[image: Balisage logo]Balisage: The Markup Conference

Designing for change
Pragmas in Invisible XML as an extensibility mechanism
Tomos Hillman
eXpertML Ltd

<tom@expertml.com>

C. M. Sperberg-McQueen
Black Mesa Technologies LLC

<cmsmcq@blackmesatech.com>

Bethan Tovey-Walsh
Swansea University

<bytheway@linguacelta.com>

Norm Tovey-Walsh
Senior Software Developer
Saxonica

<ndw@nwalsh.com>

Balisage: The Markup Conference 2022
August 1 - 5, 2022

Designing for change: Pragmas in Invisible XML as an extensibility mechanism copyright © 2022 by Tomos Hillman, C. M. Sperberg-McQueen, Bethan Tovey-Walsh, and Norman Tovey-Walsh is licensed under CC BY-NC-SA 4.0.

How to cite this paper
Hillman, Tomos, C. M. Sperberg-McQueen, Bethan Tovey-Walsh and Norm Tovey-Walsh. "Designing for change." Presented at: Balisage: The Markup Conference 2022, Washington, DC, August 1 - 5, 2022. In Proceedings of Balisage: The Markup Conference 2022.
 Balisage Series on Markup Technologies vol. 27 (2022). https://doi.org/10.4242/BalisageVol27.Sperberg-McQueen01.

Abstract
Invisible XML (ixml) is a method for treating non-XML
 documents as if they were XML. The 1.0 specification for
 Invisible XML was announced in June of this year. No technology
 foresees all of its use cases, especially in 1.0. How can ixml
 allow experimentation, and channel experimentation in useful
 ways, to allow ideas to be expressed in ixml grammars that go
 beyond what is foreseen, without compromising interoperability
 or the value of strict conformance to the specification?
Many programming languages (C, JavaScript, Pascal, XQuery,
 etc.) address this question with pragmas. A pragma is a
 semi-formal way to instruct a processor/compiler/interpreter how
 it should operate. Typical pragmas extend a specification but
 are not a part of it. We propose pragmas as an optional add-on
 to ixml to allow implementation of non-standardized
 functionality in a way that does not interfere with standard
 ixml processing. We describe our general framework for pragmas,
 some specific pragmas (to illustrate how pragmas can be used),
 and a few pragmatic implementations.

Balisage: The Markup Conference

 Designing for change

 Pragmas in Invisible XML as an extensibility mechanism

 Table of Contents

 	Title Page

 	Introduction

 	What is a pragma?

 	Some approaches to extensibility

 	Requirements, desiderata, and use cases
 	Use cases

 	Requirements and desiderata
 	Requirements

 	Desiderata

 	Design questions

 	Pragmas proposal
 	Syntax in ixml
 	Internal syntax of pragmas

 	External syntax: where pragmas may appear

 	Syntax in XML

 	Pragma scope

 	Operational semantics

 	Conformance requirements for pragmas

 	Examples
 	Renaming

 	Name indirection

 	Rule rewriting

 	Tokenization annotation and alternative formulations

 	Text injection

 	What next?

 	Appendix A. Modified ixml syntax

 	About the Authors

 Designing for change
Pragmas in Invisible XML as an extensibility mechanism

Introduction
Strictly limiting the scope of a specification helps keep
 the technology simple; prohibiting variation among conforming
 processors helps implementers achieve interoperability.
 Simplicity and interoperability may lead to success, success to a
 broader user community, a broader user community to demands for
 broader functionality and further development of the
 specification. This is the virtuous spiral many technology
 developers hope to achieve.
Successful extension of a technology to address new use
 cases and incorporate new functionality will, in general, require
 some experimental implementations of the new functionality.
 If the initial specification is tightly focused on its core use
 cases and very strict about prohibiting non-conforming behavior,
 however, any such experimentation will be non-conforming, which
 brings two risks: implementers may be reluctant to experiment with
 new behavior, which means later versions of the spec may
 lack a firm grounding in experience, or implementers and users may
 come to regard conformance to the specification as irrelevant to
 the really interesting work of solving particular problems and
 providing useful capabilities. If the initial specification is
 too lax on conformance requirements, on the other hand,
 interoperability is likely to suffer and user communities will
 form (if they form at all) around particular implementations
 rather than around the technology as specified.
We present a concrete design for extensibility in Invisible
 XML (Pemberton 2022), in the form of
 a proposal for pragmas, a
 mechanism designed to allow out-of-band communication between a
 grammar writer and an ixml processor. An author, for example,
 might know that a particular rule is amenable to some optimization, or
 that they would prefer ambiguity to be resolved in a particular
 way, or that they wish to employ a processor extension of some
 sort.
We begin with a description of what we mean by the term
 pragma (section “What is a pragma?”),
 followed by a short description of some different approaches to
 the general problem of extensibility in different technologies and
 specifications (section “Some approaches to extensibility”). We then proceed to a
 sketch of the requirements (as we understand them) for pragmas in
 ixml, illustrated with several specific use cases (section “Requirements, desiderata, and use cases”). Then we present the pragmas proposal itself.
 A few worked examples illustrate how the pragmas proposal outlined
 here could in principle be used in practice (section “Examples”). We conclude (section “What next?”) with
 some speculations on future developments.
The proposal described here has grown out of work in the
 World Wide Web Consortium's community group on Invisible XML, and
 we thank our colleagues in the community group for discussions of
 pragmas, extensibility, and related topics.

What is a pragma?
By pragma we mean, in
 general, a construct in a formal language which conveys
 non-standard or out-of-band information to processing software in
 a way not defined by the specification of the language in which
 the pragma is embedded.
That description may need some unpacking:
 	A pragma is a syntactic construct. That is, it is
	defined by the grammar of the language, so that any parser for
	the language can and should recognize pragmas when they are
	encountered, if only for the purpose of ignoring them.

	It conveys information to processing software. That is,
	pragmas are not typically intended solely for human
	consumption.
Note that it is impossible to enforce a strict
	separation between information intended for humans and
	information intended for software, and so this point must be
	taken as a description of a general tendency and not as a
	testable or enforceable rule. But one of the key differences
	between pragmas and comments is that in general comments are
	directed at human beings and are to be ignored by software,
	while in normal usage pragmas serve to convey information to a
	processor and are thus typically less free-form than
	comments.

	The information conveyed by a pragma is typically
	non-standard.
This too describes a tendency rather than an enforceable
	rule. Nothing can prevent someone from using a pragma to
	convey information which could be conveyed by the standard
	mechanisms of the language as defined. But if the information
	in question can be expressed without a pragma, it would be
	unnecessary, verging on eccentric, to go to the effort of
	expressing it in a non-standard way.
Because the interpretation of pragmas is not defined by
	the specification of the language, the usual rule is that
	pragmas have no effect on the standard meaning of the document
	in which they are embedded and can be ignored (e.g., by
	software which does not understand
	them).

The term appears to have entered the vocabulary of computing
 from Algol 68 van Wijngaarden et al. 1976. which defines a
 construct it calls a pragmat
 (apparently short for pragmatic remark or
 pragmatic comment).[1]
A pragment is a comment or a pragmat. No semantics of pragments is given and therefore the
 meaning ... of any program is
 quite unaffected by their presence. It is indeed the intention
 that comments should be
 entirely ignored by the implementation, their sole purpose being
 the enlightenment of the human interpreter of the program.
Pragmats may, on the
 other hand, convey to the implementation some piece of
 information affecting some aspect of the meaning of the
 program which is not defined by
 this Report, for example:
They may also be used to convey to the implementation that
 the source text is to be augmented with some other text, or
 edited in some way, for example:
The interpretation of pragmats is not defined in this Report,
 but is left to the discretion of the implementer, who ought, at
 least, to provide some means whereby all further pragmats may be ignored,

Many but not all programming languages defined more recently
 provide for pragmas, sometimes under other names (directives,
 declarations); in others, the comment construct is used to convey
 pragmatic information. The Wikipedia article on Directive
 (programming) has an unsystematic but informative survey.
 Typical use cases for programming-language pragmas include hints
 that a certain kind of optimization might usefully be
 applied.

Some approaches to extensibility
Designs and specifications for earlier computing
 technologies have taken a variety of approaches to extensions and
 to the provision of extensibility mechanisms, with a variety of
 outcomes. It should be noted that this section presents a series
 of examples illustrating some points in the abstract design space.
 It is not a historical survey and should not be misunderstood as
 attempting to be one.

Sometimes, a major functional area of the technology was
 left undefined, in the expectation that implementers would fill
 the gap, and sometimes perhaps in the belief that only
 implementers working in a particular environment would be in a
 position to work out the necessary details fully.
The Algol 60 report (Naur et al. 1960) provided no
 mechanisms for input or output; it was expected that
 implementations would extend the language in ways suitable for the
 I/O facilities of the host environment. The designers of C
 famously made the same decision; the C compiler developed by
 Kernighan and Ritchie provided a standard I/O
 (stdio) library but expected
 (apparently in a sort of let a hundred flowers bloom, let a
 hundred schools of thought contend frame of mind) that
 different implementers would choose different ways of managing
 I/O, with different libraries reflecting different ways of
 handling the task. Pressure from users (i.e., programmers using C
 compilers) eventually forced all C compilers to provide a version
 of stdio, and forced the relevant standards committees to
 standardize that library.
The ISO Pascal standard includes an interesting provision in
 the list of things a Pascal compiler must do to comply with ISO
 7185 (quoted from Jensen and Wirth 1974/1985):
 It [must be] able to process as an error any use
 of an extension or of an implementation-dependent
 feature.

 Two things seem striking here: first the requirement that it be
 possible to turn off all extensions, which allows users to check
 to make sure their program does not depend on vendor extensions,
 and second the quiet assumption (without any discussion that I
 have found) that there will of
 course be extensions to the language, in some
 processors if not in all. The balancing of interests here seems
 worth bearing in mind: implementers may have an interest in
 extending the language, and so extensions are implicitly tolerated
 in a conforming processor.[2] Users, on the other hand, have an interest in
 portability and in avoiding lock-in, so conforming processors must
 be able to turn extensions off.
SGML took a different approach (ISO 8879:1986):
 with its processing instructions, ISO 8879 provided a mechanism
 that allowed users (and SGML editors) to insert non-standard
 information into documents and mark it as such, which allows other
 applications to ignore the information so marked. By requiring
 that processing instructions begin with a defined name, XML
 attempted to make it a little easier for processors which use
 processing instructions to know at a glance whether the
 instruction is one they should pay attention to or one they should
 ignore.
Programming-language processors have often felt a need for
 some similar mechanism for inserting processor-specific
 annotations into programs. Because programming language
 syntaxes often lack anything analogous to processing instructions, these
 processor-specific (or at least non-standardized) annotations are
 often embedded in what syntactically are comments. Thus a Pascal
 program[3] might begin with the
 comment:

{SC+: distinguish between upper and lower case}
In the absence of any inter-implementer agreement
 on how to distinguish one implementation's annotations from
 another's, of course, such mechanisms may lead to
 collisions.
A specification frequently mentioned as having found a successful
 formula for extensibility is the original HTML specification,
 which defined a set of element types and required that if an HTML
 processor encountered an element of an unknown type, it should
 ignore that element's tags. This provision allowed browser makers
 to experiment with support for new elements, which in turn allowed for
 swift development of new functionalities, both good and bad (the
 blink element is seldom regarded as a triumph of good
 markup design), although it also tended to make the actual
 specification of HTML less important than whatever browser makers
 were supporting on any given day. The HTML rule works less well
 in cases where the best approach would be for the entire element
 to be ignored, rather than just its start- and end-tags. But this
 flaw illustrates an important point about extensibility: finding
 some path for extensibility can be very useful, even if it is
 manifestly imperfect.
Some XML-based syntaxes have taken a similar, though less
 flamboyantly anarchic, approach to extensibility and non-standard
 content. XSLT (Kay 2017), for example, allows XSLT stylesheets to contain
 extension elements whose syntax and semantics are
 implementation-defined. It also allows attributes in any non-XSL
 namespace to appear on any element in the XSL namespace.
XSLT demonstrates that it is possible to give the author
 even more control. XSLT provides an explicit fallback mechanism that
 allows a stylesheet to use later (e.g., version 2.0) constructs when relevant while
 still telling a processor what to do if it does not understand the
 base expression. It also provides a “use-when” mechanism that allows
 the stylesheet author to delimit areas of the stylesheet where
 extensions are used so that they are targeted only at specific processors
 that are known to understand them.
The XML Schema Definition language similarly allows foreign
 attributes on all elements, and for more complex annotations it
 provides an appinfo element available at key
 locations, into which schema authors can insert arbitrarily
 complex material. The namespace-qualified names built into the
 XML stack in the interests of distributed extensibility are also
 useful here.
Because XPath (Robie et al. 2017a) and
 XQuery (Robie et al. 2017b) do not use an XML-based syntax,
 providing for such extensibility is somewhat harder for them. But
 namespace-qualified names (QNames, for short)
 do provide a simple mechanism that allows non-standard
 functions to be available in a processor, and compile-time and
 run-time facilities for testing the availability of a function
 make it possible for users of XSLT and XQuery to adjust to the set
 of available functions. XQuery also provides extension expressions, which consist of a
 series of pragmas followed by a
 fallback expression. The pragmas, each guarded with a qualified
 name, can contain expressions using extensions to the base
 language; a processor which understands none of the pragmas will
 evaluate the fallback expression. The XQuery specification is
 unusual in disavowing any expectation that the pragmas and the
 fallback expression will always produce the same result; the
 extensions used in the pragmas may provide functionality not
 available in XQuery. The standard interpretation of a query is of
 course unaffected by extension expressions, but what a processor
 actually does may well be affected. Since there is no way to
 prevent this happening in any case (short of solving the Halting
 Problem), XQuery's clear-eyed realism on the topic seems to us to
 take the right approach.

These are not the only possible approaches. There is a
 continuum between the most restrictive possible interpretation:
 all extensions are errors, and the most liberal: anything that
 doesn’t conform to the specification in any way can be interpreted
 however the implementation likes. Different languages appear at
 different places along this continuum.
From this unsystematic survey, we think several lessons may
 be drawn:
 	Providing a mechanism for non-standard
 information can be useful, whether it is used for setting
 options in a processor or extending the base
 language.
It is important enough that it is often
 better to have an imperfect extension mechanism than to have
 none at all.

	When extensions are tolerated, interoperability
 can be preserved if implementations are required to support a mode
 in which all extensions are ignored.

	It's helpful if there is a simple way for
 processors to identify extensions in materials they are
 processing and decide reliably whether they are extensions
 supported by the processor or not.

	It's important to be clear about what processors
 are to do if they don't understand an extension. The ability to
 specify fallback behaviors case by case can be
 helpful.

These examples illustrate, we hope, the design space within
 which we believe the pragmas proposal presented here is to be
 situated. Our proposal is inspired in part by the
 xsl:fallback and use-when mechanisms of
 XSLT and the extension expression
 and annotation mechanisms of
 XQuery. SGML and XML processing instructions have also contributed
 to our thinking.

 Because the ixml specification itself has no provision for
 pragmas, we follow the common practice of conveying non-standardized
 information as magic comments: that is, strings
 which are treated as comments by standard processors, but which have
 a specific structure which allows processors to recognize them
 as pragmas.[4]
Because pragmas as described here will be handled by
 standard ixml processors as comments and ignored, the use of
 pragmas does not in itself make any ixml grammar non-conformant.

Requirements, desiderata, and use cases
In this section, we discuss
 what requirements we think a proposal for pragmas must meet. We
 also identify some concrete examples of information not provided
 for by ixml as specified, but of potential interest to users or
 implementations. In some cases, there is external evidence that
 the information is of interest, because there have been proposals
 to integrate it into the ixml specification itself.
As was explained above,
 the general idea of pragmas is to provide a channel for
 information that is not a required part of the ixml specification
 but can be used by some implementations to provide useful
 behavior, without interfering with the operation of other
 implementations for which the information is irrelevant. The additional information contained in
 pragmas may be used to control options in a processor, in roughly
 the same way as pragmas and structured comments in C or Pascal
 programs may be used to control optimization levels in some
 compilers, or to extend the specification and provide additional
 functionality, just as extension expressions in XQuery can be used
 to invoke non-standard functionality to an XQuery processor and
 just as extension elements in XSLT can be used to specify
 non-standard behavior in an XSLT processor.

On this view, pragmas are a form of annotation, and we use
 the terms pragma and annotation accordingly.
Use cases
Among the use cases that motivate the proposal are
 these.
Note that some of these use cases may in practice be
 handled by future changes to the core syntax of ixml (and one has in
 fact been handled by a change already made).
 We include them in the list of use cases
 for pragmas not because we think pragmas are the best imaginable way to
 handle them but because they are (a) plausible ideas for things
 one might want to do which are (b) not supported by ixml in its
 current form (or in one case, its earlier form), and thus (c)
 natural examples of the kinds of things an extension mechanism
 like pragmas ought ideally to be able to support.
	Renaming
Using pragmas to specify that an element or attribute
	 name serializing a nonterminal should be given a name
	 different from the nonterminal itself.

	Name indirection
Using pragmas to specify that an element or attribute
	 name should be taken not from the grammar but from the
	 input, specifically from the string value of a given
	 nonterminal.

	Rule rewriting
Using pragmas to specify that a rule as given is
	 shorthand for a set of other rules, which can be obtained by
	 rewriting the rule as given.

	Tokenization annotation
Using pragmas to annotate nonterminals in an ixml
	 grammar to indicate that they (a) define a regular language
	 and (b) can be safely recognized by a greedy
	 regular-expression match.

	Alternative formulations
Using pragmas to provide alternative formulations of
	 rules in an ixml grammar to allow different annotation or
	 better optimization.

	Text injection
Using pragmas to indicate that a particular string
	 should be injected into the XML representation of the input
	 as (part of) a text node or attribute value.
	 (This can help make the output of an ixml parser
	 conform to a pre-existing schema.)
After the preparation of this pragmas proposal, the
	 ixml specification was changed to support text injection,
	 which illustrates the point that what is described and
	 implemented at one point as a non-standard extension to a
	 specification may later become standard.
	

	Attribute grammar specification
Using pragmas to annotate a grammar with information
	 about grammatical attributes to be associated with nodes of
	 the parse tree, whether they are inherited from an ancestor
	 or an elder sibling or synthesized from the children of a
	 node, and what values should be assigned to
	 them. Grammatical attributes are not to be confused with XML
	 attributes, although in particular cases it may be helpful
	 to render a grammatical attribute as an XML attribute.

Some of these use cases seem most naturally handled by
 annotations which apply to a grammar as a whole, some by
 annotations which apply to individual rules, and some by
 annotations which apply to individual symbols in the
 grammar.
We do not currently see a strong use case for annotations
 which apply to arbitrary expressions in a grammar.

Requirements and desiderata
Our tentative list of requirements and desiderata is as
 follows.
By requirement we mean a
 property or functionality which must be achieved for a pragmas
 proposal to be worth adopting. By desideratum we mean a property or
 functionality that should be included if possible, but which
 does not doom the proposal to pointlessness if it proves
 impossible to achieve.
Requirements
	It must be straightforward for processors to ignore
	 pragmas they do not understand, and to determine whether
	 they understand a given pragma or not.

	It must be clear to human readers and software which
	 expressions in standard ixml notation are and are not
	 affected or overridden by a given pragma.

	For any occurrence of a pragma in a grammar, it must
	 be clear both what should be done by a processor that
	 understands and processes the pragma and what should be done
	 by a processor that does not understand and process the
	 pragma. We refer to the latter as the fallback expression.

Desiderata
	Ideally, the result of evaluating the fallback
	 expression should be a useful and meaningful result, but
	 this is more a matter for the individual writing a grammar
	 than for this proposal. The desideratum for a pragmas
	 proposal is to make it easy (or at least not unnecessarily
	 hard) to write useful fallbacks.

	It should ideally be possible to specify pragmas as
	 annotations applying to a symbol, a rule, or a grammar as a
	 whole, and it should be possible to know which is which. It
	 is not required that the distinction be a syntactic one,
	 however, since it can also be expressed by the semantics of
	 the particular pragma.

	It should ideally be possible for processors to
	 generate the XML representation of an ixml grammar
	 containing pragmas, even if they do not understand the
	 pragmas contained. And conversely it should ideally be
	 possible for processors to write out the ixml form of an XML
	 grammar containing pragmas, even if the processor does not
	 understand the pragmas appearing in the grammar.

Design questions
Several design questions can be distinguished; they are
 not completely orthogonal.
 	What information should be encodable with pragmas?

	What syntax should pragmas have in Invisible XML?

	What representation should pragmas have in the XML
	 form of a grammar?

	Where can pragmas appear?

Pragmas proposal
Pragmas are a syntactic device to allow grammar writers to
 communicate with processors in non-standard ways without
 interfering with the operation of other processors. To avoid
 interference with other processors, two requirements arise:
 	Pragmas must be syntactically identifiable as
	such.

	Also, it must be possible for processors to distinguish
	pragmas directed at them from other pragmas. This proposal
	uses URIs to allow grammar writers and implementations to
	avoid collisions.

Pragmas may affect the behavior of a processor in any way,
 either in ways that leave the meaning of a grammar unchanged or in
 ways that change the meaning of the grammar in which the pragmas
 appear.
Syntax in ixml
Extensibility mechanisms are designed to facilitate independent
invention. At the same time, a processor which recognizes an extension
pragma may behave differently because of that pragma. It follows that
pragmas will benefit from some form of distributed naming
mechanism. In an XML context, the obvious candidate for distributed
naming is the namespace-qualified name or QName. The TEI
“p” element is distinct from the XHTML “p”
element because they are in different namespaces.
Invisible XML doesn’t provide any support for namespaces, so we
must look elsewhere. In principle, the pragmas proposal could
invent a pragma-based mechanism for defining namespace prefixes
and then use QNames in pragmas. But such a mechanism wouldn’t
extend to the nonterminals in a grammar without breaking
syntactic compatibility with Invisible XML 1.0. There are at
least some voices in the community that favor adding a namespace
mechanism to Invisible XML, so it seems wise to leave that space
open for future versions of Invisible XML.
The part of qualified names that guarantees distributed naming
and thus distributed extensibility is the use of URIs to identify
namespaces. As long as people coin names only in the
parts of URI space where they have the authority to construct
names, name collisions can be avoided. So we can take a step back
from qualified names and employ the URI directly for distributed
naming.
Internal syntax of pragmas
Comments in Invisible XML are enclosed in braces, { a comment }.
 Pragmas are enclosed in braces and square
	brackets, {[a pragma]}, to make them appear as comments to a processor that doesn’t
 understand pragmas and at the same time to distinguish them from
 “ordinary comments” to a processor that does understand pragmas.
Pragmas contain a name, and
	optionally additional data, which takes the form of a sequence
	of brace-balanced characters. The relevant part of
	the ixml grammar is:	

 pragma: -"{[", @pname, (whitespace, pragma-data)?, -"]}".
 @pname: name.
 pragma-data: (-pragma-char; -bracket-pair)*.
 -pragma-char: ~["{}"].
-bracket-pair: '{', -pragma-data, '}'.

For example, the following are both syntactically well
	formed pragmas:
		{[blue]}

	{[color blue]}

	
Here we must pause and consider what mechanism we will use to establish that
a pragma name (for example, “blue” or “color”) is associated with a URI.
We assert that the pragma named “pragma” is special (in a manner
entirely analogous to the way that Namespaces in XML
(Bray et al. 2009) asserts that the
namespace prefix “xmlns” is special). This pragma is used to
associate a pragma name with a URI:

{[+pragma myPragma "https://example.com/pragmas/mine"]}
(We shall come back to the significance of the leading “+” shortly; briefly, it is a way to distinguish a pragma that
appears in the prolog, and applies to the entire grammar, from one
that merely appears before the first rule.)
From this point forth, the pragma named myPragma is
taken to be the one identified by the URI specified. Like namespace
prefixes in QNames, the in-grammar name of the pragma is arbitrary; it
is the association with the URI that identifies it. The pragma data
that follows the name, if there is any, is interpreted according to
the rules for that pragma, as specified by the inventor of the
pragma. It is regarded as an error if a pragma is used before a URI
association is made. A pragma-aware processor should report this error
to the author.
An Invisible XML grammar might define an arbitrary number of
pragmas this way. It is worth observing that for cases where it might
be inconvenient for authors to define a great many pragmas with
distinct URIs, there’s nothing that prevents an implementation from
specifying a single pragma and using the pragma data to distinguish
between different effects, much as many modern command line programs
use “subcommands” (for example, git checkout, git
status, git push etc.) instead of having many
distinct commands.
It is a consequence of the syntax that pragmas can contain
	nested pragmas, as shown here:

{[rewrite
 comment: -"{", cchars, (comment++cchars, cchars)?, -"}".
 {[token]} -cchars: cchar*.
]}

	
Here, in fact, the pragma contains a nested pragma,
	though the nesting is only apparent to a processor which
	understands the rewrite
	pragma and knows to parse its pragma data as a sequence of
	rules in ixml notation. A processor which does not understand the rewrite pragma will merely know that
	the pragma data here contains a sequence of characters, which
	happens to include two nested pairs of braces. That suffices.
	And of course a processor which does not handle pragmas at all
	will treat the entire thing as a comment, containing two
	nested comments.
	

External syntax: where pragmas may appear
Pragmas may appear:
		immediately before a terminal or nonterminal symbol
	 in the right-hand side of a rule, before or after its mark
	 if any, or

	immediately before the nonterminal symbol on the
	 left-hand side of a rule, before or after its mark if any,
	 or
	

	after the final alternative of a rule, before the
	 full stop ending the rule, or

	before the first rule of the grammar.
	

	In the final case, it must be possible to distinguish between a pragma that
applies to the first rule of a grammar and a pragma that
precedes it but applies to the grammar as a whole. We do that
by adding one more syntactic convention: a pragma that begins “{[+”
can only appear at the beginning of a grammar and applies to the grammar as a whole.
Changes to the grammar of ixml
We allow pragmas to appear in specific places, where
	 we interpret them as applying to specific
	 parts of the grammar. Each of these requires some changes to the grammar of
	 ixml. To allow pragmas immediately before symbols, we change the
	 grammatical definitions of symbols. First, the changes for nonterminals:	

 nonterminal: annotation, name, s.
 -annotation: (pragma, sp)?, (mark, sp)?.
 -sp: (whitespace; comment; pragma)*.

Pragmas and marks are grouped together as annotation, and the nonterminal
sp is defined for whitespace that may
contain pragmas.
The changes for terminals are similar; since terminal marks are
distinct from those for nonterminals, the additional nonterminals
tmark and tannotation are needed.

 -quoted: tannotation, string, s.
 -encoded: tannotation, -"#", @hex, s.
 inclusion: tannotation, set.
 exclusion: tannotation, -"~", s, set.
-tannotation: (pragma, sp)?, (tmark, sp)?.

	
To allow pragmas on the left-hand side of a rule and
	 before its closing full stop, we modify the definition of
	 rule:

 rule: annotation, name, s,
 -["=:"], s, -alts, (pragma, sp)?, -".".

	
To distinguish pragmas which apply to the entire grammar
	 from pragmas occurring on the left-hand side
	 of the first rule, we modify the definition of prolog to include prolog
	 pragmas (ppragma for
	 short), which are distinguished from normal pragmas by
	 having a plus sign as part of their starting delimiter.

 -prolog: version, s, ppragma++s, s.
 ppragma: -"{[+", @pname, (whitespace, pragma-data)?, -"]}".

	

Why not just allow pragmas to appear where comments can appear?
At this point, some readers may be asking why we don't
	 take the apparently simpler approach of just defining
	 pragmas as whitespace, like comments, and allowing them
	 wherever comments can appear. After all, pragmas can
	 be viewed as a kind of comment, can they not?
Yes, pragmas can be viewed as a kind of comments, in
	 as much as, like comments, you can ignore them if you don’t
	 care about pragmas, or if you encounter a pragma you don’t
	 recognize, or if the moon is full.
But at the same time no, pragmas cannot really be
	 viewed that way in practice. Implementations which don't
	 recognize pragmas will parse them as comments, but for
	 implementations which actually implement any pragmas, it’s
	 not sufficient to just leave them as comments in the
	 grammar. It’s easy to demonstrate why with an example.
	 Consider:

{[+pragma my "http://example.com/pragmas/g342"]}

{[my example rule pragma]}
symbol: A .

A: {[my example symbol 'a' pragma]} 'a',
 {[my example symbol B pragma]} B.
B: .

	
If you parse this with an ixml grammar that knows
	 nothing about pragmas, those are comments, and the result
	 is:

<ixml>
 <comment>[+pragma my "http://example.com/pragmas/g342"]</comment>
 <comment>[my example rule pragma]</comment>
 <rule name="symbol">
 <alt>
 <nonterminal name="A"/>
 </alt>
 </rule>
 <rule name="A">
 <comment>[my example symbol 'a' pragma]</comment>
 <alt>
 <literal string="a"/>
 <comment>[my example symbol B pragma]</comment>
 <nonterminal name="B"/>
 </alt>
 </rule>
 <rule name="B">
 <alt/>
 </rule>
</ixml>

	
This is unsatisfactory in a couple of ways.
	 First, it’s necessary to resort to re-parsing the comment to
	 distinguish between the prolog pragmas that are intended to
	 apply to the grammar as a whole and the pragmas that are
	 supposed to apply to the first rule.
	 Second, the pragmas are not reliably associated with their
	 targets.	
	 Two of the pragmas are the immediate left siblings of their
	 targets (my example rule pragma and my
	 example symbol B pragma),so perhaps we could say that
	 pragmas apply to the next construct, but that doesn’t work
	 for the ‘a’ pragma because its immediate right
	 sibling is the <alt>. And the prolog pragma
	 is different again: it's the child of its target.
By extending the ixml grammar to distinguish pragmas
	 from comments, we can do much better:

<ixml>
 <prolog>
 <ppragma pname="pragma">
 <pragma-data>my "http://example.com/pragmas/g342"</pragma-data>
 </ppragma>
 </prolog>
 <rule name="symbol">
 <pragma pname="my">
 <pragma-data>example rule pragma</pragma-data>
 </pragma>
 <alt>
 <nonterminal name="A"/>
 </alt>
 </rule>
 <rule name="A">
 <alt>
 <literal string="a">
 <pragma pname="my">
 <pragma-data>example symbol 'a' pragma</pragma-data>
 </pragma>
 </literal>
 <nonterminal name="B">
 <pragma pname="my">
 <pragma-data>example symbol B pragma</pragma-data>
 </pragma>
 </nonterminal>
 </alt>
 </rule>
 <rule name="B">
 <alt/>
 </rule>
</ixml>

	
Now each pragma is a child (or in the case of prolog
	 pragmas, the grandchild) of the element to which it
	 applies.
In order to make the XML form of grammars with pragmas
	 more useful, therefore, the proposal here modifies the
	 grammar of ixml as described. The changes made guarantee
	 that every input which matches the modified grammar also
	 matches the standard ixml specification grammar, and every
	 conforming ixml grammar which uses no pragmas has the same
	 XML structure in a pragma-aware processor as in a standard
	 ixml processor.[5]

Syntax in XML
Following the normal rules of ixml, pragmas are serialized
 as elements named pragma or ppragma
 (for prolog pragmas), with an attribute named pname
 and an optional child element named pragma-data. In
 addition, in XML grammars pragma elements may
 contain any number of XML elements following the
 pragma-data element.
For example:

<pragma pname="blue"/>

or

<pragma pname="color">
 <pragma-data>blue</pragma-data>
</pragma>

or

<pragma pname="rewrite">
 <pragma-data>
 comment: -"{", cchars, (comment++cchars, cchars)?, -"}".
 {[token]} -cchars: cchar*.
</pragma-data>
</pragma>

Processors which do not implement the pragma in question
 will as a matter of course produce pragma elements
 with just the one child element (or none). But processors which
 implement a given pragma are free to inject additional XML
 elements into the XML form of the pragma. It is to be assumed
 that the XML elements contain no additional information, only a
 mechanically derived XML form which makes the information in the
 pragma easier to process. It is to be expected that any software
 to serialize XML grammars in ixml form will discard the
 additional XML elements.
For example, note that a processor which understands the
 rewrite pragma (shown above
 in an example) might prefer to produce a different XML
 representation for it, e.g., one in which the embedded grammar
 rules are parsed into their normal XML representation.[6] For such a processor,
 the XML representation might be:

<pragma pname="rewrite">
 <pragma-data>
 comment: -"{", cchars, (comment++cchars, cchars)?, -"}".
 {[token]} -cchars: cchar+.
</pragma-data>
</pragma>
<rule name="comment">
 <alt>
 <literal tmark="-" string="{"/>
 <nonterminal name="cchars"/>
 <option>
 <alts>
 <alt>
 <repeat1>
 <nonterminal name="comment"/>
 <sep>
 <nonterminal name="cchars"/>
 </sep>
 </repeat1>
 <nonterminal name="cchars"/>
 </alt>
 </alts>
 </option>
 <literal tmark="-" string="}"/>
 </alt>
</rule>
<rule mark="-" name="cchars">
 <pragma pname="token"/>
 <alt>
 <repeat0>
 <nonterminal name="cchar"/>
 </repeat0>
 </alt>
</rule>

Note that because the additional XML elements within the
 pragma are just redundant XML representations of the pragma
 data, an application to rewrite XML grammars in
 ixml form will lose no information when transcribing this XML
 pragma as

{[rewrite
 comment: -"{", cchars, (comment++cchars, cchars)?, -"}".
 {[token]} -cchars: cchar*.
]}

Pragma scope
In this proposal, pragmas always apply explicitly to some
 part of a grammar:
 	to a symbol occurrence in the right-hand side of a rule, or

	to a rule

	to the grammar as a whole.

The relation between a pragma and the part of the grammar
 to which it applies is reflected in the XML form of a grammar:
 ordinary pragmas appear as child elements and prolog pragmas as
 grandchild elements of the part of the grammar they apply to (an
 element named ixml, rule,
 nonterminal, literal,
 inclusion, or exclusion).

These associations between pragmas and parts of grammars
 are specified here for clarity and to enable clearer discussion
 of pragmas, but they have no effect on the operational semantics
 of ixml processors. If a processor does not implement a given
 pragma, or any pragmas at all, it will not be affected by the
 pragmas, regardless of what they apply to, and a processor that
 does understand a given pragma may be able to tell from its
 definition what changes in behavior it requests and what it
 applies to. The associations given above are thus of most
 direct use to those specifying the meaning of specific pragmas.

Operational semantics
In describing the operational semantics of pragmas, we
 distinguish different classes of ixml processor:
 	standard ixml
	 processors treat pragmas syntactically as
	 comments and ignore them in the same way as they ignore all
	 comments. Informally, they do not understand
	 any pragmas, and their only obligation is not to trip over
	 pragmas when they encounter them.

	pragma-aware
	 processors recognize pragmas syntactically and modify their
	 behavior in accordance with some pragmas. Informally, they
	 understand some pragmas but not all. For each
	 pragma they recognize, they must determine whether it is one
	 they understand and implement, or not.
	

With regard to a given pragma, processors either implement that pragma or they do not. A
 processor implements a pragma
 if and only if it adjusts its behavior as specified by that
 pragma. In the ideal case there will be some written
 specification of the pragma which describes the operational
 effect of the pragma clearly. This proposal assumes that a
 processor can use the URI of a pragma, possibly in conjunction
 with the pragma data, to determine
 whether the processor implements the pragma or not and thus
 decide whether to modify its normal operation or not.

Pragma-aware processors MUST accept pragmas when they
 occur in the ixml form of a grammar, and (if they are producing
 an XML form of the grammar) must produce the correct XML form of
 each pragma, just as they produce the corresponding XML form for
 any construct in the grammar.

Conformance requirements for pragmas
The conformance requirements mentioned in this section
 apply to pragma-aware processors; the qualifier
 pragma-aware is sometimes omitted for
 brevity.
Pragma-aware processors MUST be capable, at user option,
 of ignoring all pragmas and processing a grammar using the
 standard rules of ixml.
Processors which accept ixml grammars MUST accept pragmas
 in the ixml form of a grammar, whether they understand or
 implement the specific pragmas or not.

Processors which accept XML grammars MUST accept pragmas
 in the XML form of a grammar, whether they understand or
 implement the specific pragmas or not.

If a pragma which the processor does not understand or
 implement is present in a grammar used to parse input, the
 processor MUST process the grammar in the same way as if the
 pragma were not present.
When ixml grammars are processed as input using the
 processor's built-in grammar, processors MUST produce the
 correct XML form of each pragma, just as they produce the
 corresponding XML form for any construct in the grammar,
 except as the processor's
 behavior is affected by the presence of pragmas in the grammar
 for ixml used to parse the input.

Examples
The examples in this section describe some scenarios
 in which we can imagine an implementation wanting to support
 behavior that goes beyond what is in the current version of
 the ixml specification. They illustrate how the pragma
 mechanisms described above could be used to invoke the
 behavior in question.
They are thus intended to persuade the reader that
 the mechanisms described above suffice for some plausible
 use cases. They are not
 intended as full specifications of the syntax and semantics
 of the pragmas described, although some of them have in
 fact been implemented.
Note
In the future, we expect to elaborate the description of
 some of these pragmas and publish them as specifications of
 particular pragmas which may be implemented by more than one
 processor. We anticipate doing this by describing pragmas in the
 vendor-neutral namespace
 https://gyfre.org/ns with the
 conventional name
 gyfre. Gyfre is the
 name of the invisible servant in the Middle English poem
 Sir Launfal.

Renaming
Use case: Using pragmas
 to specify that an element or attribute name serializing a
 nonterminal should be given a name different from the
 nonterminal itself.
In the grammar below, the two forms of month have
 different syntaxes, so they are required to have different
 nonterminal names, and so they are required to be serialized
 using different XML element names.
We define a renaming pragma which specifies the name to be
 used when serializing a nonterminal as XML. A parser which does
 not support the pragma will produce results in which some months
 are named month and others nmonth; a
 parser which does support the pragma will call them all
 month.

 {[+pragma rename
 "https://lists.w3.org/Archives/Public/public-ixml/2021Oct/0014.html"]}

 date: day, " ", month, " ", year.
 day: d, d?.
 month: "January"; "February"; "March";
 "April"; "May"; "June";
 "July"; "August"; "September";
 "October"; "November"; "December".
 year: d, d, d, d.

 iso: year, "-", {[rename month]} nmonth, "-", day.
 nmonth: d, d.

The fallback behavior of a parser that does not support
 these pragmas will be to produce output using both the element
 name month and the element name
 nmonth.

Name indirection
Use case: Using pragmas
 to specify that an element or attribute name should be taken not
 from the grammar but from the string value of a given
 nonterminal.
Consider the following grammar which recognizes a superset
 of a simple subset of XML. It's a subset of XML for simplicity,
 and it's a superset of the subset because a grammar written at
 this level cannot enforce all of the well-formedness constraints of
 XML.

{ A grammar for a small subset of XML, as an illustration. }

document: ws?, element, ws? .

element: starttag, content, endtag; soletag .

-starttag: -"<", @gi, (ws, attribute)*, ws?, -">".
-endtag: -"</", @gi2, (ws, attribute)*, ws?, -">".
-soletag: -"<", @gi, (ws, attribute)*, ws?, -"/>".

attribute: @name, ws?, -"=", ws?, @value.
@value: dqstring; sqstring.
-dqstring: dq, ~['"']*, dq.
-sqstring: sq, ~["'"]*, sq.
-dq: -['"'].
-sq: -["'"].

{ allow at most one PCDATA block between pieces of markup }
-content: PCDATA?,
 ((processing-instruction; comment; element)++(PCDATA?),
	 PCDATA?)?.

PCDATA: (~["<>&"]; "&"; "<"; ">"; "'"; """)+.
processing-instruction: "<?", @name, ws, @pi-data, "?>".
comment: "<--", comment-data, "-->".

gi: name.
gi2: name.
{ name is left as an exercise for the reader. }

ws: (#20; #A; #C; #9)+.

Among the input sequences which should be accepted by this
 grammar is the following XML representation of a haiku.

<haiku author="Basho" date="1686">
 <line>When the old pond</line>
 <line>gets a new frog</line>
 <line>it's a new pond.</line>
</haiku>

We might like an ixml processor to read this and produce
 the same XML that any XML parser would produce. (This desire
 makes sense only when the ixml processor's results are supplied
 to a user in a DOM or XDM or SAX or other XML API or model. If
 they are supplied as an XML character stream, we might as well
 feed the XML straight to the downstream user; we don't need to
 parse it.) What the grammar above will produce has a clear
 structural similarity to
 the input XML, but it is not the same:

<document xmlns:ixml="http://invisiblexml.org/NS" ixml:state="ambiguous">
 <element gi="haiku" gi2="haiku">
 <attribute name="author" value="Basho"/>
 <attribute name="date" value="1686"/>
 <PCDATA>
 </PCDATA>
 <element gi="line" gi2="line">
 <PCDATA>When the old pond</PCDATA>
 </element>
 <PCDATA>
 </PCDATA>
 <element gi="line" gi2="line">
 <PCDATA>gets a new frog</PCDATA>
 </element>
 <PCDATA>
 </PCDATA>
 <element gi="line" gi2="line">
 <PCDATA>it's a new pond.</PCDATA>
 </element>
 <PCDATA>
</PCDATA>
 </element>
</document>
We can invent suitable pragmas to allow ourselves to
 obtain normal XML from parsing with the grammar:
 	
	 name expression - specifies that the
	 name under which a nonterminal is to be serialized is
	 given by the string value of the supplied XPath expression,
	 interpreted with the standard ixml result element as the
	 context node.
	

		
	 serialize keyword - specifies that the
	 nonterminal is to be serialized as specified by the
	 keyword (which is assumed to be attribute,
	 element, or the name of some other XPath node
	 test).
	

	
	 drop - specifies that the nonterminal so
	 annotated is to be suppressed entirely, along with the
	 entire parse tree dominated by the nonterminal.
	

With these pragmas, we can annotate the element and attribute rules appropriately:

^ {[name @gi]} element: start-tag, content, end-tag; sole-tag.
...
-end-tag: "</", {[drop]} @gi2, (ws, attribute)*, ws?, ">".
...
^ {[serialize attribute]}
 {[name @name]}
 attribute: @name, ws?, "=", ws?, @value.

Rule rewriting
Use case: Using pragmas
 to specify that a rule as given is shorthand for a set of other
 rules. Consider the following simple grammar for arithmetic
 expressions.

expr: term; expr, addop, term.
term: factor; term, mulop, factor.
factor: number; var; -'(', -expr, -')'.
...

We might find it inconvenient that the number 42 is
 represented with an XML element tree four elements deep:

<expr>
 <term>
 <factor>
 <number>42</number>
 </factor>
 </term>
</expr>

 We might prefer a shallower tree.[7]

One simple rule to simplify the XML representation of
 sentences in this language is to specify that if an element
 E has only one child, E should not be tagged and only the child
 should appear in the XML.

We can do this in ixml by expanding the grammar, splitting
 each nonterminal into two rules, one producing a visible
 serialization and one hiding the nonterminal on serialization.

-EXPR: TERM; expr.
expr: EXPR, addop, TERM.
-TERM: FACTOR; term.
term: TERM, mulop, FACTOR.
-FACTOR: number; var; -'(', EXPR, -')'.
...

Now 42 parses more simply as
 <number>42</number>.
The rewrite is mechanical enough that we can automate it,
 and error-prone enough that it is worth automating. If a rule
 has some right-hand sides guaranteed to produce at most one
 child each and some guaranteed to produce at least two children
 each, it's split into two rules. The first gets a new
 nonterminal and has the original single-child right-hand sides
 as alternatives, as well as a reference to the original
 nonterminal. It's marked hidden. The second rule gets the
 original nonterminal. All references to the original
 nonterminal are changed to be references to the new
 nonterminal.
If we call the relevant pragma no-unit-rules, or more briefly
 nur, the grammar takes the
 following form. In practice, we also need a
 rule that means don't rewrite the entire rule, but
 replace references to rules rewritten using nur; we call this second pragma
 ref.

^ {[nur]} expr: term; expr, addop, term.
^ {[nur]} term: factor; term, mulop, factor.
- {[ref]} factor: number; var; -'(', -expr, -')'.
...

The XML representation of this grammar can plausibly
 exploit the ability of extension elements to contain an XML
 representation of the new rules. Both the nur
 and the ref pragmas within a rule instruct the
 implementation to replace the enclosing rule with the rules
 appearing as children of the pragma elements.

 <ixml>
 <rule name="expr" mark="^">

 <pragma pname="nur">
 <pragma-data/>

 <rule name="EXPR" mark="-">
 <alt><nonterminal name="TERM"/></alt>
 <alt><nonterminal name="expr"/></alt>
 </rule>

 <rule name="expr" mark="^">
 <alt>
 <nonterminal name="EXPR"/>
 <nonterminal name="addop"/>
 <nonterminal name="TERM"/>
 </alt>
 </rule>
 </pragma>

 <alt><nonterminal name="term"/></alt>
 <alt>
 <nonterminal name="expr"/>
 <nonterminal name="addop"/>
 <nonterminal name="term"/>
 </alt>
 </rule>

 <rule name="term" mark="^">
 <pragma pname="nur">
 <pragma-data/>

 <rule name="TERM" mark="-">
 <alt><nonterminal name="factor"/></alt>
 <alt><nonterminal name="term"/></alt>
 </rule>

 <rule name="term" mark="^">
 <alt>
 <nonterminal name="TERM"/>
 <nonterminal name="mulop"/>
 <nonterminal name="factor"/>
 </alt>
 </rule>
 </pragma>

 <alt><nonterminal name="factor"/></alt>
 <alt>
 <nonterminal name="term"/>
 <nonterminal name="mulop"/>
 <nonterminal name="factor"/>
 </alt>
 </rule>

 <rule name="factor" mark="-">
 <pragma pname="ref">
 <pragma-data/>
 <rule name="factor" mark="-">
 <alt><nonterminal name="number"/></alt>
 <alt><nonterminal name="var"/></alt>
 <alt>
 <literal string="(" tmark="-"/>
 <nonterminal name="EXPR" mark="-"/>
 <literal string="-" tmark="-"/>
 </alt>
 </rule>
 </pragma>
 <alt><nonterminal name="number"/></alt>
 <alt><nonterminal name="var"/></alt>
 <alt>
 <literal string="(" tmark="-"/>
 <nonterminal name="expr" mark="-"/>
 <literal string="-" tmark="-"/>
 </alt>
 </rule>
 ...
 </ixml>

The fallback behavior of a processor that doesn't support
 these pragmas will be to serialize expr and
 term elements even when they have only one
 child.

Tokenization annotation and alternative formulations
Use case: We can use
 pragmas to annotate nonterminals in an ixml grammar to provide a
 hint to the processor indicating that they define a regular
 language and can be safely recognized by a greedy
 regular-expression match.
For example, consider the grammar for a simple programming
 language. A processor might read programs a little faster if it
 could read identifiers in a single operation; this will be true
 if when an identifier is encountered, the identifier will always
 consist of the longest available sequence of characters legal in
 an identifier. In the toy Program.ixml grammar used as a running
 example in Hillman 2020,
 the rule for identifiers is:

identifier: letter+, S.

We can annotate identifier to signal that it's safe to
 consume an identifier using a single regular-expression match by
 using a pragma in a lexical scanning (ls)
 namespace:

{[token]} identifier: letter+, S.

The rules for comments in ixml itself offer another
 wrinkle.

 comment: -"{", (cchar; comment)*, -"}".
 -cchar: ~["{}"].

Within a comment, any sequence of characters matching
 cchar can be recognized in a
 single operation; there is no need to look for alternate parses
 that consume only some of the characters. But there is no
 nonterminal here that matches all and only non-empty sequences
 of cchar. In order to use the
 token annotation here, we
 must first rewrite the grammar at this point. So we introduce
 an annotation named rewrite
 to be attached to a single grammar rule with the meaning that
 the pragma data provide an alternate form of the rule.
We can now annotate the grammar and supply an alternative
 formulation of comment that
 replaces it with two new rules:

 ^ {[rewrite
 comment: -"{", cchars, (comment++cchars, cchars)?, -"}".
 {[token]} -cchars: cchar*.
]}
 comment: -"{", (cchar; comment)*, -"}".
 -cchar: ~["{}"].

Or we may find it easier to read if we inject the
 alternative formulation after, not before, the existing rule:

 comment: -"{", (cchar; comment)*, -"}"
 {[rewrite
 comment: -"{", cchars, (comment++cchars, cchars)?, -"}".
 - {[token]} cchars: cchar*.
]}.
 -cchar: ~["{}"].

Either way, the rewrite contains an alternative
 formulation of the grammar which recognizes the same sentences
 and provides the same XML representation but may be processed
 faster by some processors.
The fallback behavior of a processor that doesn't support
 these pragmas will be to parse as usual using the grammar as
 specified.
Note however that there is no way to guarantee or impose
 an effective requirement that the alternate rules in an
 rewrite pragma be equivalent
 to the fallback rules: pragmas may change the behavior of a
 processor, and they may change the meaning of an expression (or
 here the meaning of a grammar or part of it).

Text injection
Use case: Using pragmas
 to specify that additional text should be injected into the output
 at a particular point (as part of a text node, or attribute value).

The text injection use case stands as an example of how a
 language may evolve to incorporate features that make some
 pragmas unnecessary or obsolete. The insertions feature in Invisible
 XML 1.0 was a relatively late addition to the language. Work on
 a proposal for pragmas began more than a year
 earlier. The text injection pragma use case explored the
 question of whether the pragma mechanism could be used to inject
 text into the output. And indeed it could. But the insertions
 feature has made it obsolete.
Pragmas offer implementers and designers an opportunity to
 experiment with, and test designs for, functionality that may
 eventually become part of the specification.

What next?
As noted above, the first versions of the pragmas proposal
 described here were developed and discussed within the Invisible
 XML community group. After it became clear that the group would
 not integrate pragmas into Invisible XML 1.0, the proposal was
 re-formulated as an optional add-on layered on top of ixml, rather
 than as a part of the ixml specification.
The next steps now are
 	to draft a formal specification of
	the pragmas framework,

	to draft stand-alone specifications of some pragmas
	which appear to be of general interest (both as examples, and
	in the case of pragmas of general interest to avoid multiple
	incompatible implementations of the same additional
	functionality), and

	to integrate support for the pragmas framework into
	processors, optionally with support for selected
	pragmas.

Appendix A. Modified ixml syntax
The ways in which the pragmas proposal changes the syntax
 of ixml were outlined in the main body of the text; this appendix
 presents the modified grammar in complete form. Insertions
 and modifications are given in bold.

{ixml grammar version 2022-06-07, modified for pragmas 2022-07-15}
 ixml: s, prolog?, rule++RS, s.

 -s: (whitespace; comment)*. {Optional spacing}
 -RS: (whitespace; comment)+. {Required spacing}
 -sp: (whitespace; comment; pragma)*. {Spacing with pragmas}

 -whitespace: -[Zs]; tab; lf; cr.
 -tab: -#9.
 -lf: -#a.
 -cr: -#d.
 comment: -"{", ((comment; ~["[]{}"]), (cchar; comment)*)?, -"}".
 -cchar: ~["{}"].

 prolog: version, s, (ppragma++s, s)?; ppragma++s, s.
 version: -"ixml", RS, -"version", RS, string, s, -'.' .
 ppragma: -"{[+", @pname, (whitespace, pragma-data)?, -"]}".

 rule: annotation, name, s, -["=:"], s, -alts, (pragma, sp)?, -".".

 -annotation: (pragma, sp)?, (mark, sp)?.
 pragma: -"{[", @pname, (whitespace, pragma-data)?, -"]}".
 @pname: name.
 pragma-data: (-pragma-char; -bracket-pair)*.
 -pragma-char: ~["{}"].
-bracket-pair: '{', -pragma-data, '}'.

 @mark: ["@^-"].
 alts: alt++(-[";|"], s).
 alt: term**(-",", s).
 -term: factor;
 option;
 repeat0;
 repeat1.
 -factor: terminal;
 nonterminal;
 insertion;
 -"(", s, alts, -")", s.
 repeat0: factor, (-"*", s; -"**", s, sep).
 repeat1: factor, (-"+", s; -"++", s, sep).
 option: factor, -"?", s.
 sep: factor.
 nonterminal: annotation, name, s.

 @name: namestart, namefollower*.
 -namestart: ["_"; L].
-namefollower: namestart; ["-.·‿⁀"; Nd; Mn].

 -terminal: literal;
 charset.
 literal: quoted;
 encoded.
 -quoted: tannotation, string, s.
 -tannotation: (pragma, sp)?, (tmark, sp)?.

 @tmark: ["^-"].
 @string: -'"', dchar+, -'"';
 -"'", schar+, -"'".
 dchar: ~['"'; #a; #d];
 '"', -'"'. {all characters except line breaks; quotes must be doubled}
 schar: ~["'"; #a; #d];
 "'", -"'". {all characters except line breaks; quotes must be doubled}
 -encoded: tannotation, -"#", hex, s.
 @hex: ["0"-"9"; "a"-"f"; "A"-"F"]+.

 -charset: inclusion;
 exclusion.
 inclusion: tannotation, set.
 exclusion: tannotation, -"~", s, set.
 -set: -"[", s, (member, s)**(-[";|"], s), -"]", s.
 member: string;
 -"#", hex;
 range;
 class.
 -range: from, s, -"-", s, to.
 @from: character.
 @to: character.
 -character: -'"', dchar, -'"';
 -"'", schar, -"'";
 "#", hex.
 -class: code.
 @code: capital, letter?.
 -capital: ["A"-"Z"].
 -letter: ["a"-"z"].
 insertion: -"+", s, (string; -"#", hex), s.

References
[Bray et al. 2009]
 Bray, T. et al. eds., 2009.
 Namespaces in XML 1.0 (Third Edition).
 W3C Recommendation, 8 December 2009.
[Grune/Jacobs 1990/2008]
 Grune, Dick, and Ceriel J. H. Jacobs.
 1990/2008.
 Parsing techniques: a practical guide.
 First edition New York et al.: Ellis Horwood, 1990.
 Second edition [New York]: Springer, 2008.

[Hillman 2020]
 Hillman, Tomos.
 XSLT Earley: First Steps to a Declarative Parser Generator.
 Presented at XML Prague, 2020, Prague, Czech Republic.
 In
 XML Prague 2020 Conference Proceedings, pp. 231-249.

[Ichbiah et al. 1986]
 Ichbiah, Jean D., John G. P. Barnes, Robert J. Firth, and Mike Woodger. 1986.
 Rationale for the design of the Ada programming language.
 Ada Joint Program Office: U. S. Government.

[ISO 8879:1986]
 International Organization for Standardization (ISO).
 1986.
 ISO 8879-1986
 (E). Information processing — Text and Office Systems —
 Standard Generalized Markup Language (SGML). International
 Organization for Standardization, Geneva, 1986.

[Jensen and Wirth 1974/1985]
 Jensen, Kathleen, and Niklaus Wirth.
 1974, 3d ed. 1985.
 Pascal user manual and report,
 revised for the ISO Pascal standard.
 Third edition.
 New York, Berlin, Heidelberg, Tokyo: Springer, 1985.

[Kay 2017]
 Kay. M. ed., 2017.
 XSL Transformations (XSLT) Version 3.0.
 W3C Recommendation, 21 March 2017.
[Lindsey 1996]
 Lindsey, C. H., 1996.
 A history of ALGOL 68. In Thomas J. Bergin and Richard G. Gibson (eds.)
 History of Programming Languages II. New York: ACM.

[Melton et al. 2017]
 Melton, J. et al. eds., 2017.
 XQueryX 3.1.
 W3C Recommendation, 21 March 2017.
[Naur et al. 1960]
 Naur, Peter, ed., et al.
 1960.
 Report on the algorithmic language Algol 60.
 Communications of the Association for
 Computing Machinery 3.5 (May 1960): 299-314.
 doi:https://doi.org/10.1145/367236.367262.
 (Also published simultaneously in
 Numerische Mathematik.)

[Pemberton 2013]
 Pemberton, Steven.
 Invisible XML.
 Presented at Balisage: The Markup Conference 2013,
 Montréal, Canada, August 6 - 9, 2013.
 In
 Proceedings of Balisage: The Markup Conference 2013.
 Balisage Series on Markup Technologies, vol. 10 (2013).
 doi:https://doi.org/10.4242/BalisageVol10.Pemberton01.
 On the web at
 http://www.balisage.net/Proceedings/vol10/html/Pemberton01/BalisageVol10-Pemberton01.html.
 Revised version (January 2014) at
 https://homepages.cwi.nl/~steven/Talks/2013/08-07-invisible-xml/invisible-xml-3.html

[Pemberton 2022]
 Pemberton, Steven. Invisible XML Specification.
 Published by the Invisible Markup Community Group
 on the web at
 https://invisiblexml.org/1.0/

[Robie et al. 2017a]
 Robie, J, et al. eds., 2017.
 XML Path Language (XPath) 3.1.
 W3C Recommendation, 21 March 2017.
[Robie et al. 2017b]
 Robie, J, et al. eds., 2017.
 XQuery 3.1: An XML Query Language.
 W3C Recommendation, 21 March 2017.
[van Wijngaarden et al. 1976]
 van Wijngaarden, A., et al., ed.
 1976.
 Revised report on the algorithmic language Algol 68.
 Heidelberg, New York: Springer, 1976.

[1] As with many of the other terminological innovations of
 Algol 68, the Report offers no explicit explanation of the origin
 of the name. The Report does include what it calls
 pragmatic remarks, which are not part of the
 definition of the language but serve to help the reader to
 understand the intentions and implications of the
 definitions, thus serving roughly the same purpose as
 non-normative notes in some standards and specifications. In a
 paper on the history of Algol 68, C. H. Lindsey explained that
 A 'pragmatic remark' is to the Report as a comment is to a program (Lindsey 1996). While not conclusive, this evidence
 suggests that the pragmatic remark may have
 provided the motivation for the technical term pragmat, positioning pragmats as
 information which helps the compiler in its
 interpretation of the constructs of the language proper.In adopting the term pragma, later
 languages may have been influenced by the desire to present a
 clearer and more easily explained derivation: the authors of Ada,
 for example, state that A pragma (from the Greek word
 meaning action) is used to direct
 the actions of the compiler in particular ways Ichbiah et al. 1986.

[2] It may be noted also that the Pascal standard does not
 require that strict conformance be the default behavior of the
 compiler, only that it be possible.
[3] For example the one in sec. 6.6.2 of the first edition of
 Grune/Jacobs 1990/2008.
[4] Whether pragmas are, by nature, a special kind of comment or
 a distinct class of things is an ontological question we do not
 propose to address here. As indicated above, in this paper we
 follow the distinction made by van Wijngaarden et al. 1976: we use
 the term pragma to denote objects
 which convey non-standardized information in a form usefully
 processable by machine and often with meaningful internal
 structure, and the term comment
 to denote such information in a form not usefully processable by
 machine, typically expressed as remarks in a natural language and
 addressed to human readers.
[5] The phrase uses no
	 pragmas means, for an implementation which is not
	 pragma-aware, in effect, does not begin any comments
	 with a square bracket.
[6] As noted above: pragmas may affect the behavior of a
 processor in any way.
[7] The reader who believes this example is artificial is
 referred to the XQueryX spec (Melton et al. 2017) and its XML representation of an
 XPath expression like
 section/title.

Balisage: The Markup Conference

Designing for change
Pragmas in Invisible XML as an extensibility mechanism
Tomos Hillman
eXpertML Ltd

<tom@expertml.com>
Tom Hillman has worked as an XML practitioner and
 consultant for fifteen years, doing everything from
 documentation to IT support and administration to workflows
 for digital publishing to conference organization to XML
 database management and consultancy.

C. M. Sperberg-McQueen
Black Mesa Technologies LLC

<cmsmcq@blackmesatech.com>
C. M. Sperberg-McQueen is the founder of Black Mesa Technologies LLC,
	a consultancy specializing in the use of descriptive markup to help
	memory institutions preserve cultural heritage information. He co-edited
	the XML 1.0 specification, the Guidelines of the Text Encoding Initiative,
	and the XML Schema Definition Language (XSDL) 1.1 specification.

Bethan Tovey-Walsh
Swansea University

<bytheway@linguacelta.com>
Bethan Tovey-Walsh is a PhD student in Applied Linguistics and Welsh at Swansea
 University. She is funded by the CorCenCC corpus of modern Welsh, and created the Welsh
 part-of-speech tagger now used by the project. She previously worked for OUP as a content
 architect and as a researcher for the Oxford English Dictionary.

Norm Tovey-Walsh
Senior Software Developer
Saxonica

<ndw@nwalsh.com>
Norm Tovey-Walsh is currently a senior software developer at
 Saxonica Ltd, working from his home in Swansea,
 Wales. Previously, he was employed by MarkLogic Corporation,
 Sun Microsystems, Arbortext, and O’Reilly Media (then O’Reilly
 & Associates).

Balisage: The Markup Conference

content/images/BalisageSeries-Proceedings.png
Serles on g

Markup Technologies

