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Abstract
Gottlob Frege’s 1879 book
      Begriffsschrift (Concept Writing) poses a
      number of problems for the would-be digitizer, most notably its
      extensive use of a two-dimensional notation not easily reduced
      to a linear sequence of characters.  With careful study,
      however, the notation can be seen to possess a clear internal
      logic, and an easily keyboardable serialized form for data
      capture can be designed, which makes it easy to transcribe even
      complex formulas.  Invisible XML supports the key step of
      parsing that data capture format and turning it into usefully
      structured XML, from which routine stylesheets can generate SVG
      images of the two-dimensional formulae and other useful outputs.
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   Keyboarding Frege’s concept writing
A case study in the use of invisible XML

This paper describes the use of invisible XML to solve a
  problem arising in the preparation of an electronic book version of
  Gottlob Frege’s 1879 pamphlet Begriffsschrift
  (concept writing). On many accounts, Frege’s work
  marks the beginning of modern logic, but the two-dimensional
  notation which gives the book its title poses some challenges for
  data capture.  Most alarmingly, it is not obvious at first glance
  where the transcriber should begin and where they should end:
  Frege’s notation exploits both dimensions of the writing surface,
  but for keyboarding it would be helpful to reduce the
  two-dimensional input to a one-dimensional linear sequence.
  Invisible XML provides a convenient way to define an ad-hoc language
  for transcribing Frege’s formulas.[1]
  
The first section of the paper provides some background on
  Frege’s notation (section “Background”); the second section
  defines the problem to be solved (section “The problem”).  The
  third section describes the use of invisible XML to solve the
  problem (section “The solution”).  A final section describes
  some additional uses of the digitized formulas that go beyond the
  initial task and identifies some follow-on work to be done in the
  future (section “Extensions and follow-on work”).
Background
Oversimplifying slightly, the consensus of those concerned
    with formal logic is that formal logic in its modern form was
    introduced by the German mathematician Gottlob Frege in 1879 in
    his book Begriffsschrift: eine der arithmetischen
    nachgebildete Formelsprache des reinen Denkens (Frege 1879).  The title can be translated as
    Concept writing [or: concept notation, or: concept script,
    or even: ideographic script]: a formula language for pure thought,
    modeled on that of arithmetic.  Frege used his notation in
    his two-volume work on the fundamental laws of arithmetic (Frege 1893), which attempted to show that numbers and
    arithmetic can be derived from purely logical assumptions without
    appeal to empirical observation and which influenced the similar
    efforts of Russell and Whitehead in their Principia
    mathematica.
It must be noted, however, that logicians and historians of
    logic appear to cite Frege’s work somewhat more frequently than
    they read it.  And although late in life Frege thought of his
    conceptual notation as his most lasting achievement, he appears to
    be the only student of logic who ever used it in published work.
    When historians of philosophy describe it, words like
    idiosyncratic and
    eccentric are deployed, and there are few
    efforts to explain the notation and none to use it.  This is not
    unique to Frege: Russell and Whitehead’s notation is also
    increasingly distant from the way logicians now write formulas,
    and sometimes needs paraphrase and commentary.  But Russell and
    Whitehead’s notation mostly looks archaic; Frege’s notation is
    completely foreign.
When logicians claim that Frege created modern logic in
    1879, they probably have in mind things like his rejection of the
    traditional subject + predicate analysis of propositions
    (traditional since Aristotle) in favor of an analysis of
    propositions in terms of functions and arguments (similar in
    crucial ways to the functions and arguments of mathematics, and
    for that matter of computer programming), his introduction of an
    operator for universal quantification, and his approach of
    constructing his logical system on the basis of a very small set
    of primitive logical operators (material implication, negation,
    and universal quantification).  Contrary to his own evaluation of
    his work, his notation, like some aspects of the notation of Peano
    and Russell and Whitehead, is not regarded as his major
    contribution.
Some time ago the author of this paper conceived the idea of
    republishing the book in ePub format (IDPF/W3C 2019), to
    make it more readily available to students.  The 1879 book is
    rather short -- more a booklet than a book -- and its high
    historical interest makes it seem an ideal candidate for such a
    project.
It is clear on even a casual examination of Frege’s text,
    however, that the project is not a quick or simple one.  A sample
    page from a scan of the copy of Frege’s book held in the
    Bibliothèque nationale may make the problem clear.
    Figure 1
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Some aspects of the page are perfectly familiar in technical
    writing and other academic writing: numbered sections (here
    §16 at the beginning of the page), displayed formulas with
    numbers (here, numbers on the right margin mark formulas 8 and 9),
    the mixture of prose text with display material, and even the use
    of inline formulas.
But the formulas themselves appear to defy description, and
    even more so to defy transcription.  We see italic Roman letters
    (a, b, c, d) running down the right side of each formula, and they
    are connected by a network of horizontal and vertical lines whose
    meaning, if they have one, is unclear to the casual
    observer.
It is perhaps no wonder that the reviewers of Frege’s book
    found his notation off-putting.  It is not just that it was
    unfamiliar. Any new notation is unfamiliar, but mathematics is
    full of work which introduces new notations.  Not all of them are
    rejected as decidedly as Frege’s was.  But at a first
    approximation, mathematical notation is by and large linear.  It
    can be written left to right, and when an equation gets too long
    to fit on a line it can be broken over two lines in much the same
    way as prose.  There are non-linear components and other
    complications in standard mathemtical notation, of course:
    individual symbols may be decorated with subscripts and
    superscripts, symbols from non-Latin alphabets can be pressed into
    service, new operators of unfamiliar shape may be introduced.  But
    to a large extent, equations have a left-hand side, an equals
    sign, and a right-hand side, and they can be read aloud or
    transcribed by starting at the left and working towards the
    right. There are certainly mathematical notations which are not
    purely linear: matrix notation, summations, integrals, and so on.
    Note that all of these are associated with somewhat advanced
    mathematics and that all of them create identifiable expressions
    which can in turn be integrated into a linear flow.  Also,
    notations like that for summations and integrals have a fixed
    number of argument positions.
Earlier
    nineteenth-century works on logic, like that of Boole, used an
    essentially similar linear notation; Boole even borrowed the
    conventional notation for addition and multiplication to represent
    logical disjunction and conjunction.  Frege, by contrast, exploits
    the two-dimensionality of the writing surface in ways that are
    unfamiliar.  His two-dimensional structures appear to have a
    variable number of argument positions, and to have more internal
    variation than other two-dimensional mathematical notations have.
    There is no real opportunity to apply habits acquired in other
    reading, no transfer of training.  This may or may not explain the
    failure of others to adopt Frege’s notation, but it does seem to
    represent a problem for the would-be transcriber who would like to
    spend an hour or so in the evenings typing in a few pages of the
    book, until a usable electronic text is created.[2]
    

The problem
The problem as it presented itself to the author is fairly
    simple to describe: to make an XML version of Frege’s book, how on
    earth do we capture the diagrams?  And once they are captured, how
    do we display them?
One possibility is to treat the formulas as graphics; this
    is not unheard of in ebook publication.  The quality of the
    available images speaks against using extracts from them in that
    way: as the reader can observe by consulting the page reproduced
    above, not all of the horizontal and vertical lines are registered
    clearly in the scan; some are interrupted, and a few have
    disappeared entirely.[3] And as users of ebooks will be aware,
    treating formulas as graphics leads to a variety of
    inconveniences.  When the user switches the book to night
    mode, or sets a sepia background, or changes the font size,
    formulas digitized as graphics often stubbornly refuse to
    change; this is particularly distracting when graphics have
    been used as a substitute for unusual characters by publishers
    who do not really trust Unicode fonts.  In a commercial
    project, perhaps deadline pressure would force the use of the
    formulas-as-graphics approach.  But this is not a commercial
    project and the author had the luxury of postponing further
    work on the ebook until a way could be found to represent the
    formulas in a more congenial way.
The requirements and desiderata for the project are these:
    	There should be a natural XML
        representation of Frege’s notation, expressible as an
        extension to the TEI vocabulary.[4]
        
The XML representation should ideally focus on the
        meaning of the formula and not on its layout, in order to make
        it possible to generate representations of the formulas in
        conventional logical form.

	It must be possible, from the XML representation, to
        generate acceptable SVG representations of the formulas in
        Begriffsschrift, suitable for use in an
        EPub-conformant electronic book.

	Experiment suggested that entering the formulas directly
        in such an XML representation would be tedious, time
        consuming, and error-prone.
So there should be an input language, comparatively
        easy to keyboard,[5] which can be translated mechanically into the
        appropriate XML.  The input language will be used only for
        Frege’s concept notation, so it can be simple and
        specialized.

	The translation from the language used for keyboarding
        into the desired pure representation may be
        done in a single step or in multiple steps; there may thus be
        multiple XML representations, some closer to the data-capture
        format and some closer to a general-purpose representation of
        logical formulas.
It is neither a requirement nor a desideratum to have
        just one XML representation; equally it is not a requirement
        or a desideratum to have more than one.

	Brevity in the input language is helpful but less
        important than clarity and simplicity: the keyboardist should
        be able to focus on transcribing the formula, not on trying to
        remember the rules for the input language.



    

The solution
In order to make a usefully processable representation of
    Frege’s notation, the first task is to understand it better.  Then
    the task of representing it in a keyboardable form can be
    undertaken.
Before proceeding to a discussion of the use of invisible
    XML in this project, therefore, it will necessary to spend some
    time outlining the meaning of Frege’s notation, for several
    reasons.  Without some understanding of the notation, it will be
    hard for the reader to understand the examples or the design of
    the invisible-XML grammar.  And as mentioned above, it’s safe to
    assume that with few exceptions almost no one now living is
    actually familiar with Frege’s formula language.  And finally, the
    author has developed such a strong enthusiasm for Frege’s notation
    that he cannot resist the temptation to explain it and show other
    people some of its virtues.  Those who do not find questions of
    notation and two-dimensional layout interesting are given
    permission to skim.
Understanding the notation
Survey of the notation
The fundamental goal of the notation is to make explicit
        the logical relations among ideas.  In that regard it is
        similar to the philosophical language often imagined by
        Leibniz, who hoped by that by relating each complex content to
        the primitive ideas from which it was compounded it would be
        possible to achieve greater clarity and more reliability in
        reasoning.  Unlike Leibniz, however, Frege does not appear to
        contemplate an alphabet of all possible primitive ideas.
        Instead, he assumes that those ideas will be expressed in a
        suitable form developed by the appropriate discipline, and
        that the concept notation will be used to express logical
        connectives.  In the foreword to the 1879 book, Frege mentions
        the symbolic languages of arithmetic, geometry, and chemistry
        as examples.  Part III of the book is devoted to developing
        some ideas relevant to the foundations of mathematics, using
        in part standard mathematical notation (e.g. for function
        application) and in part notations invented by Frege and not
        (as far as I can tell) part of
        Begriffsschrift proper.  In Parts I and
        II, however, when introducing his notation and developing some
        general logical rules (what he refers to as laws of
        pure thought), Frege uses uppercase Greek and
        lowercase italic Latin letters to represent primitive (and
        atomic) propositions.
A full presentation would probably exceed the patience of
        the reader, but the essentials of Frege’s notation as
        presented in 1879 can be summarized fairly simply.[6]
        We introduce the major constructs of the notation, with
        examples.
Basic statements. The
        basic units of a formula are sentences which can be judged
        true or false, more or less what modern treatments of logic
        would call propositions.[7]
        As noted, Frege does not specify a language or notation for
        these; in practice, most of the formulas in the book use
        variables to represent the basic statements: uppercase Greek
        letters (e.g. Α, Β, Γ)
        in the initial presentation of the notation, later often
        lowercase italic Latin letters (a, b, c,
        ...).  Some basic statements take the form of
        function applications, or predicates with one or more
        arguments; here, too, both the functors and the arguments are
        typically represented by variables
        (e.g. Φ(Α),
        Ψ(Α,
        Β), and later
        Ψ(a) and
        similar).  It should be noted that applying the notions of
        function and argument in logical contexts was one of Frege’s
        most important and far-reaching innovations.  Equivalence
        claims of the form (Α ≡ Β)
        also appear as basic statements.  (As may be seen,
        basic statements are not necessarily
        atomic.)
        
Affirmation. Given a
        proposition (e.g.  Α), it is
        possible to signal explicitly that one believes the
        proposition to be true.  In Frege’s notation, this is signaled
        by a horizontal line to the left of the proposition, with a
        vertical stroke at its left end.
        Figure 2
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        To denote the proposition without expressing any view of
        its truth, the vertical stroke (the affirmation
        stroke) is omitted. 
        Figure 3
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        The horizontal line (content stroke) can be
        rendered roughly as the proposition that ....
        (In Frege 1893, Frege dropped the name
        content stroke and explained the
        horizontal line as a function which maps a proposition, or a
        truth value, to a truth value.  This change has implications
        for what we would call the type system which are interesting
        but which cannot be pursued here.)
Note: In some discussions, the affirmation stroke is
        glossed as a claim that the statement is
        provable, not simply that it is true,
        perhaps because a speaker’s attitude towards the truth or
        falsity of a statement is in general a psychological question
        with little direct relevance to the actual truth or falsity of
        the statement.
Conditionals. The main
        logical connective of the Begriffsschrift
        is what is sometimes called material
        implication, in logic textbooks written variously
        as ⇒ and ⊃ (or with other symbols).  The
        sentence Β ⇒ Α is false in
        the case that Β is true and Α false, and otherwise
        it is true.  Frege renders this thus:
        Figure 4
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        As can be seen, the antecedent Β is written directly
        below the consequent Α, and each has a content stroke.
        The two content strokes are joined by a vertical line (a
        conditional stroke) and a sort of T junction,
        and the conditional has its own content stroke to the left of
        the T junction.  The horizontal line across the top of the
        formula is thus divided into two parts: the part to the right
        of the conditional stroke represents the proposition
        that Α, and the part to the left represents
        the proposition that Β implies
        Α.
Composition of
        conditionals. Conditionals can be combined, by
        joining the content strokes of the antecedent and consequent
        with a new conditional stroke.  We can thus combine
        Β implies Α with a third
        proposition Γ, to form a compound conditional.  The
        identity of the antecedent and consequent will be evident from
        the position of the conditional stroke which joins them.  Thus
        Figure 5
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        is visibly a conditional whose antecedent is Γ and whose
        consequent is Β implies Α, or in
        linear notation ((Γ ⇒ (Β ⇒
        Α)), while
        Figure 6
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        has the nested conditional as the antecedent and Γ as
        the consequent, in linear notation ((Β ⇒
        Α) ⇒ Γ).
Inference. Frege
        describes one and only one rule of inference, which
        corresponds to the traditional inference called
        modus ponens.  From (the truth of) a
        conditional and the antecedent of that conditional, we can
        infer the consequent of the conditional.  In principle, one
        can write out an inference step by listing the two premises,
        then drawing a horizontal rule and writing the conclusion
        below the horizontal rule.  Writing out an inference in full
        thus entails writing both the antecedent and the consequent of
        the conditional premise twice; to save trouble, Frege allows
        theorems already proved (and given numbers) to be used as
        premises by reference: the number of the theorem is given to
        the left of the horizontal rule.  In practice, Frege also
        makes use of a rule allowing consistent substitution of new
        terms for variables in a theorem, giving tables of
        substitutions in the left margin of an inference.  A typical
        example may be seen at the bottom of the page given
        above.
Negation. In Frege’s
        notation, negation is indicated by a short vertical stroke
        descending from the content line.  To the right of the stroke,
        the content line is that of the proposition being negated, and
        to the left it is the content stroke of the negation.  (In
        Frege 1893, negation is simply a function
        that maps each truth value to its opposite.)  The denial of a
        proposition Α, or equivalently the proposition
        that Α is false, is represented thus:
        Figure 7
[image: ]



        To assert that Α is false, we can add an affirmation
        stroke:
        Figure 8
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Universal
        quantification. Logic has dealt with quantifiers
        like all, some,
        not all, and none
        since Aristotle.  Since the introduction of algebraic
        notation, mathematics has used formulas like
        x × (y +
        z) = x ×
        y + x ×
        z) with the understanding that
        such formulas are to be understood as holding for all values
        of the variables x,
        y, and z.
One of Frege’s important innovations in logic was to
        introduce notation explicitly introducing a variable like
        x, with the meaning for all values
        of x, it is the case that ...,
        with an explicitly understood scope for
        the binding of x, which was not
        necessarily the entire formula.  The rules for working with
        variables of limited scope are subtly but crucially different
        from those governing variables whose scope is the entire
        formula — different enough that Frege uses distinctive
        typographic styling for the two kinds of variables.  Variables
        written as letters of the Latin alphabet (invariably in
        italic) are implicitly bound throughout the entire formula,
        while variables written in Fraktur have meaning only within
        the scope of an explicit universal quantification.[8]
          The conventional formula (∀
          a)(Χ(a))
          can thus be written as:
          Figure 9
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          Since the explicit universal quantifier immediately follows
          (i.e. is immediately to the right of) the affirmation
          stroke, the formula just given is equivalent to a formula
          using an implicit universal quantification for
          a:
          Figure 10
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Other topics. The
        summary just given reflects Frege’s account of the notation as
        given in Part I of Frege 1879, but omits some
        further development given in passing in Parts II and III of
        the book.  The major omissions are:
        	formula numbers provided for theorems

	the labels on premises given explicitly to show the
            formula number of the premise

	tables showing how premises used in an inference are
            derived by substitution from the formula whose number is
            given

	a notation allowing new notations to be defined in
            terms of pure Begriffsschrift
            expression

	several uses of that notation to introduce compound
            symbols meaning property F is
            inherited in the f-series,
            y follows
            x in the
            f-series,
            y appears in the
            f-series beginning with
            x
            (i.e. y is either identical to
            x or follows x
            in the f-series) the
            operation f is unambiguous
            (i.e. f is a function).
            



        These all have substantive interest, and some of them pose a
        challenge for the task of generating suitable SVG to display
        them, but the only serious problem they pose for the design of
        the data capture notation is understanding the meaning of the
        new notations well enough to provide plausible linear forms
        for them.
        

Discussion
One of the frequent criticisms of Frege’s notation is
        the observation that any formula typically takes more space on
        the page as Frege writes it than it would take if written in a
        more conventional linear style.  The simple formula
        Β implies
        Α (or equivalently
        Β only if
        Α) would be written by
        Russell and Whitehead as Β ⊃
        Α.  The formula takes two lines in Frege’s
        notation (with or without the affirmation stroke):
        Figure 11
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        The sixth axiom of Principia Mathematica
        takes one line in the notation
        (q ⊃ r) ⊃ [(p ∨ q) ⊃ (p ∨ r)]



        but expands to take six lines in
        Begriffsschrift:
        Figure 12
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        It is easy to see why Frege’s contemporaries and successors
        have judged the notation unpromising and wasteful of
        space.
It should be noted, however, that Frege regarded
        formulas like these as artificially simple.  His expected
        application of the notation was to construct proofs related to
        the foundations of mathematics, in which the conditions of
        validity should be explicitly stated; a typical formula chosen
        at random from the Grundgesetze may
        involve eight or ten or more basic statements, each
        represented not by a single variable but by a mathematical
        formula of five or ten characters.
        
For such formulas, the comparison of Frege’s notation
        and linear notation is more complex.  Consider, for example,
        the following formula from page 32 of
        Frege’s book:[9]
        Figure 13
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        In conventional logical notation, this would be written in
        much less space:
        ((b ⇒ a) ⇒ ((c ⇒ (b ⇒ a))
          ⇒ ((c ⇒ b) ⇒ (c ⇒ a)))) ⇒
          (((b ⇒ a) ⇒ (c ⇒ (b ⇒ a)))
          ⇒ ((b ⇒ a) ⇒ ((c ⇒ b) ⇒
          (c ⇒ a))))



        But now consider another formula of similar size.  Is this the
        same as the previous formula, or different?
        ((b ⇒ a) ⇒ ((c ⇒ (b ⇒ a))
          ⇒ ((c ⇒ b) ⇒ (c ⇒ a)))) ⇒
          ((b ⇒ a) ⇒ (c ⇒ ((b ⇒ a)
          ⇒ ((b ⇒ a) ⇒ ((c ⇒ b) ⇒
          (c ⇒ a))))))



        Different readers may experience different results, but I
        expect many readers will find it hard to tell without careful
        examination and the counting of parentheses whether the
        conventional linear formula just given is the same as that
        given earlier, or different.
Many readers, on the other hand, may find it easier to
        detect the difference (a change in parentheses) by comparing
        the equivalent formula in Frege’s notation to the one above:
        
        Figure 14
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        A quick look at the horizontal lines across the top of the two
        formulas shows that they have different numbers of what might
        be called top-level conditionals.
As this example illustrates, Frege’s notation provides a
        compact visual representation of the structure of the formula,
        analogous to that provided by a parse tree for any string
        described by a suitable grammar, and also at least roughly
        analogous to the structure made explicit in the element
        structure of an XML document.
In fact, Frege’s notation is not just
        like a parse tree.  It can be most easily
        read as a parse tree, for a particular
        logical syntax, with the root drawn at the upper left instead
        of the top center, and the leaves written vertically in
        sequence down the right-hand side of the diagram instead of
        horizontally across the bottom.  Compared to linear notations,
        parse trees do take more space.  Compared to other parse-tree
        notations, Begriffsschrift is noticeably
        more compact than most.
Consider the conventional linear representation for
        Frege’s theorem 2:
        (c ⇒ (b ⇒ a)) ⇒ ((c ⇒ b)
          ⇒ (c ⇒ a))



        A parse tree for this expression, drawn more or less
        conventionally, might look like this:
        Figure 15
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        If rotated 45 degrees counter-clockwise, it might look like
        this:
        Figure 16
[image: ]



        Arranging all the leaves vertically on the right we have:
        Figure 17
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        And if we now replace diagonal lines with vertical and
        horizontal lines, we have something that bears a striking
        visual resemblance to Frege’s notation:
        Figure 18
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        The actual form of this expression in
        Begriffsschrift is:
        Figure 19
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        The shape of the tree is identical; the only change is that
        the internal nodes denoting conditionals are not labeled.
        They need no labels: since there is only one binary operator
        in the language, any internal node in the tree with two nodes
        is a conditional.  Negation and universal quantification are
        unary operators and have only one child; so also affirmation
        (which in any case occurs only as a sort of annotation on the
        root of the tree).
Writing the leaves top to bottom instead of left to
        right also has the effect of reversing the order of the
        children of conditional nodes, which works out conveniently
        here since Frege writes the consequent before (above) the
        antecedent.  His practice gives visual prominence to the
        consequent of the sequence of conditionals, which is likely to
        be of more interest for the argument being developed than the
        antecedent(s).
Like any parse tree, Frege’s notation makes the
        structure of an expression much easier to perceive than a
        linear notation with multiple levels of nested
        parentheses.
The relation between Frege’s notation and parse trees
        appears to have passed unnoticed (or at least unmentioned)
        until recently, but has now been independently observed and
        usefully discussed by Dirk Schlimm (Schlimm 2018).  For what it is worth, the author’s
        experience suggests that it is much easier to learn to
        understand Begriffsschrift formulas
        fluently by reading them as parse trees than by attempting to
        translate them mentally into conventional notation.


Using ixml to define the data capture language
One obvious natural representation of Frege’s notation
      would be an XML vocabulary for the representation of
      conventional first-order logic, with elements for propositional
      variables and other basic statements, and for the various
      logical operations: negation, conjunction, disjunction, material
      implication, and quantification.  In transcribing Frege, only
      basic sentences, material implication, negation, and universal
      quantification would be used.  The representation is natural
      enough, but the idea did not survive contact with even simple
      examples: even for a user with long experience editing XML
      documents, data entry was very cumbersome.
A second possibility was to record each formula not in XML
      but in an easily keyboardable representation of conventional
      logic.  Formula 2 (used as an example in the discussion of parse
      trees above) might be represented as (c implies (b
      implies a)) implies ((c implies b) implies (c implies
      a)).  A post-processing step would be needed to
      parse this into the XML form, but the syntax is not very
      complicated and writing a parser would be an interesting
      exercise.  This approach worked a little better than direct
      entry of the XML, but it was found cumbersome and error prone.
      Transcribing the antecedent of a conditional before the
      consequent requires reading Frege’s formulas bottom to top, as
      it were, and the correct placement of parentheses was a constant
      challenge.
The key step towards a simpler notation came with the
      realization that Β implies Α can also
      be verbalized as if Β, then Α, and
      the order can be reversed to put the consequent first if we just
      say Α if Β.  And indeed
      Alpha if Beta is the form taken by
      the formula
      Figure 20
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      in the data capture language developed for this project.  (It
      will be convenient to give the language a name; in the remainder
      of this paper it will be referred to as kB for
      keyboardable Begriffsschrift.)
      
Perhaps the easiest way to introduce kB is to give the kB
      equivalents for the examples given in the survey above, and to
      introduce the key ixml definitions for each construct.  (The
      full ixml grammar is given in an appendix.)
Variables. Uppercase
      Greek letters may be entered directly or spelled out:
      Α, Β, Γ can be entered as
      Alpha, Beta, Gamma.  Variables
      spelled with italic Latin letters have an asterisk before the
      letter itself (so F and
      f are spelled
      *F and
      *f); for lower-case letters, the
      asterisk is optional.[10]
      Fraktur letters may be written directly (using the
      mathematical Fraktur characters of Unicode / ISO
      10646) or with a preceding f or
      F: 𝔣 and 𝔉 are written
      ff and
      FF.
      
In each case, the translation of the string into the
      appropriate character sequence is handled by marking the data
      capture form using -
      (hide) and inserting the form that should occur
      in the XML produced by the ixml parser.  So the rule for
      upper-case Greek letters takes the form:

-Greek-letter: [#391 - #03A9] { 'Α'-'Ω' }
             ; -'Alpha', + #0391 {'Α'}
             ; -'Beta', + #0392 {'Β'}
             ...


      The first line of the production rule accepts any upper-case
      Greek character typed by the user; the later lines accept the
      names of the characters, written with an initial capital,
      suppress the string typed by the user and insert the appropriate
      Greek character.
The rules for Fraktur and italic are handled similarly:

-italic: (-'*')?, ['a'-'z'].
-Italic: -'*', ['A'-'Z'].

-fraktur: [#1D51E - #1D537]
        ; -'fa', + '𝔞' {#1D51E}
        ; -'fb', + #1D51F
        ; ...
        .
-Fraktur: [#1d504 - #1d51d] { not all letters are present! }
        ; -'FA', + #1D504 {'𝔄'}
        ; -'FB', + #1D505 {'𝔅'}
        ; ...
        .


      These simple short-forms are possible without conflict because
      no variable name in Frege’s book is more than one character
      long.  So using fa to denote Fraktur
      a or 𝔞 does not
      conflict with any other possible uses.  This is an advantage of
      devising an input format for such a specialized usage.
      
These various forms are gathered together as varying
      possible expansions of the nonterminals var
      and bound-var.  

var:  Greek-letter; italic; Italic.
@bound-var: fraktur; Fraktur.


      The distinction between the two non-terminals is not strictly
      necessary but it may make it easier to check that no Fraktur
      variables are used outside the scope of their quantifier.
Function applications.
      Function applications are written in the obvious way.  In
      Frege’s book, no concrete functions actually appear in any
      formulas (other than the identity function ≡, which is
      written with infix notation): all function applications use
      variables both for their arguments and for the function name.
      By convention, Frege writes function names with upper-case
      variables (Greek, italic Latin, or Fraktur); arguments use
      upper-case Greek, lower-case italic Latin, and lower-case
      Fraktur.  So
      Φ(Α),
      Ψ(Α,
      Β), and later
      Ψ(a) are encoded
      in kB as Phi(Alpha),
      Psi(Alpha, Beta), and
      Psi(a).
      
Affirmation. In kB, the
      presence of an affirmation stroke is signaled by the keyword
      yes at the beginning of the formula.
      The absence of the affirmation stroke may optionally be
      explicitly signaled using the keyword
      maybe.
So yes Alpha is the kB
      encoding of
      Figure 21
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      And the formula 
      Figure 22
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      can be encoded either as maybe Alpha
      or just as Alpha.
Conditionals. In kB, the
      keyword if takes the consequent as
      its left-hand argument and its antecedent as its right-hand
      argument; it is thus the converse of conventional implication
      (⇒ or ⊃).  The formula
      Figure 23
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      is transcribed
      
          Alpha if Beta
        



      So in kB the left-right order of basic statements matches their
      top-to-bottom order in Frege’s notation.
Composition of
      conditionals. The kB if
      keyword is left-associative, so the formula
      Figure 24
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      is transcribed in kB as:          
      
          Alpha if Beta if Gamma
        



      Parentheses are used for the case where the antecedent itself is
      a nested conditional: the formula
      Figure 25
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      is transcribed
      
          Gamma if (Alpha if Beta)
        



      As an empirical matter, in Frege’s formulas nested conditionals
      more frequently occur in the consequent than in the antecedent
      of other conditionals, so making if
      left-associative saves a considerable number of parentheses.  A
      similar saving could be achieved in conventional notation for
      these formulas, if the material implication were taken to be
      right-associative.  In practice, definitions of conventional
      logical syntax typically require parentheses for all nested
      conditionals.
The rules used in ixml to make conditionals
      left-associative interact with other operators and will be
      discussed below.
Inference. The simple
      form of an inference simply lists both premises and the
      conclusion.  Frege gives this example:
      Figure 26
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      The kB transcription of this is:

we have: yes Alpha if Beta
    and: yes Beta
from which we infer: yes Alpha.


      For the case where either premise becomes long and complicated,
      an optional comma is allowed after it to help the human reader
      understand the structure of the formula more easily.
      
In practice, Frege’s inferences typically replace one of
      the premises with a numeric reference to that premise which
      appears parenthetically to the left of what may be called the
      inference line (the horizontal rule separating premises from
      conclusion), followed by either one or two colons.  One colon
      means the elided premise is the first premise in the
      modus ponens, a conditional; two colons
      means the elided premise is the second one, which matches the
      antecedent of the first premise.  Here is Frege’s example of the
      second form, assuming that formula XX
      asserts the truth of Α:
      Figure 27
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      The kB representation uses the keyword
      via to introduce the elided premise:

we have: yes Alpha if Beta,
from which via (XX)::
we infer: yes Alpha.


      
Further elaborations allow multiple inference steps each
      of which elides one premise.  Overall, the rules for inferences
      are thus the most complex seen so far:

inference:  premises, sep,
            infstep++sep.

-premises:  -'we have:', s, premise++(sep, -'and:', s).

infstep: -'from which', s,
         (-'via', s, refs, s)?, 
         -'we infer:', s, conclusion.

premise:  formula.

conclusion: -formula.

-refs: premise-ref-con; premise-ref-ant.
premise-ref-con:  -'(', s, ref++comma, s, -'):'.
premise-ref-ant:  -'(', s, ref++comma, s, -')::'.

ref: 'X'+; ['0'-'9']+.


      The nonterminal sep identifies a separator:
      either whitespace or a comma followed by whitespace:

-sep: ss; (-',', s).


      
The XML being produced by all of these grammar rules
      follows naturally from the rules of invisible XML, but perhaps
      an example should finally be given.  This is the XML produced by
      the sample inference shown just above.

<inference>
   <premise>
      <formula>
         <yes>
            <conditional>
               <consequent>
                  <leaf>
                     <var>Α</var>
                  </leaf>
               </consequent>
               <antecedent>
                  <leaf>
                     <var>Β</var>
                  </leaf>
               </antecedent>
            </conditional>
         </yes>
      </formula>
   </premise>
   <infstep>
      <premise-ref-ant>
         <ref>XX</ref>
      </premise-ref-ant>
      <conclusion>
         <yes>
            <leaf>
               <var>Α</var>
            </leaf>
         </yes>
      </conclusion>
   </infstep>
</inference>


      
Negation. In keeping with
      the general trend of trying to let the transcriber keep their
      fingers on the keyboard characters, kB uses the keyword
      not to encode negation, in
      preference to other symbols often used for negation
      (~,
      ¬,
      !, ...).  The negation
      Figure 28
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      is encoded
      
          not Alpha
        



      and the formula
      Figure 29
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      is encoded
      
          yes not Alpha
        



      
Since negation is a unary operator, it must be
      right-associative (unless we want double negation to require
      parentheses, which we do not).  But its binding strength
      relative to other operators interacts with the rules for those
      other operators and so the ixml rules for negation will be
      discussed and given below.
Universal quantification.
      
The conventional formula (∀
      a)(Χ(a))
      can be written as:
      Figure 30
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      In kB, it is written using the keywords
      all and
      satisfy:
      
          yes all fa satisfy Chi(fa)
        



      
Associativity and
      binding. In order to define rules for conditionals,
      negation, and universal quantification which work acceptably, it
      is necessary to consider how they interact. In technical terms,
      we must consider the binding strength and associativity of the
      relevant operators.  In less technical terms, we must decide
      what structure should be inferred when ... if
      ..., not ..., and
      all ... satisfy ... occur together
      without parentheses to show the desired structure.  For some
      examples, the desired structure seems obvious; there may not be
      any plausible alternative:
      
          not not Alpha
        

          not all fa satisfy Phi(fa)
        

          all fa satisfy not Phi(fa)
        

          not all fa satisfy not Phi(fa)
        

          all fa satisfy all fd satisfy Phi(fa, fd)
        

          all fa satisfy not all fd satisfy not Phi(fa, fd)
        

          not all fd satisfy not all fa satisfy Phi(fa, fd)
        

          Alpha if not Beta
        

          Alpha if not all fa satisfy Phi(fa)
        

          Beta if all fa satisfy not Phi(fa)
        

          Gamma if not all fa satisfy not Phi(fa)
        



      If these examples are legal, it is obvious what structure they
      must have; the only alternative would be to require that
      explicit parentheses be used:
      
          not (all fa satisfy (Phi(fa)))
        

          all fa satisfy (not (Phi(fa)))
        

          not (all fa satisfy (not (Phi(fa))))
        
etc.



      These parenthesized forms should of course be allowed, but
      ideally not required.
For some combination forms, we have already decided how
      they should be parsed.  Nested conditionals should be handled as
      described above, so
      
          Alpha if Beta if Gamma
        



      should be equivalent to 
      
          (Alpha if Beta) if Gamma
        



      and not to 
      
          Alpha if (Beta if Gamma)
        



      
A more serious design question arises with the possible
      interactions of conditionals with the other two operators.  How
      should examples like these be parsed?
      
          yes not Alpha if Beta
        

          all fa satisfy Phi(fa) if Gamma
        


         
      In most programming languages, and in most forms of symbolic
      logic, negation is held to bind more tightly than the
      conditional, so yes not Alpha if
      Beta should probably be interpreted as
      yes (not Alpha) if Beta
      Figure 31
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      and not as yes not (Alpha if Beta)
      Figure 32
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So for negation and conditional, a simple rule seems
      possible: conditionals can govern unparenthesized negations in
      both antecedent and consequent, but negation never governs an
      unparenthesized conditional.
For conditionals and universal quantification, both
      possible rules seemed plausible. On the one hand, the syntax may
      be easier to remember if the rule for quantifiers and the rule
      for negation are the same.  So perhaps all fa
      satisfy Alpha if Beta should be parsed as
      (all fa satisfy Alpha) if Beta).  On
      the other hand, quantifiers tend to be introduced late in the
      exposition of any syntax, and operators introduced late
      typically bind loosely.  So perhaps all fa satisfy
      Alpha if Beta should be parsed as
      all fa satisfy (Alpha if
      Beta).
If one form of construct were dramaticaly more common than
      the other, it would be natural to encode the more common
      construction without parentheses.  But a brief examination of
      examples suggested that in Frege’s formulas, the number of
      quantifiers which govern conditionals and the number of
      quantifiers which appear in the consequent of conditionals were
      roughly comparable.  So neither choice will save a dramatic
      number or parentheses.
A third possibility was also considered: if it is this
      hard to choose the relative binding strength of all
      ... satisfy ... and ... if
      ..., then perhaps parentheses should be required
      either way, and the construct all fa satisfy Alpha
      if Beta should simply be a syntax error.
In the end, the arguments of simplicity won. In this case,
      simplicity took two forms.  First, making universal
      quantification behave the same way as negation seemed to be
      simpler to remember; the rule is simply that neither unary
      operator governs an unparenthesized conditional.  And second,
      making the two unary operators behave the same way made the
      formulation of the grammar easier.
The basic requirement is that in some contexts, any
      proposition should be allowed, while in other contexts,
      unparenthesized conditionals are not allowed but any other
      propostion is syntactically acceptable.  We thus define rules
      for three kinds of propositions.

-prop-no-ifs:  leaf; not; univ; parenthesized-prop.
-proposition: prop-no-ifs; conditional.
-parenthesized-prop: -'(', s, proposition, s, -')'.


      The nonterminals not and
      univ are defined below.  The nonterminal
      leaf covers all basic statements (the name
      leaf is shorter than
      basic_stmt).  Here, too, the nonterminal
      could be hidden, but it turns out to be convenient to have a
      single element type as the root of every basic statement.
      
With the help of the two nonterminals
      proposition and
      prop-no-ifs, we can now define the various
      mutually recursive compound operators.  Conditionals have a
      consequent and an antecedent.  These could be marked hidden to
      make the XML syntax simpler, but it’s convenient for some
      purposes to be able to select consequents using an XPath
      expression like ./consequent rather
      than ./*[1].

conditional: consequent, s, -'if', s, antecedent.
consequent: proposition.
antecedent: prop-no-ifs.


      Using proposition as the definition of
      consequent and
      prop-no-ifs as the definition of
      antecedent has the effect of making
      conditionals left-associative.
Since negation never binds a non-parenthesized
      conditional, its definition uses
      prop-no-ifs.

not: -'not', s, prop-no-ifs.


      
The ixml rule for universal quantifiers also uses
      prop-no-ifs, for the same reason.

univ:  -'all', s, bound-var, s, -'satisfy', s, prop-no-ifs.

@bound-var: fraktur; Fraktur.


      
A note on whitespace
      handling. The handling of whitespace is one of the
      trickiest and least expected problems confronted by the writer
      of invisible-XML grammars.  Even those with long experience
      using and writing context-free grammars may be tripped up by it,
      partly because most practical tools for parser generation assume
      an upstream lexical analyser or tokenizer which can handle
      whitespace rules, and most published context-free grammars
      accordingly omit all mention of whitespace.  Because ixml does
      not assume any upstream lexical analyser, whitespace must be
      handled by the grammar writer.
If care is not taken, then either whitespace will not be
      allowed in places where it should be allowed, or it will be
      allowed by multiple rules, introducing ambiguity into the
      grammar.  (In this case, the ambiguity is usually harmless,
      since the position of whitespace seldom affects the intended
      meaning of the input.  But there is no way for the parser to
      know when ambiguity is harmless, so it will warn the user.)  On
      the other hand, if care is taken, then
      whitespace handling can begin to consume all too much of the
      grammar writer’s thoughts.  It would be convenient to have a
      relatively simple systematic approach to the handling of
      whitespace.  So far, there appear to be two such, although
      neither has (as far as the author is aware) been described in
      writing.  They may be called the token-boundary
      approach and the whitespace floats upward
      approach.
Both typically assume some nonterminal for whitespace,
      which for concreteness I’ll call s. I
      assume s matches zero or more whitespace
      characters, so whitespace is usually optional; if whitespace is
      required, the paired nonterminal ss can be
      used.
The two approaches can be simply described.
      	The token-boundary approach to
          whitespace allows s at the end of every
          token in the grammar.
This may sound unhelpful, since ixml does not assume a
          separate tokenizer and does not identify tokens as such.
          Tokens may nevertheless appear in ixml grammars, identiable
          as units within which whitespace is not allowed, and between
          which whitespace (usually) is
          allowed.
In the grammar for kB, for example, the nonterminals
          Greek-letter,
          italic, etc. can be regarded as
          defining tokens.  So in a grammar using this approach to
          whitespace handling, italic might have
          been defined as 

-italic: (-'*')?, ['a'-'z'], s.


          
Note that whitespace is not allowed at the beginning
          of a token; any whitespace occurring before an occurrence of
          italic will belong to whatever token
          precedes the italic variable in the input.  This rule avoids
          ambiguity caused by whitespace between two tokens being
          claimed by both.
Quoted and encoded literals are also usually tokens in
          the sense intended here.  So in a grammar using this
          approach, conditional might be defined:

conditional: consequent, -'if', s, antecedent.

 
          The s must
          be supplied, in order to allow whitespace after the
          keyword.
The specification grammar of ixml (that is, the
          grammar for ixml grammars, as given in the specification) is
          a good example of the token-boundary approach.  The approach
          has the advantage that any rule not itself defining a token
          does not need to worry about whitespace, with the possible
          exception of the top-level rule, which must mention
          s as its first child, in order to allow
          leading whitespace in the strings recognized by the
          grammar.

	The whitespace-floats-upward
          approach to whitespace can perhaps best be understood as an
          application to ixml of a principle followed by many users of
          XML and SGML, which is that whitespace occurring at the
          boundaries of phrase-level elements belongs outside the
          phrase-level element, not inside it.  Following this
          principle, many users would encode the beginning of this
          paragraph as

<p>The <term>whitespace-floats-upward</term> approach ...


          and not as

<p>The<term> whitespace-floats-upward </term>approach ...


          
On this principle, the whitespace before and after a
          term (or a token) is not strictly speaking part of the token
          and should be outside it, not inside it.
So in the whitespace-floats-upward approach, the basic
          rule is that as a rule no nonterminal
          begins or ends with whitespace, and if whitespace is needed
          at the boundaries of any nonterminal, the parent should
          provide it. This approach thus has the disadvantage that
          s is mentioned in many high-level
          nonterminals, which can distract readers who have not yet
          learned to read past it.  Another drawback is that rules
          with optional children become more complex: instead of
          writing xyz? for an optional child, one must
          write (xyz, s)? in the simple case, and complex
          cases can become tedious.
The grammar given here uses this approach.



      

Relation to other work
For a notation routinely declared dead, the
      Begriffsschrift has inspired a surprising
      number of tools and electronic representations.
The programming language
      Gottlob. There is an imperative programming language
      named Gottlob whose notation is inspired by Frege (Dockrey 2019, see also Temkin 2019) and
      which has an in-browser code editor which assists the user in
      constructing formulas.  Parts of the code really do look like
      bits of formulas from Frege’s book.  Unfortunately, the notation
      of the programming language deviates from Frege in ways that
      make using the editor a slightly painful experience for anyone
      who has internalized those rules.[11]
      The editor offers an export mechanism but the output is a mass
      of Javascript which is not really suitable for further
      processing (at least, not by this author).  The imperative
      nature of the language is also a barrier: a purely declarative
      language in the style of a theorem prover or Prolog would suit
      the notation better.
TeX libraries for typesetting
      Begriffsschrift. There appear to
      be at least four TeX macro libraries for typesetting the
      notation; all are available from CTAN, the standard archive for
      TeX libraries.  The first three appear to be genetically
      related.
      	Josh Parsons appears to have developed
          begriff.sty in 2003 or so, with later
          changes and additions by Richard Heck and Parsons (Parsons 2005).  It satisfies the basic requirement
          (i.e. it can be used to typeset formulas written in Frege’s
          notation), but it has the reputation of being a little
          awkward.  For example, it requires the user to align the
          formulas on the right manually.

	Quirin Pamp’s frege.sty started
          from Parsons’s package but eventually reworked it to the
          point of incompatibility.  It aligns the style more closely
          with that used by Frege’s typesetters.

	Marcus Rossberg developed
          grundgesetze.sty beginning in 2008 for
          use in an English translation of Frege’s
          Grundgesetze (Rossberg 2021).  It is based on Parsons’s library,
          but seeks to match the typographic style of Frege 1893 rather than Frege 1879.


          
      These all differ from the current work in two important ways.
      First, because they use TeX to render the formulas, they can be
      used to generate PDF or printed pages, but they can be used to
      help produce an ebook conforming to the EPub standard only if
      the formulas are to be presented as graphics, not if live text
      is desired.  Second, although the authors have made a certain
      effort to give mnemonic names to the macros, their fundamental
      concerns appear to be typographic.  Also, the context in which
      they are working imposes certain limitations on them, and the
      TeX formulations for formulas are not notable for their
      perspicuity.
As an example, consider the following formula, used as an
      example in Rossberg’s documentation (If
      F(a) holds, then there
      exists some 𝔞 such that
      F(𝔞)):
      Figure 33
[image: ]



      Using the macros of grundgesetze.sty and
      the native facilities built into LaTeX, this can be rendered
      thus:

\GGjudge\GGconditional{Fa}
    {\GGnot \GGquant{\mathfrak a} \GGnot F \mathfrak a}


      This formulation has the drawback, however, that it does not
      align the basic statements of the formula vertically on the
      right.  That can be done by specifying an overall formula width
      and marking the basic statements as such using the
      \GGterm{} macro:

\setlength{\GGlinewidth}{25.2pt}
\GGjudge\GGconditional{\GGterm{Fa}}
                      {\GGnot \GGquant{\mathfrak a} \GGnot
                       \GGterm{F \mathfrak a}}            


      In kB, this formula becomes yes not all fa satisfy
      not *F(fa) if *F(a). I will leave to others to
      judge if it is more easily understood: familiarity will make
      almost anything easily readable.  But it is certainly shorter
      and almost certainly easier to type.  In a large general-purpose
      ecosystem like TeX or LaTeX, short, convenient codes must be
      reserved for phenomena common across many texts, and the content
      / markup distinction must be maintained.  The result is a
      notation that fits fine within TeX, but is a little daunting to
      the prospective typist.[12]
      
Reacting in part to the perceived shortcomings of the
      earlier macro libraries, Udo Wermuth developed yet another set
      of macros, gfnotation (Wermuth 2015).  He provides both a low-level language to
      allow fine-grained control over the typesetting of a formula and
      a terser higher-level short-form language.  As an
      example consider the formula:
      Figure 34
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      In the short-form language, this formula is produced by the TeX
      code ..\gA.{*.a.{f(\da)}}.  It must
      be admitted that this is shorter than the formulation
      Alpha if all fa satisfy f(fa)
      suggested by the work described above.  It may be suspected,
      however, that a reader will reach fluency in reading kB than in
      reading Wermuth’s short-form.
Etext versions of Frege.
      Some traces in sources like Wikipedia suggest that there have
      been some efforts to transcribe Frege 1893 in
      electronic form, and the author has vague memories of having
      seen at least a partial transcript online, but the links all
      appear to be broken and the author’s belief that there was such
      an electronic text cannot be substantiated.
Pamp (Pamp 2012) writes of a plan to
      transcribe Frege 1879 and include it with his
      macro library as an illustration of the usage of the library,
      but the current version of the library contains no file matching
      that description.


Extensions and follow-on work
The invisible-XML grammar described here makes it possible
    to produce without great effort reasonably perspicuous XML
    representations of formulas in Frege’s notation.  But that XML
    representation has value only to the extent that it can be used to
    do interesting and useful things with the formulas.  The following
    sections describe some things it should be possible to do.
Generating SVG
To present Frege’s formulas in an EPub in their original
      form, the appealing representation is to use SVG.  The
      representation of Begriffsschrift in SVG
      is relatively straightforward, once the rules for laying out a
      formula are well understood.  (The layout rules are worth some
      discussion, perhaps, but that discussion must be left to
      another document.)  For each construct (basic statement,
      conditional, negation, and univeral quantifier) a simple
      pattern specifies what lines are to be drawn and where any
      sub-formulas are to be written.  For each element in the input,
      the appropriate pattern is written to the SVG document as a
      definition; sub-formulas are not expanded in place but instead
      their definitions are referred to.[13]
      
Frege’s inference chains complicate things very slightly.
      The original plan was to generate an SVG image for each
      inference chain, but for ebook publication that is unlikely to
      produce acceptable results.  Ebook readers must break the book
      into pages for display, and long inference chains will not fit
      comfortably on any reasonably sized page.  Frege’s typesetters
      allow page breaks to occur below the inference line, so that the
      premises occur on one page and the conclusion on the next.  In
      order to provide similar flexibility to ebook readers, it seems
      best to render each premise and the conclusion in separate SVG
      images, and to position them and the inference line using CSS.
      It is not currently clear whether it will be better to handle
      formula numbers by including them in the SVG for the numbered
      formula or to supply them outside the SVG.
At the time this paper was submitted, SVG generation was
      working for all parts of the notation described in this paper
      (which is everything presented by Frege in Part I of the book).
      Apart from the scan of the sample page of Frege 1879, the images in this paper were all
      generated by an XSLT stylesheet from the output of the ixml
      processor.  The complications and elaborations introduced in
      Parts II and III are not yet supported by the SVG
      generator.

Generating first-order logical formulas
It is not an essential part of the project, but once
      Frege’s formulas are in a suitable XML format, it is
      straightforward to translate them into other syntaxes for
      symbolic logic.  This can help explain the meaning of a formula
      to readers familiar with conventional symbolic logic but not
      conversant with Frege’s notation,[14]
      and indeed a recent edition of Frege 1893
      performs that task for the entire book, on the theory that
      Frege’s mathematical work is worth studying that that no one can
      be expected to learn to read
      Begriffsschrift in order to do so.
A translation into a conventional linear notation can can
      also be used to process Frege’s formulas with other software.
      By translating Frege’s theorems into the input syntax of
      automated theorem provers (e.g. that described in Sutcliffe/Suttner 2022 and Sutcliffe 2022, which is
      accepted as input by a number of programs), it is possible to
      check to see whether those propositions are theorems in the
      logic supported by the theorem provers.  This is not likely to
      be of much interest as a check on Frege, since his 1879 book
      does not suffer (as far as I know) from the paradox found by Russell in Frege’s
      later work.  But the exercise does provide a form of mechanical
      check on the correctness of the transcription: any theorem from
      the book which is not proven as a theorem by an automated
      theorem prover is likely to suffer from transcription
      errors.
So far experiments with the proof assistant ACL2 and the
      automated theorem prover E have been successful.

Follow-on work
One possible follow-on to the work described here is work
      on using an extension of Frege’s notation to display formulas in
      conventional symbolic logic.  When conventional linear notation
      is used, the presentation of long formulae can be challenging:
      how can line breaking and indentation be used to make the
      structure of the formula easier to see, and make the formula
      itself easier to understand?
As discussed above, Begriffsschrift
      can be read as a parse tree for a conventional symbolic
      representation of a formula which uses only basic statements,
      negation, conditionals, and universal quantifications.  Linear
      formulas not limited to those operators can also be represented
      using a parse tree drawn in Frege’s style, if we are content to
      label nodes with their operators.
More work is needed, but experiments thus far have been
      encouraging.
Another possible follow-up is the automatic generation of
      alt-text descriptions of formulas in Frege’s notation, to
      improve the accessibility of digital versions of Frege’s
      book.


Lessons learned
Some points illustrated by the work described here may be
    worth calling attention to.
      
    	It is much easier to work with information if you
        understand it.  It is much easier to design a shorthand
        representation for information if you understand it.
Even a superficial understanding may help.  At first
        glance, the two-dimensional notation devised by Frege seemed
        impenetrable to this author, but a little study, given
        particular focus by the task of data entry, made it possible
        to develop a terse and (I think) easily comprehensible
        linear representation of the notation.

	Context-free grammars allow much more convenient data
        entry formats than regular expressions.
By bringing the full power of grammars to bear, we can
        devise a data format to handle more complex expressions than
        would be possible with regular expressions.  By exploiting
        ixml’s notation for grammars, we can annotate the grammar
        and explain it to the maintenance programmer (that is,
        ourselves in a few months’ time) better than is typically
        feasible with regular expressions.

	Compact notations defined by context-free grammars may
        be both more compact and easier to keyboard than
        corresponding XML.  This is particularly helpful for what
        Josh Lubell calls SANDs (specialized arcane non-trivial
        data) with high information density (and, in a useful XML
        representation, a high tag-to-content-character ratio).  It
        is likely to be expecially helpful when the data format in
        question is recursive.

	Like various tag minimization features of SGML,
        invisible XML makes it feasible to use much deeper nesting
        of elements and a much higher markup-to-content ratio than
        is usual in tag sets designed for manual application.
The extra tags can make later processing simpler, and
        can make the XML representation of the information denser
        and harder to read without custom display options for
        selective hiding of markup.[15]
        

	Small things can make a big difference in the
        development and use of an ixml grammar.
Invisible-XML deletions and insertions make it
        possible to perform simple transliteration while parsing, as
        illustrated here by the treatment of Greek and of Fraktur.
        And a simple systematic approach to the definition of
        whitespace (here, the
        whitespace-floats-upward approach) can
        minimize the whitespace-related troubles of grammar
        development.[16]
        

	Like a schema, an ixml grammar does not need to
        enforce every rule.
If downstream software will break when a rule is not
        followed, that rule is probably worth enforcing.  But often
        the grammar can be slightly simpler if it allows some
        constructions that don’t actually occur in practice, by not
        enforcing some exceptions as special cases.
In Frege’s notation, for example, both explicitly bound
        variables (typeset in Fraktur) and implicitly bound variables
        (italics) can be used as function arguments, but Fraktur
        variables are never used to stand for basic statements (as
        propositional variables), only italic variables.  Frege also
        uses upper-case Greek variables as function arguments, but
        only within tables of substitutions, where they have a special
        meaning.  The grammar is much simpler if it does not try to
        enforce these conventions.  A more complex grammar would make
        it easier to catch some transcription errors, but those errors
        are not actually very common.  Making the grammar simpler
        makes it easier to avoid errors in the grammar.  In this case,
        the tradeoff is clear.  Several other examples of regularities
        found in Frege but not enforced by the grammar are noted in
        the kB grammar.

	Even if the grammar does not enforce every rule, it may
        be necessary to write escape hatches into it.
Because he is presenting a new notation, Frege from time
        to time discusses the notation and alternatives he has
        considered and rejected.  At the beginning of the book, for
        example, he shows examples of content strokes and affirmation
        strokes which are accompanied by no basic statements and thus
        have nothing whose content and affirmation they can denote.
        After showing how the conditional and negation together can be
        used to express the logical operators AND and OR, he shows how
        an alternative notation based only on conjunction and negation
        could similarly be used to express the conditional.  And
        towards the end of the book, he illustrates why certain
        subexpressions in a particular notation must be subscripted,
        by showing a similar expression in which they are not
        subscripted and discussing the problems that would arise in
        that case.
Such examples of syntactically invalid forms have been
        ignored in the discussion here, but if an ebook is to be
        produced they must be handled one way or another.  Either kB
        must be extended to include ways to express these negative
        cases, or they must be routed through a different secondary
        workflow.  (Re-organizing kB to focus on typographic form and
        not on meaning is also theoretically an option, but it would
        involve giving up on most of the requirements and desiderata
        identified above.)



    

Appendix:  ixml grammar in full
For reference, the full ixml grammar for the data capture
    language kB is given below.

{ Gottlob Frege, Begriffsschrift, eine der arithmetisschen
nachgebildete Formelsprache des reinen Denkens (Halle a.S.:
Verlag von Louis Nebert, 1879. }

{ Revisions:
  2023-04-18 : CMSMcQ : allow page breaks in inferences.
  2023-04-05 : CMSMcQ : move on to Part III.
  2023-04-05 : CMSMcQ : move on to Part II.
                        . allow braces for parenthesized propositions
                        . support formula numbers
                        . unhide conclusion/formula
                        . allow tables of substitutions
  2023-04-01 : CMSMcQ : add italic caps (*F)
  2023-03-31 : CMSMcQ : tweaks (make functor an element)
  2023-03-29 : CMSMcQ : tweaks (hiding, Greek, Fraktur)
  2023-03-28 : CMSMcQ : everything in Part I is now here
  2023-03-27 : CMSMcQ : started again from scratch
  2020-06-23 : CMSMcQ : made standalone file
  2020-06-03/---06:  CMSMcQ : sketched a grammar in work log
}

{ Preliminary notes:

  The grammar works mostly in the order of Frege's presentation, and
  top down.

  We follow the basic principle that no nonterminal except the
  outermost one starts or ends with whitespace.
}


{ ****************************************************************
  Top level
  ****************************************************************}
  
{ What we are transcribing -- an inline expression that needs special
  attention, or a typographic display -- can be any of several things:

  - a formula expressing a proposition, either with an affirmative
    judgement (nonterminal 'yes') or without (nonterminal 'maybe'),

  - the declaration of a new notation, or 

  - an inference (one or more premises, and one or more inference 
    steps, or

  - a basic formula without a content stroke (perhaps not strictly
    to be regarded as a full formula in Frege's notation, but in
    need of transcription).

  If there are other kinds of expressions, I've missed them so far.

  After any of these, we allow an optional end-mark.  

}

-begriffsschrift: s, 
                  (formula
                  ; inference
                  ; notation-declaration
                  ; mention
                  ),
                  s, (end-mark, s)?.


{ ****************************************************************
  Formulas
  ****************************************************************}

{ A formula is one sequence of basic statements with a logical
  superstructure given by content strokes, conditional strokes,
  negation strokes, and possibly an affirmation stroke.

  As mentioned in §6 but not shown in detail until §14, formulas can
  be numbered (with a label on the right), and when used as a premise
  they can be (and in practice always are) numbered with a label on
  the left, to show where the formula was first given. Call these
  right-labels and left-labels.

  Only one label ever appears, but we don't bother trying to enforce
  that.  If two labels appear, there will be two @n attributes and the
  parse will blow up on its own.

  For that matter, only judgements carry numbers, so unless the
  formula's child is 'yes', it won't in practice get a right-label.
  But that, too, we will not trouble to enforce.

}

formula: (left-label, s)?, (yes; maybe), (s, right-label)?.

{ A right-label of the form (=nn) assigns a number nn to this formula;
  it occurs when the formula is a theorem. }

-right-label: -'(', s, -'=', s, @n, s, -')'.

{ A left-label of the form (nn=) identifies a fully written out
  premise of an inference as a theorem given earlier.  Left-labels do
  not appear in Frege's presentation of inference steps in Part I, but
  they appear on all fully written out premises in Parts II and III.

  Note that left-hand labels may have tables of substitutions, which
  are defined below with inferences.

}

-left-label: -'(', s, @n, s, (substitutions, s)?, -'=', s, -')'.

{ In left- and right-labels, the number becomes an @n attribute on the
  formula. }

@n: ['0'-'9']+.

{ ................................................................
  Propositions
}

{ §2 The content stroke (Inhaltsstrich). }

maybe:  (-'maybe', s)?, proposition.


{ §2 The judgement stroke (Urtheilsstrich). }

yes:  -"yes", s, proposition.

{ Frege speaks of content which may or may not be affirmed; in effect,
  we would speak of sentences to which a truth value may be attached.
  I think the usual word for this is 'proposition'.

  A proposition can be a basic proposition (leaf), or a conditional
  expression, or a negation, or a universal quantification.  For
  technical reasons (operator priorities, associativity) we
  distinguish the set of all propositions from the set of 'all
  propositions except unparenthesized conditionals'.

}

-prop-no-ifs:  leaf; not; univ; analytic; parenthesized-prop.
-proposition: prop-no-ifs; conditional.
-parenthesized-prop: -'(', s, proposition, s, -')'
                   ; -'{', s, proposition, s, -'}'.

{ The simplest binding story I can tell is roughly this:

  The 'if' operator is left-associative.  So "a if b if c" = ((a if b)
  if c).

  This allows a very simple transcription of formulas with all
  branches on the top or main content stroke, and allows the simple
  rule that parentheses are needed only when the graphic structure is
  more complicated (for conditionals not on the main content stroke
  and not on the main content stroke for the sub-expression), or
  equivalently: parens are needed for conditionals in the antecedent,
  but not for conditionals in the consequent.

  A very few glances at the book show that when conditionals nest,
  they nest in the consequent far more often than in the antecedent,
  so this rule coincidentally reduces the need for parentheses.

  For negation and universal quantification, right-association is
  natural.  But should "not Alpha if Beta" mean ((not Alpha) if Beta)
  or (not (Alpha if Beta))?  By analogy with other languages, negation
  is made to bind very tightly: we choose the first interpretation.
  So we say that the argument of 'not' cannot contain an
  unparenthesized 'if'.

  For universal quantification, the opposite rule is tempting: unless
  otherwise indicated by parentheses, assume that the expression is in
  prenex normal form.  That would make "all ka satisfy P(ka) if b"
  parse as (all ka satisfy (P(ka) if b)), instead of ((all ka satisfy
  P(ka)) if b).

  But I think the rule will be simpler to remember if both unary
  operators obey the same rule: no unparenthesized conditionals in the
  argument.

  So "all ka satisy P(ka) if b" should parse as a conditional with a
  universal quantification in the consequent, not as a universal
  quantification over a conditional.  Preliminary counts suggest that
  the quantification may be slightly more common than the conditional,
  but both forms are common, as are cases where a quantifier governs a
  conditional which contains a quantifier.

  So we want a non-terminal that means "any proposition except
  a conditional'.  That is prop-no-ifs.

}


{ ................................................................
  Basic propositions (leaves)
}

{ The expressions on the right side of a Begriffsschrift formula
  are basic propositions.  We call them leaves, because they are
  leaves on the parse tree.

  They are not necessarily atomic by most lights, but they are
  normally free of negation, conjunction, and other purely logical
  operators.

  For the moment, we distinguish four kinds of basic propositions:
  expressions (variables and function applications), equivalence
  statements, introduction of new notation (a special kind of
  equivalence statement), and jargon (material in some format
  not defined here).

}

leaf: expr; equivalence; jargon; -new-notation; ad-hoc.

{ In addition, we define one ad-hoc kind of leaf, to handle
  some otherwise ill-formed formulas.
}

ad-hoc: nil.
nil: -'nil'.


{ A 'mention' formula is a basic statement with no content stroke.
  The name reflects the fact that these formulas appear (§10, §24)
  as objects of metalinguistic discussion, typically in sentences
  of the form "[formula] denotes ..." or "the abbreviated form 
  [formula] can always be replaced by the full form [formula]".

  The keyword 'expr' used here is intended to suggest reading a
  formula like "expr a" as "the expression 'a'".
}

mention: -'expr', s, leaf.

{ ................................................................
  Expressions 
}

{ Expressions are used for basic statements, function arguments,
  either side of an equivalence, and the left-hand side of a
  substitution.

  The most frequent form of expression in the book is a single-letter
  variable: upper-case Greek, lower-case italic Roman, later also
  lower-case Greek and upper-case italic.  These are often used as
  basic statements; today we would call them propositional variables.

  Bound variables are syntactically distinct from variables with
  implicit universal quantification (bound variables are Fraktur,
  others italic). We carry that distinction into the syntax here, just 
  in case we ever need it.  

  Bound variables do not, as far as I know, ever show up as basic
  statements, but I don't see anything in Frege's explanations that
  would rule it out.  He says explicitly that a variable explicitly
  bound at the root of the expression (a bound-var) is equivalent to
  an implicitly bound variable (an instance of italic or Italic).

  Some basic statements have internal structure which we need to
  capture (either to be able to process the logical formulas usefully
  or for purely typographic reasons).  So what we call leaves are not,
  strictly speaking, always leaves in OUR parse tree.

}

-expr: var; bound-var; fa.

{ Details of variables are banished down to the 'Low-level details'
  section at the bottom of the grammar. }
  
var:  Greek-letter; greek-letter; italic; Italic.

{ In the general case, the leaf expressions may come from any notation
  developed by a particular discipline.  To allow such formulas
  without changing this grammar, we provide a sort of escape hatch,
  using brackets ⦑ ... ⦒ (U+2991, U+2992, left / right angle bracket
  with dot).  For brevity, we'll call the specialized language inside
  the brackets 'jargon'. }

jargon: #2991, ~[#2991; #2992]*, #2992.


{ ................................................................
  Conditionals
}

{ §5 Conditionals are left-associative.  Since the consequent is
  always given first and the antecedent second, we could hide those
  nonterminals and just rely on the position of the child to know its
  role.  But it feels slightly less error-prone to keep the names;
  it makes a transform that shifts into conventional order easier
  to write and read.

}

conditional: consequent, s, -'if', s, antecedent.
consequent: proposition.
antecedent: prop-no-ifs.


{ ****************************************************************
  Inferences
  ****************************************************************}

{ §6 Inferences.  In the simple case we have multiple premises
  and a conclusion.  More often, one of the premises is omitted.
  (Oddly, never both premises, I do not understand why not.)

  There may be more than one inference step.
}

inference:  premises, sep,
            infstep++sep.

-premises:  -'we have:', s, premise++(sep, -'and:', s).

premise:  formula.

conclusion: formula.

{ An inference step may also refer to further premises by number.
  These are NOT given explicitly, only be reference.}

infstep: -'from which', s,
         (-'via', s, premise-references, s)?, 
         -'we infer:', s,
         (pagebreak, s)?,
         conclusion.

{ Page breaks sometimes occur after the inference line;
we encode them just after the "we infer:", but n.b.
the replacement table for the premise ref is printed after
the page break, though transcribed before it. }

pagebreak: -'|p', s, @n, s, -'|'.

{ ................................................................
  References to premises
}

{ References may refer to the first premise of Frege's modus ponens
  (the conditional) or to the second (the hypothesis).  I'll call
  these 'con' for the conditional and 'ant' for the hypothesis or
  antecedent.  If there are standard names, I don't know what they
  are.

  As far as I can see, 102 is the only formula that actually uses
  multiple premises by reference in a single inference step.  It uses
  no substitutions.  In Frege's book, then, a premise reference
  can EITHER have multiple references without substitutions or a 
  single reference with optional substitutions.

}

-premise-references: premise-ref-con; premise-ref-ant.
premise-ref-con:  -'(', s, ref++comma, s, -'):'.
premise-ref-ant:  -'(', s, ref++comma, s, -')::'.

ref: 'X'+; @n, (s, substitutions)?.

{ ................................................................
  Substitution tables
}

{ For premise references, a substitution table may be specified. }

substitutions: -'[', s, -'replacing', s, subst++sep, s, -']'.

{ A single substitution has left- and right-hand sides separated by
  'with'.  To make substitution tables easier to read and write, each
  substitution must be enclosed in parentheses.  I don't know good
  names for the two parts, so we are stuck with awkward ones.

    - oldterm, newterm
    - del, ins / delete, insert / delendum, inserendum
    - tollendum, ponendum / take, give / pull, push

  The Biblical echoes dispose me right now to take and give.  One hand
  gives and the other takes away.

}

subst: -'(', s, taken, s, -'with', s, given, s, -')'.

{ A quick survey suggests that 'taken' is always an expression
  (variable or function application), while 'given' can be arbitrarily
  complex. }

taken:  expr.
given:  proposition.


{ ****************************************************************
  Formulas (cont'd)
  ****************************************************************}

{ ................................................................
  Negation
}

{ §7 Negation }

not: -'not', s, prop-no-ifs.


{ §8 Equivalence sign.  

  It looks as if we are going to need to parse the leaves.  Frege
  refers to "Inhaltsgleichheit", which for the moment I am going to
  render as "equivalence".  In Part I, at least, the only use of
  equivalences is for variable symbols.  But in Part II, things get
  more complicated.  So we allow equivalences between parenthesized 
  propositions on the left and variables on the right.  In this case,
  Frege normally brackets the entire equivalence.

  For now (we are at the end of Part II), we do not allow
  parenthesized propositions in the right hand side, and we require
  outer brackets.  Both of those restrictions feel a little ad-hoc,
  so they may be relaxed later.

}

equivalence: simple-equiv; bracketed-equiv.

-simple-equiv: expr, s, equiv-sign, s, expr.
-bracketed-equiv: -'[', s,
                  parenthesized-prop, s, equiv-sign, s, expr,
                  s, -']'.

equiv-sign: -'≡'; -'equiv'; -'EQUIV'; -'=='.


{ ................................................................
  Functions and argument / function application
}

{ §10 Function and argument.

  Frege does not distinguish, in notation or prose, between what I
  would call "function" and "function application".  The nonterminal
  'fa' can be thought of as an abbreviation for 'function application'
  or for 'function and argument'.  

}

fa: functor, s, -'(', s, arguments, s, -')'.

{ It would feel natural to make functor an attribute, but I want the
  distinction between var and bound-var to be visible, to simplify the
  task of deciding whether to italicize or not. }

functor: var; bound-var.

-arguments: arg++comma.

arg: expr.


{ ................................................................
  Universal quantification
}

{ §11  Universal quantification. }

univ:  -'all', s, @bound-var, s, -'satisfy', s, prop-no-ifs.

bound-var: fraktur; Fraktur.


{ ****************************************************************
  Notations
  ****************************************************************}

{ §24 Elaboration of equivalence as a method of introducing a new
  notation.  In §8, Frege mentions that one reason for specifying an
  equivalence is to establish a short form to abbreviate what would
  otherwise be tedious to write out.  In §24 he gives more details. 

  1 In place of the affirmation stroke there is a double stroke, which
    Frege explains as signaling a double nature of the statement
    (synthetic on first appearance, analytic in reappearances).

  2 The proposition is an equivalence, with standard notation on the
    left and a new notation on the right.

  For purposes of data capture, we transcribe the new notation as a
  function application, in which the functor is a multi-character
  name.  For the notations used by Frege in the book, we define
  specific functors here.  As a gesture towards generality, we also
  define a generic new-notation syntax (functors beginning with
  underscore).

}

notation-declaration: -'let us denote:', s, proposition, sep,
                      -'with the expression:', s, new-notation, s,
                      right-label?.

{ When the notation declaration is actually used as a premise, it
  becomes an analytic statement and a normal kind of proposition. It
  will never be a conclusion or an axiom, only a premise. }

analytic: proposition, s, equiv-sign, s, new-notation.

{ The new notation can be known or unknown. }

new-notation: known-notation; unknown-notation.

{ A known notation is one Frege introduces. (We know it because we
  have read ahead in the book.)  We define these here for 
  convenience: better syntax checking, and the opportunity for
  custom XML representations. }

-known-notation: is-inherited
               ; follows
               ; follows-or-self
               ; unambiguous.

{ The first notation Frege defines means 'property F is 
  inherited in the f-series', where F is a unary predicate
  and f is a binary predicate such that f(x, y) means 
  that applying procedure f to x yields y.  He also wants 
  two dummy arguments with Greek letters, and from his
  examples it appears that a fifth argument is needed in 
  order to specify the order of the two greek arguments in
  the call to f().  It's possible that there are typos in
  those examples, since the order of arguments never
  varies otherwise. }
  
is-inherited: -'inherited(', s,
              property, comma,
              function, comma,
              dummy-var, comma,
              dummy-var, comma,
              order-argument, s,
              -')'.

{ Frege generally uses an uppercase letter for the property, and a
  lowercase letter for the function. But variations occur. }

property: Italic; Greek-letter; Fraktur; conditional;
          follows; follows-or-self.

function:  var.

{ Frege explains that the small greek letters are dummy variables (but
  I cannot say I understand the explanation very well. }
  
dummy-var: greek-letter.

{ If a greek letter is used for the order argument, it means that that
  is the letter given first in the call to the binary function; the
  other dummy variable comes second.  If a number is used, it means
  the first/second dummy variable is given first.  }
  
order-argument: greek-letter; '1'; '2'.


{ Frege describes the second notation as meaning 'y follows x in the
f-series'.  

I think it may be clearer to say that (x,y) is in the transitive
closure of relation f.  The conventional English term for the relation
defined here is apparently to say that y is the f-ancestor of x, which
like "ancestral" uses Frege's genealogical metaphor backwards.  }

follows: -'follows-in-seq(', s,
         (var | ^bound-var), comma,
         (var | ^bound-var), comma,
         function, comma,
         dummy-var, comma,
         dummy-var, s,
         -')'.

{ The second notation means 'y follows x in the f-series, or is the
  same as y'. }

follows-or-self: -'follows-or-same(', s,
         (var | ^bound-var), comma,
         (var | ^bound-var), comma,
         function, comma,
         dummy-var, comma,
         dummy-var, s,
         -')'.

{ The fourth notation means 'f is unambiguous', i.e. in modern terms f
  is a function. }

unambiguous: -'unambiguous(', s,
             function, comma,
             dummy-var, comma,
             dummy-var, s,
             -')'.


{ As a nod towards generality, and to enable this grammar to
  be used with other new notations, we also define a rule 
  for 'unknown' notations. For historical reasons, I'll use
  the name 'blort' to denote an unknown notation.
}

-unknown-notation: blort.

{ In kB, a blort is written like a function call in a conventional
  programming language: it has (what looks like) a function name and
  then zero or more arguments wrapped as a group in parentheses.  The
  one constraint is that the function name has to begin with an
  underscore.  For example: _foo(arg1, arg2, delta, alpha).

  For now we allow all the same kinds of arguments as in 'fa', and
  also lower-case Greek.  If more is needed, rework will be needed.

}
  
blort: @name, -'(', s, blarg**comma, -')'.

@name:  '_', [L; N; '-_.']+.

{ A blarg is (of course) an argument for a blort. Frege uses small
  Greek letters for these, as well as italics. I don't think he uses
  any upper-case Greek, but I won't rule it out. }
  
blarg:  expr; dummy-var.


{ ****************************************************************
  Low-level details
  ****************************************************************}

{ ................................................................
  Whitespace, separators
}

{ Whitespace is allowed in many places }

-s : whitespace*.
-ss: whitespace+.
-whitespace: -[#9; #A; #D; Z].

{ A 'separator' is just a place where a comma may or must occur.
  Whitespace is not allowed before the comma.  There are rules. }

-comma: -',', s.
-sep: ss; (-',', s).

-end-mark: -".".

{ ................................................................
  Variables: Greek letters
}

{ Upper-case Greek letters can be entered directly, but may also be
  spelled out. }
  
-Greek-letter: [#391 - #03A9] { 'Α'-'Ω' }
            ; -'Alpha', + #0391 {'Α'}
            ; -'Beta', + #0392 {'Β'}
            ; -'Gamma', + #0393 {'Γ'}
            ; -'Delta', + #0394 {'Δ'}
            ; -'Epsilon', + #0395 {'Ε'}
            ; -'Zeta', + #0396 {'Ζ'}
            ; -'Eta', + #0397 {'Η'}
            ; -'Theta', + #0398 {'Θ'}
            ; -'Iota', + #0399 {'Ι'}
            ; -'Kappa', + #039A {'Κ'}
            ; -'Lamda', + #039B {'Λ'}
            ; -'Lambda', + #039B {'Λ'}
            ; -'Mu', + #039C {'Μ'}
            ; -'Nu', + #039D {'Ν'}
            ; -'Xi', + #039E {'Ξ'}
            ; -'Omicron', + #039F {'Ο'}
            ; -'Pi', + #03A0 {'Π'}
            ; -'Rho', + #03A1 {'Ρ'}
            ; -'Sigma', + #03A3 {'Σ'}
            ; -'Tau', + #03A4 {'Τ'}
            ; -'Upsilon', + #03A5 {'Υ'}
            ; -'Phi', + #03A6 {'Φ'}
            ; -'Chi', + #03A7 {'Χ'}
            ; -'Psi', + #03A8 {'Ψ'}
            ; -'Omega', + #03A9 {'Ω'}
            .

{ Lower-case greek letters are allowed as arguments
  in blorts defined in a notation declaration.  With
  luck, it will be clear what they mean. }
  
-greek-letter: [#03B1 - #03C9] { 'α'-'ω' }
            ; -'alpha', + #03B1 {'α'}
            ; -'beta', + #03B2 {'β'}
            ; -'gamma', + #03B3 {'γ'}
            ; -'delta', + #03B4 {'δ'}
            ; -'epsilon', + #03B5 {'ε'}
            ; -'zeta', + #03B6 {'ζ'}
            ; -'eta', + #03B7 {'η'}
            ; -'theta', + #03B8 {'θ'}
            ; -'iota', + #03B9 {'ι'}
            ; -'kappa', + #03BA {'κ'}
            ; -'lamda', + #03BB {'λ'}
            ; -'lambda', + #03BB {'λ'}
            ; -'mu', + #03BC {'μ'}
            ; -'nu', + #03BD {'ν'}
            ; -'xi', + #03BE {'ξ'}
            ; -'omicron', + #03BF {'ο'}
            ; -'pi', + #03C0 {'π'}
            ; -'rho', + #03C1 {'ρ'}
            ; -'final-sigma', + #03C2 {'ς'}
            ; -'sigma', + #03C3 {'σ'}
            ; -'tau', + #03C4 {'τ'}
            ; -'upsilon', + #03C5 {'υ'}
            ; -'phi', + #03C6 {'φ'}
            ; -'chi', + #03C7 {'χ'}
            ; -'psi', + #03C8 {'ψ'}
            ; -'omega', + #03C9 {'ω'}
            .

{ ................................................................
  Variables: Latin letters (italics)
}

-italic: (-'*')?, ['a'-'z'].
-Italic: (-'*')?, ['A'-'Z'].

{ ................................................................
  Variables: Fraktur
}

{ I would prefer to use encoded literals for all of the following,
  but at the moment they exercise a bug in one ixml parser.  So
  for the letters I actually use in test cases, we need to use
  quoted literals instead.  This affects characters outside the
  basic multilingual plane of UCS. }
  
-fraktur: [#1D51E - #1D537]
        ; -'fa', + '𝔞' {#1D51E}
        ; -'fb', + #1D51F
        ; -'fc', + #1d520
        ; -'fd', + '𝔡' {#1d521}
        ; -'fe', + '𝔢' {#1d522}
        ; -'ff', + #1d523
        ; -'fg', + #1d524
        ; -'fh', + #1d525
        ; -'fi', + #1d526
        ; -'fj', + #1D527
        ; -'fk', + #1D528
        ; -'fl', + #1D529
        ; -'fm', + #1d52A
        ; -'fn', + #1d52B
        ; -'fo', + #1d52C
        ; -'fp', + #1d52D
        ; -'fq', + #1d52E
        ; -'fr', + #1d52F
        ; -'fs', + #1d530
        ; -'ft', + #1d531
        ; -'fu', + #1d532
        ; -'fv', + #1d533
        ; -'fw', + #1d534
        ; -'fx', + #1d535
        ; -'fy', + #1d536
        ; -'fz', + #1d537
        .

-Fraktur: [#1d504 - #1d51d] { not all letters are present! }
        ; -'FA', + #1D504 {'𝔄'}
        ; -'FB', + #1D505 {'𝔅'}
        ; -'FC', + #1D506 {𝔆}
        ; -'FD', + #1D507 {𝔇}
        ; -'FE', + #1D508 {𝔈}
        ; -'FF', + "𝔉" {#1D509} {𝔉}
        ; -'FG', + #1D50A {𝔊}
        ; -'FH', + #1D50B {𝔈}
        ; -'FI', + #1D50C {𝔌}
        ; -'FJ', + #1D50D {𝔍}
        ; -'FK', + #1D50E {𝔎}
        ; -'FL', + #1D50F {𝔏}
        ; -'FM', + #1D510 {𝔐}
        ; -'FN', + #1D511 {𝔑}
        ; -'FO', + #1D512 {𝔒}
        ; -'FP', + #1D513 {𝔓}
        ; -'FQ', + #1D514 {𝔔}
        ; -'FR', + #1D515 {𝔕}
        ; -'FS', + #1D516 {𝔖}
        ; -'FT', + #1D517 {𝔗}
        ; -'FU', + #1D518 {𝔘}
        ; -'FV', + #1D519 {𝔙}
        ; -'FW', + #1D51A {𝔚}
        ; -'FX', + #1D51B {𝔛}
        ; -'FY', + #1D51C {𝔜}
        ; -'FZ', + #1D51D {𝔝}
        . 
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[1] I am grateful to Deborah Aleyne Lapeyre and Claus Huitfeldt
    for encouragement and discussion; some of the more insightful
    remarks in this paper I owe to them.
[2] The attentive reader will note that if scanned images of
      Frege 1879 are available, a usable electronic
      text ought to be just a matter of optical character recognition
      and cleanup.  True.  And indeed, the Bibliothèque nationale
      has already performed OCR on its scan.  The results show why this
      approach does not pan out well.  Not only is the OCR engine deeply
      confused by the formulas, but the quality issues in the scan
      reduce the quality of the OCR.  The BN estimates that 74.44% of
      the characters in the document have been recognized correctly.
      Simple tests show that it is faster to type the text in twice and
      compare the two icopies to find errors than to work through the
      BN’s OCR text correcting errors.
[3] Clearer renderings of the formulas are available in
            more recent reprints, but those reprints appear to be
            protected by copyright.
[4] If the only goal were to produce printed pages or
            PDF, it would not be essential that the digital form of
            the book be XML; the book could be transcribed in TeX and
            the macros developed by Udo Wermuth (Wermuth 2015) or others could be used to lay out
            the formulas.  But the goal is not a printed book or a
            digital representation of an imaginary printed book.  The
            goal is electronic book in EPub format which is trying to
            be an electronic book in EPub format, not trying to be a
            printed book. That requires XML.It would be possible to create an ebook without
            making the XML representations of Frege’s formulas be
            TEI-compatible, but given the human resources available
            for the work, TEI compatibility is highly
            desirable.

[5] Easy to keyboard, that is, compared to entering the
        appropriate XML directly.
[6] The notation used in his 1893 work differs in some
          details (see Wermuth 2015); whether those
          changes are minor or not is a topic of some philosophical
          discussion (see Cook 2023).
[7] For simplicity, I will call them propositions in what
          follows, ignoring the warnings of careful philosophers who
          caution that what Frege calls judgeable
          content may not be precisely the same as a
          proposition, in ways that they do not explain.
[8] A note on typographic terminology seems unavoidable
            here.  Frege refers to Latin letters and
            German letters, as shorthand for letters
            printed using the Antiqua fonts customary in Germany for
            printing Latin texts (and foreign words in German texts)
            on the one hand, and on the other letters printed using
            Fraktur, customarily reserved for works in German.
            Similar distinctions are in principle possible when
            writing by hand, although experience shows that
            contemporary German students confronted with a carefully
            formed letter a in a traditional
            German hand are not guaranteed to have any idea what
            letter it represents.I speak simply of letters written in
            Fraktur, although Frege’s term German
            letter and the related German
            script generally cover both Fraktur and other
            angular fonts (gebrochene
            Schriftarten) like textura, rotunda, and
            Schwabacher.  Both the typographic practice of Frege’s
            publishers and the practice of mathematicians make clear
            that by German letter Frege meant
            letter printed in Fraktur.

[9] It should be admitted that this is the longest
            formula in the book, and given in this form only as an
            example of the effect of substitution of terms.
[10] The asterisk may be unnecessary, but the author got cold
      feet over possible conflicts.
[11] For example, all variables (including free ones) are
        rendered in Fraktur, ignoring Frege’s careful typographic
        distinction between bound variables with an explicitly
        delimited scope (rendered in Fraktur) and unbound variables
        for which an implicit universal quantification is assumed
        (rendered in italic).  The designer of the programming
        language also appears either to have misunderstood Frege’s
        notation for material implication or to have trouble
        expressing it clearly in prose.
[12] Since  the English  translation was  published in  2013,
        however, it appears that the  translators were less daunted by
        these  macros  than I  am.   Over  the  500-odd pages  of  the
        Grundgesetze, they  will have transcribed
        thousands of formulas using this notation.
[13] The resulting SVG would be more elegant if identical
        subexpressions were defined only once, but the current
        implementation makes no attempt to avoid duplication of
        definitions: each occurrence of a repeating subexpression
        gets its own definition.
[14] The renderings of Frege’s formulas into conventional
         notation given above were all generated using an XSLT
         stylesheet constructed for the purpose, since attempts to do
         the job manually ran into too many errors with
         parentheses.
[15] The author thanks Lynne Price for her years of
          effort trying to lead me to comprehend the benefits of
          deeply nested markup as a motivation for the tag
          minimization features of SGML.
[16] It is a corollary of Goldfarb’s Law, however, that
          such troubles can only be minimized, not eliminated
          entirely.)
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