Frege's modus ponens
 (the conditional) or to the second (the hypothesis). I'll call
 these 'con' for the conditional and 'ant' for the hypothesis or
 antecedent. If there are standard names, I don't know what they
 are.

 As far as I can see, 102 is the only formula that actually uses
 multiple premises by reference in a single inference step. It uses
 no substitutions. In Frege's book, then, a premise reference
 can EITHER have multiple references without substitutions or a
 single reference with optional substitutions.

}

-premise-references: premise-ref-con; premise-ref-ant.
premise-ref-con: -'(', s, ref++comma, s, -'):'.
premise-ref-ant: -'(', s, ref++comma, s, -')::'.

ref: 'X'+; @n, (s, substitutions)?.

{ ..
 Substitution tables
}

{ For premise references, a substitution table may be specified. }

substitutions: -'[', s, -'replacing', s, subst++sep, s, -']'.

{ A single substitution has left- and right-hand sides separated by
 'with'. To make substitution tables easier to read and write, each
 substitution must be enclosed in parentheses. I don't know good
 names for the two parts, so we are stuck with awkward ones.

 - oldterm, newterm
 - del, ins / delete, insert / delendum, inserendum
 - tollendum, ponendum / take, give / pull, push

 The Biblical echoes dispose me right now to take and give. One hand
 gives and the other takes away.

}

subst: -'(', s, taken, s, -'with', s, given, s, -')'.

{ A quick survey suggests that 'taken' is always an expression
 (variable or function application), while 'given' can be arbitrarily
 complex. }

taken: expr.
given: proposition.

{ **
 Formulas (cont'd)
 **}

{ ..
 Negation
}

{ §7 Negation }

not: -'not', s, prop-no-ifs.

{ §8 Equivalence sign.

 It looks as if we are going to need to parse the leaves. Frege
 refers to "Inhaltsgleichheit", which for the moment I am going to
 render as "equivalence". In Part I, at least, the only use of
 equivalences is for variable symbols. But in Part II, things get
 more complicated. So we allow equivalences between parenthesized
 propositions on the left and variables on the right. In this case,
 Frege normally brackets the entire equivalence.

 For now (we are at the end of Part II), we do not allow
 parenthesized propositions in the right hand side, and we require
 outer brackets. Both of those restrictions feel a little ad-hoc,
 so they may be relaxed later.

}

equivalence: simple-equiv; bracketed-equiv.

-simple-equiv: expr, s, equiv-sign, s, expr.
-bracketed-equiv: -'[', s,
 parenthesized-prop, s, equiv-sign, s, expr,
 s, -']'.

equiv-sign: -'≡'; -'equiv'; -'EQUIV'; -'=='.

{ ..
 Functions and argument / function application
}

{ §10 Function and argument.

 Frege does not distinguish, in notation or prose, between what I
 would call "function" and "function application". The nonterminal
 'fa' can be thought of as an abbreviation for 'function application'
 or for 'function and argument'.

}

fa: functor, s, -'(', s, arguments, s, -')'.

{ It would feel natural to make functor an attribute, but I want the
 distinction between var and bound-var to be visible, to simplify the
 task of deciding whether to italicize or not. }

functor: var; bound-var.

-arguments: arg++comma.

arg: expr.

{ ..
 Universal quantification
}

{ §11 Universal quantification. }

univ: -'all', s, @bound-var, s, -'satisfy', s, prop-no-ifs.

bound-var: fraktur; Fraktur.

{ **
 Notations
 **}

{ §24 Elaboration of equivalence as a method of introducing a new
 notation. In §8, Frege mentions that one reason for specifying an
 equivalence is to establish a short form to abbreviate what would
 otherwise be tedious to write out. In §24 he gives more details.

 1 In place of the affirmation stroke there is a double stroke, which
 Frege explains as signaling a double nature of the statement
 (synthetic on first appearance, analytic in reappearances).

 2 The proposition is an equivalence, with standard notation on the
 left and a new notation on the right.

 For purposes of data capture, we transcribe the new notation as a
 function application, in which the functor is a multi-character
 name. For the notations used by Frege in the book, we define
 specific functors here. As a gesture towards generality, we also
 define a generic new-notation syntax (functors beginning with
 underscore).

}

notation-declaration: -'let us denote:', s, proposition, sep,
 -'with the expression:', s, new-notation, s,
 right-label?.

{ When the notation declaration is actually used as a premise, it
 becomes an analytic statement and a normal kind of proposition. It
 will never be a conclusion or an axiom, only a premise. }

analytic: proposition, s, equiv-sign, s, new-notation.

{ The new notation can be known or unknown. }

new-notation: known-notation; unknown-notation.

{ A known notation is one Frege introduces. (We know it because we
 have read ahead in the book.) We define these here for
 convenience: better syntax checking, and the opportunity for
 custom XML representations. }

-known-notation: is-inherited
 ; follows
 ; follows-or-self
 ; unambiguous.

{ The first notation Frege defines means 'property F is
 inherited in the f-series', where F is a unary predicate
 and f is a binary predicate such that f(x, y) means
 that applying procedure f to x yields y. He also wants
 two dummy arguments with Greek letters, and from his
 examples it appears that a fifth argument is needed in
 order to specify the order of the two greek arguments in
 the call to f(). It's possible that there are typos in
 those examples, since the order of arguments never
 varies otherwise. }

is-inherited: -'inherited(', s,
 property, comma,
 function, comma,
 dummy-var, comma,
 dummy-var, comma,
 order-argument, s,
 -')'.

{ Frege generally uses an uppercase letter for the property, and a
 lowercase letter for the function. But variations occur. }

property: Italic; Greek-letter; Fraktur; conditional;
 follows; follows-or-self.

function: var.

{ Frege explains that the small greek letters are dummy variables (but
 I cannot say I understand the explanation very well. }

dummy-var: greek-letter.

{ If a greek letter is used for the order argument, it means that that
 is the letter given first in the call to the binary function; the
 other dummy variable comes second. If a number is used, it means
 the first/second dummy variable is given first. }

order-argument: greek-letter; '1'; '2'.

{ Frege describes the second notation as meaning 'y follows x in the
f-series'.

I think it may be clearer to say that (x,y) is in the transitive
closure of relation f. The conventional English term for the relation
defined here is apparently to say that y is the f-ancestor of x, which
like "ancestral" uses Frege's genealogical metaphor backwards. }

follows: -'follows-in-seq(', s,
 (var | ^bound-var), comma,
 (var | ^bound-var), comma,
 function, comma,
 dummy-var, comma,
 dummy-var, s,
 -')'.

{ The second notation means 'y follows x in the f-series, or is the
 same as y'. }

follows-or-self: -'follows-or-same(', s,
 (var | ^bound-var), comma,
 (var | ^bound-var), comma,
 function, comma,
 dummy-var, comma,
 dummy-var, s,
 -')'.

{ The fourth notation means 'f is unambiguous', i.e. in modern terms f
 is a function. }

unambiguous: -'unambiguous(', s,
 function, comma,
 dummy-var, comma,
 dummy-var, s,
 -')'.

{ As a nod towards generality, and to enable this grammar to
 be used with other new notations, we also define a rule
 for 'unknown' notations. For historical reasons, I'll use
 the name 'blort' to denote an unknown notation.
}

-unknown-notation: blort.

{ In kB, a blort is written like a function call in a conventional
 programming language: it has (what looks like) a function name and
 then zero or more arguments wrapped as a group in parentheses. The
 one constraint is that the function name has to begin with an
 underscore. For example: _foo(arg1, arg2, delta, alpha).

 For now we allow all the same kinds of arguments as in 'fa', and
 also lower-case Greek. If more is needed, rework will be needed.

}

blort: @name, -'(', s, blarg**comma, -')'.

@name: '_', [L; N; '-_.']+.

{ A blarg is (of course) an argument for a blort. Frege uses small
 Greek letters for these, as well as italics. I don't think he uses
 any upper-case Greek, but I won't rule it out. }

blarg: expr; dummy-var.

{ **
 Low-level details
 **}

{ ..
 Whitespace, separators
}

{ Whitespace is allowed in many places }

-s : whitespace*.
-ss: whitespace+.
-whitespace: -[#9; #A; #D; Z].

{ A 'separator' is just a place where a comma may or must occur.
 Whitespace is not allowed before the comma. There are rules. }

-comma: -',', s.
-sep: ss; (-',', s).

-end-mark: -".".

{ ..
 Variables: Greek letters
}

{ Upper-case Greek letters can be entered directly, but may also be
 spelled out. }

-Greek-letter: [#391 - #03A9] { 'Α'-'Ω' }
 ; -'Alpha', + #0391 {'Α'}
 ; -'Beta', + #0392 {'Β'}
 ; -'Gamma', + #0393 {'Γ'}
 ; -'Delta', + #0394 {'Δ'}
 ; -'Epsilon', + #0395 {'Ε'}
 ; -'Zeta', + #0396 {'Ζ'}
 ; -'Eta', + #0397 {'Η'}
 ; -'Theta', + #0398 {'Θ'}
 ; -'Iota', + #0399 {'Ι'}
 ; -'Kappa', + #039A {'Κ'}
 ; -'Lamda', + #039B {'Λ'}
 ; -'Lambda', + #039B {'Λ'}
 ; -'Mu', + #039C {'Μ'}
 ; -'Nu', + #039D {'Ν'}
 ; -'Xi', + #039E {'Ξ'}
 ; -'Omicron', + #039F {'Ο'}
 ; -'Pi', + #03A0 {'Π'}
 ; -'Rho', + #03A1 {'Ρ'}
 ; -'Sigma', + #03A3 {'Σ'}
 ; -'Tau', + #03A4 {'Τ'}
 ; -'Upsilon', + #03A5 {'Υ'}
 ; -'Phi', + #03A6 {'Φ'}
 ; -'Chi', + #03A7 {'Χ'}
 ; -'Psi', + #03A8 {'Ψ'}
 ; -'Omega', + #03A9 {'Ω'}
 .

{ Lower-case greek letters are allowed as arguments
 in blorts defined in a notation declaration. With
 luck, it will be clear what they mean. }

-greek-letter: [#03B1 - #03C9] { 'α'-'ω' }
 ; -'alpha', + #03B1 {'α'}
 ; -'beta', + #03B2 {'β'}
 ; -'gamma', + #03B3 {'γ'}
 ; -'delta', + #03B4 {'δ'}
 ; -'epsilon', + #03B5 {'ε'}
 ; -'zeta', + #03B6 {'ζ'}
 ; -'eta', + #03B7 {'η'}
 ; -'theta', + #03B8 {'θ'}
 ; -'iota', + #03B9 {'ι'}
 ; -'kappa', + #03BA {'κ'}
 ; -'lamda', + #03BB {'λ'}
 ; -'lambda', + #03BB {'λ'}
 ; -'mu', + #03BC {'μ'}
 ; -'nu', + #03BD {'ν'}
 ; -'xi', + #03BE {'ξ'}
 ; -'omicron', + #03BF {'ο'}
 ; -'pi', + #03C0 {'π'}
 ; -'rho', + #03C1 {'ρ'}
 ; -'final-sigma', + #03C2 {'ς'}
 ; -'sigma', + #03C3 {'σ'}
 ; -'tau', + #03C4 {'τ'}
 ; -'upsilon', + #03C5 {'υ'}
 ; -'phi', + #03C6 {'φ'}
 ; -'chi', + #03C7 {'χ'}
 ; -'psi', + #03C8 {'ψ'}
 ; -'omega', + #03C9 {'ω'}
 .

{ ..
 Variables: Latin letters (italics)
}

-italic: (-'*')?, ['a'-'z'].
-Italic: (-'*')?, ['A'-'Z'].

{ ..
 Variables: Fraktur
}

{ I would prefer to use encoded literals for all of the following,
 but at the moment they exercise a bug in one ixml parser. So
 for the letters I actually use in test cases, we need to use
 quoted literals instead. This affects characters outside the
 basic multilingual plane of UCS. }

-fraktur: [#1D51E - #1D537]
 ; -'fa', + '𝔞' {#1D51E}
 ; -'fb', + #1D51F
 ; -'fc', + #1d520
 ; -'fd', + '𝔡' {#1d521}
 ; -'fe', + '𝔢' {#1d522}
 ; -'ff', + #1d523
 ; -'fg', + #1d524
 ; -'fh', + #1d525
 ; -'fi', + #1d526
 ; -'fj', + #1D527
 ; -'fk', + #1D528
 ; -'fl', + #1D529
 ; -'fm', + #1d52A
 ; -'fn', + #1d52B
 ; -'fo', + #1d52C
 ; -'fp', + #1d52D
 ; -'fq', + #1d52E
 ; -'fr', + #1d52F
 ; -'fs', + #1d530
 ; -'ft', + #1d531
 ; -'fu', + #1d532
 ; -'fv', + #1d533
 ; -'fw', + #1d534
 ; -'fx', + #1d535
 ; -'fy', + #1d536
 ; -'fz', + #1d537
 .

-Fraktur: [#1d504 - #1d51d] { not all letters are present! }
 ; -'FA', + #1D504 {'𝔄'}
 ; -'FB', + #1D505 {'𝔅'}
 ; -'FC', + #1D506 {𝔆}
 ; -'FD', + #1D507 {𝔇}
 ; -'FE', + #1D508 {𝔈}
 ; -'FF', + "𝔉" {#1D509} {𝔉}
 ; -'FG', + #1D50A {𝔊}
 ; -'FH', + #1D50B {𝔈}
 ; -'FI', + #1D50C {𝔌}
 ; -'FJ', + #1D50D {𝔍}
 ; -'FK', + #1D50E {𝔎}
 ; -'FL', + #1D50F {𝔏}
 ; -'FM', + #1D510 {𝔐}
 ; -'FN', + #1D511 {𝔑}
 ; -'FO', + #1D512 {𝔒}
 ; -'FP', + #1D513 {𝔓}
 ; -'FQ', + #1D514 {𝔔}
 ; -'FR', + #1D515 {𝔕}
 ; -'FS', + #1D516 {𝔖}
 ; -'FT', + #1D517 {𝔗}
 ; -'FU', + #1D518 {𝔘}
 ; -'FV', + #1D519 {𝔙}
 ; -'FW', + #1D51A {𝔚}
 ; -'FX', + #1D51B {𝔛}
 ; -'FY', + #1D51C {𝔜}
 ; -'FZ', + #1D51D {𝔝}
 .

References
[Angelleli 1964]
 Angelleli, Ignacio, ed.
	 Frege, Gottlob.
	 Begriffsschrift und andere Aufsätze.
 Zweite Auflage mit E. Husserls und H. Scholz’ Anmerkungen.
 Hildesheim: Georg Olms, 1964.
 (See also Frege 1879.)

[Cook 2023]
 Cook, Roy.
 Frege’s Logic
 in
 The Stanford Encyclopedia of Philosophy
 (Spring 2023 Edition),
 ed.
 Edward N. Zalta and
 Uri Nodelman.
 On the web at
 <https://plato.stanford.edu/archives/spr2023/entries/frege-logic/>

[Dockrey 2019]
 Dockrey, Matthew.
 Gottlob.
 Web site:
 <https://www.attoparsec.com/artifacts/gottlob/begriffsschrift.html>

[Dunning 2020]
 Dunning, David E.

 ‘Always mixed together’: Notation,
 language, and the pedagogy of Frege’s
 Begriffsschrift.

 Modern Intellectual History
 17.4
 (December 2020):
 1099-1131. doi:https://doi.org/10.1017/S1479244318000410.
 On the web at
 <https://www.cambridge.org/core/journals/modern-intellectual-history/article/abs/always-mixed-together-notation-language-and-the-pedagogy-of-freges-begriffsschrift/1A2921F99668935D917290DFBFE9C102#access-block>
 and (perhaps a preprint?)
 <https://ora.ox.ac.uk/objects/uuid:011a51fb-4f0a-46f3-8e2f-85d23a798567/download_file?file_format=application%2Fpdf&safe_filename=Dunning_2018_Always_mixed_together.pdf&type_of_work=Journal+article>

[Frege 1879]
	 Frege, Gottlob.
	 Begriffsschrift: eine der arithmetischen
 nachgebildete Formelsprache des reinen Denkens.
 (Concept writing: a formula language for pure thought
 modeled on that of arithmetic.)
 Halle a.S.: Louis Nebert, 1879.
 (See also Angelelli 1964.)
 A scan of the book is available in Gallica, the online
 presence of the Bibliothèque nationale de France (BNF), at
 https://gallica.bnf.fr/ark:/12148/bpt6k65658c

[Frege 1893]
	 Frege, G[ottlob].
	 Grundgesetze der Arithmetic:
 begriffsschriftlich abgeleitet.
 (Basic laws of arithmetic: derived using concept writing.)
 2 volumes.
 Jena: Verlag von Hermann Pohle, 1893, 1903.
 Rpt. with additions by Christian Thiel,
 Hildesheim et al.: Georg Olms, 2009.
 A scan of the book (at least volume I) is available in Gallica, the online
 presence of the Bibliothèque nationale de France (BNF), at
 https://gallica.bnf.fr/ark:/12148/bpt6k77790t/

[IDPF/W3C 2019]
 International Digital Publishing Forum
 and
 World Wide Web Consortium (W3C).
 Epub 3.2.
 Final Community Group Specification 08 May 2019.
 On the web at
	 https://www.w3.org/publishing/epub3/epub-spec.html

[Pamp 2012]
 Pamp, Quirin.
 frege – Typeset fregean Begriffsschrift
 (TeX macro package).
 Version 1.3, 2012.
 On the Web at
 https://www.ctan.org/pkg/frege

[Parsons 2005]
 Parsons, Josh.
 begriff – Typeset Begriffschrift
 (TeX macro package).
 Version 1.6, 2005.
 On the Web at
 https://www.ctan.org/pkg/begriff

[Pemberton 2013]
	 Pemberton, Steven.
	 Invisible XML.
	 Presented at Balisage: The Markup Conference 2013,
	 Montréal, Canada, August 6 - 9, 2013.
	 In
	 Proceedings of Balisage: The Markup Conference 2013.
	 Balisage Series on Markup Technologies, vol. 10 (2013).
	 doi:https://doi.org/10.4242/BalisageVol10.Pemberton01.

[Pemberton 2021]
	 Pemberton, Steven.
	 Invisible XML Specification (Draft).
	 2021-01-28.
	 On the Web at
	 https://invisiblexml.org/ixml-specification.html

[Rossberg 2021]
 Rossberg, Marcus.
 Grundgesetze.sty for LaTeX2e Documentation.
 Version 1.03 (26 April 2021).
 The package is on the Web at
 <ctan>;
 the documentation is also on the Web, at
 <https://mirror.mwt.me/ctan/macros/latex/contrib/grundgesetze/grundgesetze.pdf>.

[Russell / Whitehead 1910-1913]
 Whitehead, Alfred North, and Bertrand Russell,
 	 Principia mathematica
 3 volumes,
 (Cambridge: Cambridge University Press, 1910, 1912, 1913).

[Schlimm 2018]
 Schlimm, Dirk.
 On Frege’s Begriffsschrift Notation for
 Propositional Logic: Design Principles and
 Trade-Offs.
 History and Philosophy of Logic
 39.1 (2018):
 53-79. doi:https://doi.org/10.1080/01445340.2017.1317429.
 On the Web at
 https://www.tandfonline.com/doi/full/10.1080/01445340.2017.1317429?needAccess=true
 and (as preprint) at
 https://www.cs.mcgill.ca/~dirk/schlimm2017-begriffsschrift-prefinal.pdf

[Sutcliffe 2022]
 Sutcliffe, G.
 The Logic Languages of the TPTP World.
 Logic Journal of the IGPL
 2022, jzac068.
 doi:https://doi.org/10.1093/jigpal/jzac068.

[Sutcliffe/Suttner 2022]
	 Sutcliffe, Geoff, and Christian Suttner.
	 The TPTP Problem Library
 for Automated Theorem Proving.
	 Release TPTP-v8.1.2.
 On the web at
 https://tptp.org/

[Temkin 2019]
 Temkin, Daniel.
 Gottlob: Write Code in Frege’s Concept
 Notation.
 Blog post on the site
 Esoteric.Codes.
 On the Web at:
 <https://esoteric.codes/blog/gottlob-write-code-in-freges-concept-notation>
.
[Wermuth 2015]
 Wermuth, Udo.
 Typesetting the “Begriffsschrift”
 by Gottlob Frege in plain TeX.
 TUGboat
 36.3
 (2015):
 243-256.

[1] I am grateful to Deborah Aleyne Lapeyre and Claus Huitfeldt
 for encouragement and discussion; some of the more insightful
 remarks in this paper I owe to them.
[2] The attentive reader will note that if scanned images of
 Frege 1879 are available, a usable electronic
 text ought to be just a matter of optical character recognition
 and cleanup. True. And indeed, the Bibliothèque nationale
 has already performed OCR on its scan. The results show why this
 approach does not pan out well. Not only is the OCR engine deeply
 confused by the formulas, but the quality issues in the scan
 reduce the quality of the OCR. The BN estimates that 74.44% of
 the characters in the document have been recognized correctly.
 Simple tests show that it is faster to type the text in twice and
 compare the two icopies to find errors than to work through the
 BN’s OCR text correcting errors.
[3] Clearer renderings of the formulas are available in
 more recent reprints, but those reprints appear to be
 protected by copyright.
[4] If the only goal were to produce printed pages or
 PDF, it would not be essential that the digital form of
 the book be XML; the book could be transcribed in TeX and
 the macros developed by Udo Wermuth (Wermuth 2015) or others could be used to lay out
 the formulas. But the goal is not a printed book or a
 digital representation of an imaginary printed book. The
 goal is electronic book in EPub format which is trying to
 be an electronic book in EPub format, not trying to be a
 printed book. That requires XML.It would be possible to create an ebook without
 making the XML representations of Frege’s formulas be
 TEI-compatible, but given the human resources available
 for the work, TEI compatibility is highly
 desirable.

[5] Easy to keyboard, that is, compared to entering the
 appropriate XML directly.
[6] The notation used in his 1893 work differs in some
 details (see Wermuth 2015); whether those
 changes are minor or not is a topic of some philosophical
 discussion (see Cook 2023).
[7] For simplicity, I will call them propositions in what
 follows, ignoring the warnings of careful philosophers who
 caution that what Frege calls judgeable
 content may not be precisely the same as a
 proposition, in ways that they do not explain.
[8] A note on typographic terminology seems unavoidable
 here. Frege refers to Latin letters and
 German letters, as shorthand for letters
 printed using the Antiqua fonts customary in Germany for
 printing Latin texts (and foreign words in German texts)
 on the one hand, and on the other letters printed using
 Fraktur, customarily reserved for works in German.
 Similar distinctions are in principle possible when
 writing by hand, although experience shows that
 contemporary German students confronted with a carefully
 formed letter a in a traditional
 German hand are not guaranteed to have any idea what
 letter it represents.I speak simply of letters written in
 Fraktur, although Frege’s term German
 letter and the related German
 script generally cover both Fraktur and other
 angular fonts (gebrochene
 Schriftarten) like textura, rotunda, and
 Schwabacher. Both the typographic practice of Frege’s
 publishers and the practice of mathematicians make clear
 that by German letter Frege meant
 letter printed in Fraktur.

[9] It should be admitted that this is the longest
 formula in the book, and given in this form only as an
 example of the effect of substitution of terms.
[10] The asterisk may be unnecessary, but the author got cold
 feet over possible conflicts.
[11] For example, all variables (including free ones) are
 rendered in Fraktur, ignoring Frege’s careful typographic
 distinction between bound variables with an explicitly
 delimited scope (rendered in Fraktur) and unbound variables
 for which an implicit universal quantification is assumed
 (rendered in italic). The designer of the programming
 language also appears either to have misunderstood Frege’s
 notation for material implication or to have trouble
 expressing it clearly in prose.
[12] Since the English translation was published in 2013,
 however, it appears that the translators were less daunted by
 these macros than I am. Over the 500-odd pages of the
 Grundgesetze, they will have transcribed
 thousands of formulas using this notation.
[13] The resulting SVG would be more elegant if identical
 subexpressions were defined only once, but the current
 implementation makes no attempt to avoid duplication of
 definitions: each occurrence of a repeating subexpression
 gets its own definition.
[14] The renderings of Frege’s formulas into conventional
 notation given above were all generated using an XSLT
 stylesheet constructed for the purpose, since attempts to do
 the job manually ran into too many errors with
 parentheses.
[15] The author thanks Lynne Price for her years of
 effort trying to lead me to comprehend the benefits of
 deeply nested markup as a motivation for the tag
 minimization features of SGML.
[16] It is a corollary of Goldfarb’s Law, however, that
 such troubles can only be minimized, not eliminated
 entirely.)

Balisage: The Markup Conference

Keyboarding Frege’s concept writing
A case study in the use of invisible XML
C. M. Sperberg-McQueen
Founder and principal
Black Mesa Technologies LLC

C. M. Sperberg-McQueen is the founder and principal of
 Black Mesa Technologies, a consultancy specializing in helping
 memory institutions improve the long term preservation of and
 access to the information for which they are
 responsible.
He served as editor in chief of the TEI Guidelines from
 1988 to 2000, and has also served as co-editor of the World
 Wide Web Consortium’s XML 1.0 and XML Schema 1.1
 specifications.

Balisage: The Markup Conference

content/images/Sperberg-McQueen01-008.png

content/images/Sperberg-McQueen01-007.png
-—A

content/images/Sperberg-McQueen01-006.png
>

content/images/Sperberg-McQueen01-005.png

content/images/Sperberg-McQueen01-004.png

content/images/Sperberg-McQueen01-026.png
Lo

A
fla

content/images/Sperberg-McQueen01-003.png

content/images/Sperberg-McQueen01-025.png
Jaan
F(a)

content/images/Sperberg-McQueen01-002.svg

 SVG rendering of Begriffsschrift notation for the
 expression:

 yes Α

 SVG generated by svg-x-kb.xsl
 2023-04-01T17:05:57.668724

 line, path {
 stroke: black;
 stroke-width: 0.5;
 }
 path {
 fill: none;
 }
 text {
 font-size: 10px;
 }

 Α

 Α

 Α

 Α

content/images/Sperberg-McQueen01-024.png

content/images/Sperberg-McQueen01-001.png
35
§ 16,

®

¢ bedeutet, dass der Fall, wo 4 verneint, b und @
i ~b aber hejabt werden, nicht stattfinde;
d

—a bedeutet dasselbe, und (8) sagt, dass der

-d Fall, wo « verneint wnd - «
b d & '__ b
b | d

bejuhit werde, ausgeachlossen sei. Dies kann auoh so ausgesprochen
werden: ,, wenn ein Sats die Folge von zwei Bedingungen ist, so
ist deren Relbenfolge gleichgiltig®,

-

1
—c

i

.
Dieser Sats wnterscheidet sich nur unwesentlich von (5).

°
ar

content/images/Sperberg-McQueen01-023.png

content/images/Sperberg-McQueen01-022.png
(XX)::

A

content/images/Sperberg-McQueen01-021.png

content/images/Sperberg-McQueen01-020.png

content/images/Sperberg-McQueen01-019.png
T OQ O QO

content/images/Sperberg-McQueen01-018.png

content/images/Sperberg-McQueen01-017.png
\

I

\”\i

content/images/Sperberg-McQueen01-016.png

content/images/Sperberg-McQueen01-015.png

content/images/Sperberg-McQueen01-014.png

content/images/Sperberg-McQueen01-013.png

content/images/Sperberg-McQueen01-012.png
QL AT LT

content/images/Sperberg-McQueen01-011.png

content/images/Sperberg-McQueen01-010.png
FH——x)

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

content/images/Sperberg-McQueen01-009.png
FHo—X(a)

